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Abstract

Mosaicism, the presence of subpopulations of cells bearing somatic mutations, is associated with 

disease and aging and has been detected in diverse tissues, including apparently normal cells 

adjacent to tumors. To analyze mosaicism on a large scale, we surveyed haplotype-specific 

somatic copy number alterations (sCNAs) in 1,708 normal-appearing adjacent-to-tumor (NAT) 

tissue samples from 27 cancer sites and in 7,149 blood samples from The Cancer Genome Atlas. 

We find substantial variation across tissues in the rate, burden and types of sCNAs, including those 

spanning entire chromosome arms. We document matching sCNAs in the NAT tissue and the 

adjacent tumor, suggesting a shared clonal origin, as well as instances in which both NAT tissue 

and tumor tissue harbor a gain of the same oncogene arising in parallel from distinct parental 

haplotypes. These results shed light on pan-tissue mutations characteristic of field cancerization, 

the presence of oncogenic processes adjacent to cancer cells.

Reprints and permissions information is available at www.nature.com/reprints.
*Correspondence and requests for materials should be addressed to Y.A.J. yaj2@cornell.edu.
Author contributions
P.S. and Y.A.J. conceptualized and directed the study. J.F., K.C., M.R.G., P.S., S.S., Y.A.J. and Y.Y. performed data analyses. C.D.H., 
E.V., H.K., P.S. and Y.A.J. interpreted results. P.S. and Y.A.J. wrote the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41587-019-0297-6.

Data availability
The results shown are based on data generated by the TCGA Research Network (http://cancergenome.nih.gov/). All datasets used in 
this work are available in public repositories (https://portal.gdc.cancer.gov/). A list of TCGA disease sites (Supplementary Table 1) 
and blood and NAT samples used for the analyses (including case IDs) are included (Supplementary Tables 4 and 5, respectively). 
Reported sCNAs with case IDs are available in Supplementary Tables (6, 7, 10, 11 and 19–21).

Online content
Any methods, additional references, Nature Research reporting summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/s41587-019-0297-6.

HHS Public Access
Author manuscript
Nat Biotechnol. Author manuscript; available in PMC 2021 April 29.

Published in final edited form as:
Nat Biotechnol. 2020 January ; 38(1): 90–96. doi:10.1038/s41587-019-0297-6.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.nature.com/reprints
http://cancergenome.nih.gov/
https://portal.gdc.cancer.gov/


Somatic mutational events followed by clonal expansion create subpopulations of cells that 

are genetically distinct from germline (Fig. 1a). This phenomenon, known as clonal 

mosaicism, plays an important role in aging, infertility and human disease1–4. Genetic 

profiling of tumors has revealed cancer-site-specific and pan-cancer patterns of somatic 

mutations5–7. Fewer studies have focused on somatic mutations in pathologically normal 

tissues8–21. The largest studies of mosaicism in healthy tissue have surveyed existing blood 

genotype data and have revealed positive associations between blood mosaicism and age, 

and between blood mosaicism and incidence of hematological cancers22–27. Surveys of the 

somatic mutational landscape of blood and non-blood tissues have revealed that healthy 

individuals harbor mutations in cancer-driver genes16–20. The connection between these 

somatic mutations and disease is an area of ongoing research. Mosaicism has been 

implicated in other non-cancer chronic conditions, emphasizing the need for comprehensive 

surveys of mosaicism across human tissues1–3.

We sought to expand knowledge of mosaicism by analyzing allele-specific megabase-scale 

sCNAs (gain, loss and copy-neutral loss of heterozygosity (cn-LOH)) in blood and NAT 

samples from The Cancer Genome Atlas (TCGA). Although NAT tissues appear normal 

macroscopically, they harbor somatic mutations in tumor-driver genes that are both shared 

and independent of the adjacent tumor12–14. A previous study examined sCNAs in TCGA 

non-tumor tissues of ovarian and lung cancer using array comparative genomic hybridization 

data9. Here we analyze genotype data from Affymetrix 6.0 single-nucleotide polymorphism 

(SNP) arrays, which are available for more than 10,000 paired control and tumor TCGA 

samples. By using haplotype-based approaches, we were able to comprehensively study 

sCNAs in NAT tissues across cancer sites and contrast intraindividual sCNA profiles (Fig. 

1b).

Our study uncovered substantial differences in the genomic distribution of sCNAs across 

tissues (Fig. 2a), with patterns in the blood confirming previous results22,23,25,26. In non-

blood tissue, we identified tissue-specific sCNA patterns in NAT tissues from bladder 

urothelial carcinoma (BLCA), breast invasive carcinoma (BRCA), head and neck squamous 

cell carcinoma (HNSC), stomach adenocarcinoma (STAD) and kidney renal clear cell 

carcinoma (KIRC). Our comparative analyses of sCNA profiles from matched NAT–tumor 

samples revealed that these events, detected in NAT tissue,were not always present in the 

adjacent tumor, including instances of parallel evolution (Fig. 2b). This study lays out a 

framework for detection, characterization and comparison of sCNAs across human tissues 

and within tissues from the same donor.

Results

Detection of somatic copy number alterations.

We profiled the sCNA landscape of blood and NAT samples across TCGA cancer sites 

(Table 1). We used the hapLOH algorithm for detection of allelic imbalance indicative of 

sCNA (Fig. 1a). This approach leverages statistically estimated haplotypes for detection of 

high-confidence megabase-scale sCNAs that are present at low mutant cell fractions 

(detection limit ~5–10%)28. For each allelic imbalance call, we used the B allele frequency 

(BAF) and logR ratio (LRR) deviation for classification of sCNAs as gain, loss, cn-LOH or 
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undetermined (where BAF and LRR deviations did not reach the classifications thresholds). 

We filtered out short high-cell-fraction gains as putative inherited duplications using 

stringent filtering criteria (Supplementary Fig. 1 and Supplementary Note 1). We validated 

sCNA calls for a subset of samples with available exome sequencing data29 (Supplementary 

Fig. 2). Samples with a high rate of missing genotypes and/or potential intra- or 

interindividual contamination were excluded from downstream analyses. After quality 

control, we considered samples from 8,437 donors of which 420 had both blood and NAT 

tissues. These include 1,708 NAT and 7,149 blood samples from 27 TCGA studies 

(Supplementary Tables 1–3).

Frequency, burden and size distribution of sCNAs.

A total of 78 NAT and 130 blood samples had at least one autosomal sCNA, with 338 and 

178 sCNAs detected in the NAT and blood samples, respectively (Supplementary Tables 2–

7). Only one donor (of 420) harbored sCNAs in both blood and NAT tissues; these sCNAs 

were on different chromosomes. The rate of mosaic NAT samples, those with one or more 

sCNAs, was more than twice the rate in blood (4.6% versus 1.8%; P = 3 × 10−11, χ2 test); 

these results held when we used logistic regression (LR) to adjust for age and sex (P = 5.1 × 

10−9). NAT mosaic tissues had an average of 4.3 sCNAs (median = 2, minimum = 1, 

maximum = 44), which was significantly higher than blood with an average of 1.4 sCNAs 

(median = 1, minimum = 1, maximum = 4; P = 2 × 10−5, Mann–Whitney–Wilcoxon test 

(MWW)).

The mosaicism rates of NAT tissues were different across cancer sites with BRCA, HNSC 

and KIRC reaching statistical significance after multiple testing correction (P < 0.05, 

binomial test; Supplementary Table 3). Among sites with ten or more available NAT 

samples, HNSC had the highest rate (25%), followed by BLCA (18%), BRCA (11%), 

sarcoma (11%), STAD (10%) and ovarian (9%) (Supplementary Fig. 3).

Mosaic chromosomal alterations had a median size of 32 Mb and no obvious difference in 

the distribution of sCNA sizes between blood and NAT samples (P = 0.79, MWW; 

Supplementary Fig. 4), as well as similar distributions of focal and arm-level sCNAs 

(Supplementary Fig. 5). In blood, but not NAT tissues, there was an association between 

sCNA event type and size (P = 2.8 × 10−8 in blood and P = 0.37 in NAT, Kruskal–Wallis 

rank sum test; Supplementary Figs. 6 and 7).

Chromosome X data in females also allow for the detection of sCNAs leading to allelic 

imbalance; therefore, we surveyed chromosome X in 4,099 blood and 839 NAT samples 

from female patients. We observed 67 chromosome X sCNAs in 37 blood samples (~1% of 

blood samples) and 32 chromosome X sCNAs in 18 NAT samples (~2% of NAT samples) 

(Supplementary Tables 8–11). Chromosome X sCNAs were present in 7% of NAT samples 

in KIRC, which was significantly higher than for other sites (adjusted P = 0.004, binomial 

test, Bonferroni correction for 26 cancer sites; Supplementary Table 9).

Genomic distribution of sCNAs.

In addition to the differences in frequency and burden of sCNAs between blood and NAT 

tissues, we observed differences in the genomic distribution of these somatic alterations 
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(Fig. 3a). Alterations on 1q and 9q were the most frequent in NAT tissues, whereas 13q and 

20q were the most frequent in blood. To compare these findings, we formally tested for 

enrichment of alterations at particular genomic loci in blood and in NAT tissues30. In blood, 

the most significant hits were located in 13q14 (P = 1.7 × 10−4, Q = 0.03) and chromosome 

20 (P = 3.2 × 10−4, Q = 0.05; Supplementary Fig. 8 and Supplementary Table 12). These 

results confirm blood mosaicism profiles previously reported in cohorts of healthy donors 

and patients with cancer (solid tumors)22–26 (Supplementary Fig. 9). We observe that NAT 

tissues and blood have different types of sCNAs on chromosomes 13 and 20. Deletions on 

13q, which were common in blood, were not observed in NAT tissues; instead, 13q sCNAs 

in NAT tissues were primarily gains, with no observed losses (Fig. 3a). Alterations of 

chromosome arm 20q in blood were losses or too subtle for classification (12 losses and 5 

undetermined events); by contrast, there were no 20q losses in NAT tissues and the majority 

of sCNAs were gains (nine gains, one cn-LOH and three undetermined events; Fig. 3a). As 

for blood, we tested for enrichment of sCNAs at particular genomic loci in NAT tissues; the 

most significant peaks were located in 6p and 1q (P = 7.7 × 10−4 and P = 6.0 × 10−4, 

respectively, Q = 0.14 for both; Supplementary Fig. 8 and Supplementary Table 13). The 

significant genomic interval in 6p overlaps a recurrent pan-cancer deletion peak7. The 

observed differences between the sCNA landscape in blood and NAT tissues suggests that 

sCNAs in blood and/or immune cells are rarely detected in NAT samples.

Chromosome X sCNAs were similar in type (predominantly loss or undetermined) in both 

blood and NAT tissues (Fig. 3b). These alterations were also the most common sCNA in 

both sets of samples (Fig. 3b). Relative to the most frequent autosomal sCNA in females, the 

rate of chromosome X sCNAs was 3.7-fold higher (X versus chr. 13q) in blood and 1.3-fold 

higher in NAT tissues (X versus chr. 1q). This observation of a higher frequency of 

chromosome X alterations relative to autosomes, has been reported previously by two 

mosaicism surveys of blood26,27.

Beyond contrasting the sCNA landscapes of blood and non-blood tissues, we were also 

interested in cancer-site-specific patterns of sCNA enrichment in NAT tissues (Fig. 4), which 

was motivated by the well-documented differences in the sCNA profiles among cancers5–7. 

Owing to limited power at sites with few sCNAs, we formally tested for arm-level sCNA 

enrichment at cancer sites with five or more mosaic NAT samples. To do so we used an 

omnibus test to identify chromosome arms with recurrent sCNAs. For each cancer site, we 

generated a null distribution by permuting the location of sCNAs across chromosome arms 

of each sample that is within a column in Fig. 4. We then used this null distribution to 

calculate a P value for the chromosome arm with the highest sCNA rate at that cancer site 

(Methods). HNSC had a pronounced enrichment for 9q sCNAs in NAT tissues (adjusted P = 

1 × 10−7; Bonferroni correction for five cancer sites), BLCA for 9p (adjusted P = 0.01), 

BRCA for 1q (adjusted P = 3 × 10−5) and STAD had an enrichment for chromosome 20 

gains (adjusted = 0.02) (Fig. 4). This set of sCNAs, with NAT-specific enrichment, span 

chromosome arms that are recurrently altered in tumors from the respective cancer sites 

(Supplementary Table 14). No statistically significant enrichment was observed for ovarian 

cancer; however, though not significant (adjusted P = 1), we observed three gains that 

spanned KRAS, which have been observed in ovarian cancer and in endometriotic 

epithelium5–7,19.
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We compared the genomic distribution of sCNAs in NAT tissues to patterns of chromosomal 

alterations reported in pan-cancer surveys5,6. Somatic gains of 8 and 12, which are common 

across cancers, were present in both blood and NAT tissues (Fig. 3a). Somatic gains of 1q 

are enriched in epithelial tumors (BRCA, LUAD and LIHC); we observe these gains in 

BRCA and LUAD NAT tissues (Fig. 4). Co-occurring gains of 8q, 13q and chromosome 20 

are enriched in gastrointestinal tumors (ESCA, READ and STAD); NAT samples from those 

sites show one, two or sometimes all three gains (Fig. 4).

Associations between mosaicism and clinical features.

Studies of clonal mosaicism in blood report an association between sCNAs in autosomes 

and age22–26. We observe this association in blood (P = 5.5 × 10−13, LR, adjusting for sex; 

Supplementary Fig. 10). In blood, we also observe the previously reported26,27 association 

of age with sCNAs in chromosome X (P = 1.5 × 10−5, LR). The TCGA dataset allowed us to 

examine these associations in NAT tissues, where the presence of sCNAs in autosomes is 

marginally associated with age (P = 0.10, LR, adjusting for sex and cancer site), and the 

presence of sCNAs in chromosome X does not show an association (P = 0.30, LR, adjusting 

for cancer site). Next, we investigated association between mosaicism and cancer stage. 

When we accounted for differential mosaicism rates among cancer sites, using a 

permutation-based test, we did not detect an association between the presence of sCNAs in 

autosomes and cancer stage for blood (P = 0.62) or for NAT tissues (P = 0.31; 

Supplementary Table 15), which suggests that the observed sCNAs in blood and NAT tissues 

are not driven by circulating tumor cells or metastases. Additional clinical analyses and a 

discussion of their limitations are presented in Supplementary Note 2.

Inference of sCNA clonal origins.

As NAT tissue is proximal to tumor tissue, these two tissues may have somatic mutations 

stemming from a shared clonal lineage. To investigate the similarities between NAT tissue 

and tumor, we profiled sCNAs in tumor samples of patients with mosaic NAT tissues. We 

then contrasted intraindividual sCNA profiles by examining whether sCNAs in the NAT 

tissue overlapped with those in the matched tumor. Owing to inherent difficulties with 

mapping sCNA boundaries, especially for sCNAs present at a low mutant cell fraction, 

overlap was defined as an sCNA with greater than 50% overlap with a tumor sCNA (Fig. 

1b). Overlapping sCNAs were categorized as conflicting or non-conflicting on the basis of 

sCNA classification and the direction of allelic imbalance (Fig. 1b). Conflicting sCNAs 

included those with discordant event type (for example, gain–loss) and those where there 

was evidence for ‘mirrored’ allelic imbalance, where opposite haplotypes are in imbalance 

(Fig. 1b and Supplementary Fig. 11), indicating distinct mutations31,32. We define 

overlapping and non-conflicting pairs of NAT–tumor sCNAs as concordant. We note that 

concordance is merely suggestive, not conclusive, of a shared clonal lineage.

Of the autosomal sCNAs in blood, 25% were concordant, significantly lower than the 62% 

of sCNAs in NAT tissues that were concordant (P = 3.7 × 10−15, χ2 test). The majority 

(59%) of blood samples had zero concordant sCNAs with the tumor, while 38% of NAT 

samples had zero concordant sCNAs (P = 4.3 × 10−5, χ2 test; Supplementary Table 16). We 

tested additional, more stringent, overlap criteria, requiring reciprocal overlap between sets 
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of sCNAS with thresholds set to 50%, 75% and 90% (Supplementary Fig. 12). In the blood, 

17%, 12% and 8% of sCNAs were concordant at each of the overlap thresholds, respectively. 

These percentages were more than double (42%, 31% and 25%) those for NAT tissue 

sCNAs (Supplementary Tables 16 and 17). Overall, autosomal sCNAs in NAT tissues more 

frequently matched those in the adjacent tumor tissue than did the sCNAs in the blood of 

patients with cancer (Supplementary Table 16 and Supplementary Fig. 13). For sCNAs in 

chromosome X, 30% of those detected in blood were concordant (50% overlap) with tumor 

as compared to 54% for NAT tissues; this difference bordered on significance (P = 0.06, χ2 

test).

In contrast to NAT–tumor pairs, we compared sCNA profiles of 80 intraindividual tumor–

tumor sample pairs. These included primary tumor samples with a matched recurrence, 

metastasis or secondary primary tumor sample (Supplementary Table 18). The majority 

(98%) of tumor samples had one or more concordant sCNAs (50% overlap threshold) with 

the second tumor sample, significantly higher than for NAT samples (P = 5.8 × 10−8, χ2 

test). Extended results for intraindividual sample comparisons are found in Supplementary 

Notes 3 and 2, and Supplementary Tables 17–21. We did not observe an association between 

sCNAs in NAT tissues and mutational burden or microsatellite instability in the adjacent 

tumors (Supplementary Note 5).

Parallel evolution of NAT tissue and tumor clones.

Directional allelic imbalance comparisons between overlapping sCNA calls from paired 

NAT and tumor tissues revealed examples of independent mutation (Fig. 2b and 

Supplementary Figs 11 and 13). We identified overlapping sCNAs with matching event type 

(that is, both loss or gain) that had opposite haplotypes in imbalance (one shows an increase 

of maternal alleles and the other shows an increase of the paternal alleles), which ruled out 

the possibility that these events have the same clonal origin; they originated independently 

of each other within the same organ (Fig. 2b). We observe that 21% (19 of 70) of blood 

sCNAs and 9% (23 of 247) of NAT tissue sCNAs (50% overlap) exhibit mirrored allelic 

imbalance (Supplementary Tables 6 and 7). For NAT–tumor samples, these independent 

mutations include gains of established oncogenes (H3F3A in LUAD; CARD11, EGFR and 

JAK2 in HNSC; and FLT3 in STAD), as well as two independent losses of APC in the tumor 

and the NAT tissue from a patient with LUSC (Fig. 2b). Independent mutations targeting 

APC, an essential driver of colorectal cancer, have been reported in adenomas of the 

colon33.

Single-nucleotide variants in HNSC NAT tissues and associations with sCNAs.

Owing to the prevalence of sCNAs in HNSC NAT tissues and the previously reported field 

cancerization in HNSC13, we sought to gain a more comprehensive view of somatic 

mutations in these tissues. To do so, we used the available exome sequencing data from 59 

HNSC NAT samples with paired blood as a reference. As expected, NAT tissues had a lower 

single-nucleotide variant (SNV; point mutations and indels) burden (median = 18, minimum 

= 3, maximum = 202) than the tumors (median = 179, minimum = 64, maximum = 754; P = 

2.2 × 10−16, MWW). The SNV burden in NAT tissues was not correlated with the SNV 

burden in the tumor (P = 0.64; Pearson’s R = 0.06) and the presence of one or more sCNAs 

Jakubek et al. Page 6

Nat Biotechnol. Author manuscript; available in PMC 2021 April 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in NAT tissues did not show an association with sCNA burden in the tumor (arm-level; P = 

0.39, LR). SNV and sCNA burden (arm-level) were not correlated in tumors (P = 0.256, 

Pearson’s R = 0.16). However, in NAT tissues, the SNV burden showed a positive 

association with sCNAs (presence or absence; P = 0.008, LR; Supplementary Fig. 14).

To gain insights into possible drivers of the positive association between SNV and sCNA 

burden in NAT tissues, we formally tested for positive selection among all genes, as well as 

for enrichment of HNSC-driver mutations in NAT tissues with detectable sCNAs. We 

identified two genes under positive selection in HNSC NAT tissues, PPM1D (Q = 2.3 × 

10−4) and FAT1 (Q = 0.02) by applying a maximum-likelihood model of the ratio of 

synonymous to non-synonymous mutations34. We applied the same model to the adjacent 

tumor SNV data and detected a significant association for FAT1 (Q = 5.6 × 10−17), but not 

for PPM1D (Q = 1). PPM1D SNVs (four putatively truncating mutations) were detected in 

NAT tissues with and without sCNAs, while FAT1 SNVs were detected only in NAT tissues 

with sCNAs. Three truncating FAT1 mutations in NAT tissues were not detected in the 

adjacent tumor (Supplementary Fig. 15). Positive selection of FAT1 mutations has been 

reported in epithelial tissues from healthy individuals16,17. Truncating mutations in PPM1D 
have been reported at a frequency of 0.7% in blood from patients with cancer (solid 

tumors)35. We observed that all four NAT tissues with putative HNSC driver mutations 

(SNVs) that were detected in the adjacent tumor have at least one sCNA (Supplementary 

Fig. 15 and Supplementary Tables 22 and 23). These shared drivers include a missense 

PIK3CA SNV recurrent in cancer and truncating mutations in TP53 and CASP8. The 

CASP8 SNV overlapped an sCNA present in both NAT and tumor tissues (concordant 

sCNAs), while the TP53 SNV overlapped with an sCNA in the tumor, but not in the NAT 

tissue (Supplementary Fig. 15). A formal test for enrichment of putative HNSC-driver SNVs 

(stop–gain, splicing and missense mutations predicted to be deleterious) in NAT tissues with 

sCNAs revealed a significant association (P = 0.002, LR); this analysis adjusted for SNV 

burden (SNV count excluding HSNC-driver SNVs). The association between the presence of 

sCNAs and putative HSNC-driver SNVs complements previous findings of increased 

genomic alterations in oral premalignant lesions that progress to invasive disease relative to 

those that do not36.

Discussion

In this study, we detect and characterize the distribution of sCNAs, inferred from allelic 

imbalance, across non-malignant tissues. We report sCNAs in 1.8% of blood and 4.6% of 

NAT samples, across 27 TCGA sites. These findings add to a widely accessed resource in 

the cancer community, highlighting the opportunity to include allelic imbalance in studies of 

mosaicism, and complementing SNV annotation with larger structural genomic changes 

across tissues15. This study justifies further investigation of sCNAs in NAT tissues and their 

potential clinical utility.

The rate of sCNAs and genomic distribution in blood samples generally followed those from 

two large surveys (30,000 and 150,000 blood samples, respectively), which report autosomal 

sCNA rates of ~2–5% for individuals 50–70 years of age25,26. NAT tissues had a higher rate 

of mosaicism and higher sCNA burden than blood. We report tissue-specific patterns of 
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sCNA enrichment (Fig. 2a). Relative to blood, the sCNAs of NAT tissues more closely 

resembled those of the tumor. The presence of sCNAs in HNSC NAT tissues showed a 

positive association with mutations (SNVs) in established HNSC-driver genes.

Relative to tumor tissue, characterization of the sCNA landscape of NAT tissues is 

technically more difficult as mutations are expected to be present in a lower proportion of 

cells. We used a haplotype-based method to overcome this challenge and identify sCNAs 

present at cell fractions less than 10%28. This detection limit, which is based on the size and 

length of sCNAs, mutant cell fraction and mutation type, should be taken into account when 

comparing rates and profiles across tissues. Our results do not necessarily reflect the rate at 

which these alterations arise, but rather the rate at which they are present in clonal 

expansions large enough for detection. Other factors to consider include the anatomical 

and/or physiological features, cellular structures and the sample collection protocol at each 

cancer site, particularly for those with a complex structure such as the lung37 

(Supplementary Note 6). For example, we did not detect sCNAs in NAT tissues from colon 

adenocarcinoma (n = 83), which may be due to the structural organization of the colonic 

mucosa where crypt structures of the colon may constrain clonal expansions4,20. Although 

challenging, detection and characterization of sCNAs in small clonal expansions may offer a 

peek into the earliest stages of disease.

This pan-tissue study of sCNAs may support insights into clonal expansions in NAT tissues 

and how they may be related to the neighboring tumor. Our results suggest that, overall, 

NAT tissue is more similar to the tumor as compared to blood, which may be partially 

explained by the closer developmental lineage of NAT tissue and tumor. An alternative 

explanation, which is not mutually exclusive, is the presence of field cancerization, a field of 

injury in tissues surrounding tumors at these cancer sites. This explanation is supported by 

an expression study of a subset of TCGA cancer sites indicating that NAT tissues have 

unique expression profiles that are distinct from non-tumor-bearing tissues and more closely 

resemble tumors38. The phenomenon of field cancerization was first described in oral tissues 

and has since been documented in BLCA, BRCA, HNSC, STAD and other cancers13. Field 

cancerization may also explain why we observe shared mutations between NAT–tumor pairs. 

However, these shared mutations are not always clonal in origin as evidenced by our 

observation of NAT tissue and tumor independently acquiring the same oncogenic gain 

(‘mirrored’ allelic imbalance). We observe these events less than expected, because on 

average only half of independent sCNAs of the same mutation type would result in mirrored 

allelic imbalance. Drivers of such parallel evolution could be extracellular and/or 

environmental exposures or genetic and epigenetic mutations that are shared among clones 

at a cancer site. Shared drivers may explain some of the chromosomal alterations with 

tissue-specific patterns of enrichment.

We present such examples of enrichment in several tissues (Fig. 2a). The challenges of 

defining how and whether these sCNAs lead to clonal expansions and/or tumors is 

exemplified by comparing our observations in stomach and head and neck NAT tissues to 

somatic mutations reported in healthy tissues, premalignant lesions and tumors.
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For STAD NAT tissues, we report a marked enrichment of chromosome 20 gains. Gain of 

chromosome 20 is postulated to target STAD-driver genes and is present in approximately 

70% of gastric cancers39. Furthermore, studies of human embryonic stem cells have shown a 

growth advantage for cells with amplifications in chromosome 20q40. The striking 

enrichment of HNSC-driver SNVs in NAT tissues with sCNAs suggests that some clones in 

NAT tissues may be on a path toward malignancy. Although, their path may be in parallel to 

that of the adjacent tumor as evidenced by NAT tissues with HNSC-driver mutations that are 

not detected in the tumor (Supplementary Fig. 15).

The potential for these clones to develop into secondary tumors may depend on their specific 

mutational and epigenetic profiles, as recent studies demonstrate that mutations in cancer-

driver genes are common in tissues from healthy individuals, for example, a higher 

frequency of NOTCH1 mutations in normal esophageal tissues relative to esophageal 

cancer16–20. NOTCH1 mutations have also been reported in airways that appear to be 

pathologically normal from patients with lung cancer, as well as premalignant lesions of the 

lung. In these tissues, NOTCH1 SNVs and sCNAs (9q) are often concurrent14,16,17,41. For 

HNSC, we observe that two of 11 NAT samples with 9q sCNAs have NOTCH1 mutations. 

In addition, as reported for ‘healthy’ epithelial tissues, we observe that FAT1 is under 

positive selection in HNSC NAT tissues16,17. These results suggest that some of the somatic 

mutations in HNSC NAT tissues are due to clonal expansions that are common in healthy 

tissues and may not necessarily lead to carcinogenesis. Surveys with larger sample sizes, 

may help identify sCNAs and SNVs that promote malignant transformation. It is also 

possible that some of these somatic mutations are found to be protective against progression 

toward malignancy, serving as markers of cellular age or exposures. Although, not directly 

relevant to cancer, the latter may provide valuable insights into age-related disease.

Methods

TCGA samples surveyed.

TCGA data comprise tumor and control samples that were derived from blood and NAT 

tissues (https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/sample-type-codes). We 

excluded blood samples from five TCGA studies, because these were derived from donors 

with hematological malignancies and/or did not have NAT samples (brain lower-grade 

glioma, acute myeloid leukemia, testicular germ cell tumors, uveal melanoma and lymphoid 

neoplasm diffuse large B cell lymphoma). Our initial survey included 8,459 blood and 2,165 

NAT tissues from 28 cancer sites, but one site (PRAD) was excluded from downstream 

analyses (Supplementary Tables 1, 4 and 5).

Detection of sCNAs.

We used the Birdsuite software to process data from Affymetrix Genome-Wide Human SNP 

Arrays (one million SNP markers) and generate genotype calls, BAF and LRR at each 

marker42. The human genome build hg19 (GRCh37) was used as the reference. We phased 

the genotypes with the MACH software, and used the phased genotypes and BAF data for 

detection of allelic imbalance with the hapLOH software28,43. We used SyQADA to ensure 

all samples were processed using the same workflow44. We identified genomic allelic 
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imbalance segments using a threshold of a posterior probability for allelic imbalance ≥0.9 

and drew event boundaries at markers where the posterior probability dropped below 0.5. 

We excluded allelic imbalance events with fewer than ten markers. In comparison to LRR-

based methods, hapLOH integrates BAF and haplotype information, thus mitigating the 

effect of marker-level measurement errors and batch effects, which allowed us to produce a 

set of high-confidence sCNA calls. This approach has the highest sensitivity for detection of 

cn-LOH and lowest sensitivity for amplifications (Supplementary Table 24). We estimate a 

false-positive rate <1%, which is in agreement with previous estimates25. Further details of 

the specificity and sensitivity analyses are presented in Supplementary Note 7.

Sample-level quality control.

We required that samples had a genotype missing rate <0.05 and α0 <0.52. The α0 

parameter is generated by the hapLOH software and is the estimated emission probability of 

the null state, a background sample-level allelic imbalance rate; thus, an elevated α0 value 

can indicate cross-individual contamination. In addition, we removed samples that had been 

redacted from the TCGA dataset as well as blood or NAT samples that did not have an 

available tumor sample (primary, recurrent or metastasis; https://gdac.broadinstitute.org/, 

https://portal.gdc.cancer.gov/ and the clinical reference)45. For NAT samples with detectable 

allelic imbalance we checked the Broad GDAC Firehose annotation files for annotations 

regarding possible tumor contamination, sample swaps or abnormal pathology (https://

gdac.broadinstitute.org/). This led to the exclusion of the following NAT samples from the 

results: TCGA-V5-AASX-11A-11D-A386–01 (NAT sample is a Barrett’s mucosa with mild 

dysplasia); TCGA-90–6837-11A-01D-1943–01 (possible tumor–NAT swap); and all NAT 

samples from prostate adenocarcinoma (PRAD) with detectable sCNAs (contamination with 

tumor). We removed all PRAD samples (blood and NAT) from downstream analyses. We 

removed two NAT samples (TCGA-BJ-A28W-11A-11D-A16M-01 and TCGA-BR-6710–

11A-01D-1881–01), because tumor samples from these patients had 0 and 1 somatic 

nucleotide variants, respectively, which is suggestive of possible tumor–NAT sample swaps 

(https://portal.gdc.cancer.gov/). We report sCNAs for a subset of NAT samples that were 

excluded in Supplementary Tables 19–21; these include PRAD NAT tissues, a Barrett’s 

mucosa with mild dysplasia and tissue adjacent to a ductal carcinoma in situ, a premalignant 

lesion in breast.

It is noted in Broad GDAC Firehose annotation files that a patient with thyroid carcinoma, 

TCGA-EL-A3H2, with detectable mosaicism in NAT tissue (TCGA-EL-A3H2–11A-11D-

A20A-01) had “received radiation in early childhood to the thyroid unrelated to treatment of 

any malignancy”; this sample was included.

sCNA classification and filtering of putative germline gains.

We used the median BAF deviation and median LRR deviation at allelic imbalance segments 

for sCNA classification (Supplementary Fig. 1). LRR deviation thresholds were set to ±0.05 

for gains and losses. For allelic imbalance segments with an LRR deviation between −0.5 

and +0.5, those with BAF deviation >0.10 were classified as a cn-LOH, and the remainder 

were labeled undetermined, as the BAF and LRR deviations were too subtle for sCNA 

classification. As previously described, gains detected with the hapLOH method may 
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include small germline gains28. We filtered putative germline gains by removing allelic 

imbalance segments with LRR deviation >0.08 and size <5 Mb. As an additional filter, we 

removed gains that had greater than 50% reciprocal overlap with gold-standard gains from 

the database of genomic variants (Supplementary Fig. 1 and Supplementary Note 1; http://

dgv.tcag.ca/dgv/docs/DGV.GS.March2016.50percent.GainLossSep.Final.hg19.gff3). For 

segments classified as gains we observed an upward shift in segment mean LRR relative to 

no-call and for losses we observed a downward shift (Supplementary Fig. 16 and 

Supplementary Note 8). Mosaic NAT tissues had a statistically estimated ploidy of near two 

(Supplementary Table 25 and Supplementary Note 8).

sCNA mutant cell fraction estimates.

For each sCNA call, we used the BAF deviation of heterozygous markers to estimate the 

fraction of cells harboring the sCNA. The BAF for a marker is equal to:

B alleles
A alleles + B alleles

As B and A alleles are arbitrary labels we can define B alleles as those present in the over-

represented haplotype. Then the theoretical BAF of heterozygous markers in an sCNA 

segment is:

cμ + 1(1 − μ)
pn + 2(1 − μ)

where μ is equal to the fraction of cells with the sCNA, c is equal to the number of copies of 

the over-represented haplotype and p is the ploidy at the genomic segment with an sCNA. 

For cells without an sCNA c = 1 and p = 2. These values are c = 2 and p = 3 for a gain, c = 1 

and p = 1 for a loss and c = 2 and p = 2 for a cn-LOH. We relate BAF to BAF deviation as 

follows:

BAF = 0.5 + BAF deviation

and then use the median BAF deviation for each sCNA to estimate the mutant cell fraction:

μ = 2 × BAF deviation [cn − LOH]

μ = 2 − 1
BAF deviation +0.5 [loss]

μ = 2 × BAF deviation
0.5 − BAF deviation [gain]

For undetermined sCNAs we report a lower bound estimate (for cn-LOH) and an upper 

bound estimate (for gain). It is important to note that BAF values are estimated from 
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intensity data and do not represent exact B allele frequencies. In addition, this model 

assumes that regions of allelic imbalance represent a single sCNA that alters one 

chromosome segment only, that is, it does not allow for more than two gains or loss of both 

copies. The latter assumption holds for cn-LOH and deletion events resulting in allelic 

imbalance. However, it could lead to overestimates of mutant cell fractions for 

amplifications that generate more than two copies of the same haplotype.

Analyses of chromosome X sCNAs.

We conducted detection and analysis of chromosome X sCNAs using the same approach as 

for autosomes with the exception that these analyses were restricted to females. Putative 

germline events were removed using the same criteria used for autosomes. Additionally, we 

identified two patients with putative germline trisomy X. These gains were detected at high 

mutant cell fraction in both NAT and blood samples.

HNSC exome sequencing.

BAM files aligned with human reference GRCh37 were downloaded from GDC for patients 

with HNSC with blood and NAT samples (https://portal.gdc.cancer.gov). We used the 

MACH software for phasing and hapLOHseq for analyses of allelic imbalance from 

sequencing data using the blood for germline genotype calls (minimum coverage of ten 

reads at heterozygous markers)29,43. The hapLOHseq algorithm outputs phase concordance 

values between adjacent heterozygous markers. A value of 1 indicates that BAF values are 

shifting toward the same haplotype and a value of 0 indicates they are shifting toward 

opposite haplotypes. For each genomic segment with a hapLOH call (from array), we tested 

for the presence of allelic imbalance in the exome sequencing data using a matched sample 

(with no call from array) as a control. All of the genomic segments with allelic imbalance 

called from array data had higher phase concordance (indicative of allelic imbalance) as 

compared to the phase concordance of the matched genomic segment in the control sample, 

corroborating the allelic imbalance call. In addition, we used a one-sided binomial test (R 

binom.test() function), with the number of successes equal to the sum of the phase 

concordance values for the segment with allelic imbalance called from array, and the 

probability of success set to the sum of the phase concordance values across the same 

genomic segment (from the matched ‘control’ sample with 0 sCNA calls in the array 

analysis) divided by the number of marker pairs in the genomic segment being tested. For 

testing, we selected 43 genomic segments from 16 HNSC NAT samples corresponding to 

sCNAs detected via SNP array. We performed this test to calculate P values, excluding four 

segments that had less than 20 informative markers (heterozygous). The average number of 

heterozygous calls from arrays was tenfold higher than for exome sequences (22,000 

heterozygotes). P values for 39 genomic segments are summarized in Supplementary Fig. 2.

Tumor sCNA profiling and intraindividual sCNA profile comparison.

Tumor SNP array data were processed using the same pipeline as for the non-tumor samples 

with two exceptions. (1) Tumors and non-tumor samples were processed separately with the 

Birdsuite software42. (2) Genotype calls from the matched non-tumor samples were used for 

phasing and allelic imbalance detection in the tumor samples. Tumor allelic imbalance 

segments were classified in the same way as non-tumor samples.
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We compared sCNA profiles between samples derived from the same donor using the 

following three criteria: overlap, event type and direction of allelic imbalance. First, we 

estimated overlap between sCNAs using the bedtools software intersect function at the 

following four stringency settings: minimum 50% overlap, minimum 50% reciprocal 

overlap, 75% minimum reciprocal overlap and 90% minimum reciprocal overlap. Second, 

we determined whether sCNA calls had conflicting event type or allelic imbalance direction. 

A set of overlapping sCNAs was deemed non-conflicting if they were both of the same type, 

for example, both were gains, or if one or both were undetermined. Additionally, we 

contrasted allelic imbalance profiles with the RECUR software for detection of differences 

in the allelic shifts of sCNAs called in two samples from the same individual32. This 

phenomenon has been referred to as ‘mirrored allelic imbalance’, where one sCNA has an 

increase of the maternal haplotype and the other sCNA has an increase of the paternal 

haplotype31,32. Input for RECUR included a list of sCNAs from the non-tumor sample to 

test for mirroring, genotype calls from the non-tumor sample and BAF values from non-

tumor and tumor samples. We used the default threshold of P < 0.0001 to identify mirrored 

genomic segments.

Samples for tumor–tumor sCNA profiling.

We profiled the sCNA landscape of TCGA primary tumors (n = 89) with a matched 

additional new primary, recurrent or metastasis tumor sample with codes 05, 02 and 06, 

respectively (https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/sample-type-

codes). We examined the overlap of sCNA profiles of 80 tumor–tumor pairs for which there 

was at least one sCNA call for each tumor sample. The primary tumors were used to 

generate a list of sCNAs for comparison.

HNSC SNV analyses.

We called somatic mutations with Mutect2 (gatk-4.0.12) following GATK4 best practices for 

NAT tissue and tumor, these were paired with blood as the germline control sample46. We 

kept somatic mutation denoted as ‘PASS’ by Mutect2 and used ANNOVAR for 

annotation47. We removed somatic mutations with population allele frequencies >0.01 in the 

ExAC database48. We used annotations from Baily et al. to generate a list of pan-cancer 

(200) and HNSC (33) driver or lineage genes49. These genes are listed in Supplementary 

Table 22. SNVs in these genes that were deemed putatively deleterious by two or more 

callers were included in the analysis of driver genes and Supplementary Fig. 15. All but two 

putative driver SNVs were exonic (one splice and one 5′ UTR). We identify genes under 

positive selection using a maximum-likelihood model of the ratio of synonymous to non-

synonymous mutations and removed GNAQ SNVs from the analyses owing to previously 

reported false-positive calls34. The sCNA burden in tumor was equal to the number of 

chromosome arms with one or more sCNAs, as called by hapLOH.

Null model for distribution of sCNAs.

We used GRIN to test for association of sCNAs at particular genomic regions30. This 

approach creates a null model where the sCNA is represented as occurring with equal 

probability across the genome.
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Statistical analyses.

We defined a mosaic sample as having one or more detectable sCNAs and treated mosaicism 

as a binary trait. The 95% confidence interval for the rate of mosaic NAT tissues at each 

cancer site (Supplementary Fig. 3) was estimated using the Wilson score test-based interval 

and α = 0.05 (probability of type I error; binconf(), Hmisc R package). For logistic 

regression, we adjusted for cancer site by including the mosaicism rate of NAT tissues of 

each cancer site as a covariate in the model.

We tested for differences in the mosaicism rates across sites by comparing the observed 

number of mosaic NAT samples in a site to those expected given the overall mosaicism rate 

in NAT samples (excluding NAT samples from the site being tested) via binomial 

distribution, with Bonferroni correction to account for multiple testing (Supplementary 

Tables 3 and 9). We use adjusted to denote P values that have been adjusted to account for 

multiple testing.

We obtained sex, age and stage information from a recent pan-cancer TCGA publication 

with curated clinical data45. In our analyses of the association between mosaicism and stage, 

we dichotomized stage to early (stage I and II) versus late (stage III or higher). Association 

of mosaicism with stage was tested by permutation (using χ2 statistic) to account for 

differences in the late versus early stage cases across cancer sites (Supplementary Note 2). 

To obtain a null distribution of the χ2 statistic, we permuted mosaicism status within each 

cancer site (n = 1,000).

We used an omnibus test for chromosome arm enrichment of sCNA calls in NAT tissues 

from different TCGA studies. These analyses were restricted to cancer sites with five or 

more mosaic NAT samples, which included BLCA, BRCA, HNSC, STAD and ovarian. We 

summarized sCNAs as present or absent in each chromosome arm (39 chromosome arms in 

22 autosomes). During each permutation, sCNAs were randomly placed in N arms for each 

sample, where N is the observed number of arms with sCNAs in the sample. For each cancer 

site, we calculated a P value for the most frequent arm-level sCNA at that site (observed T 
times), by counting the number of times we observe T or greater number of sCNAs in a 

chromosome arm in the permutation analysis (n = 1 × 106). This approach allowed us to 

control for NAT tissue sCNA burden differences among cancer sites and samples.

Reporting Summary.

Further information on research design is available in the Nature Research Reporting 

Summary linked to this article.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. Chromosomal alterations, allelic imbalance and mosaicism.
a, sCnAs lead to deviations from a 1:1 ratio of the maternal to paternal chromosomal 

segment (haplotype); therefore, the within-sample allele frequencies at heterozygous sites 

can be used to infer genomic regions with deviations from the 1:1 ratio, which is referred to 

as allelic imbalance. b, sCnA profiles from non-tumor samples were compared to those from 

cancers within the same individual. The criteria used for comparison and inference of clonal 

origin include: event overlap, event type and allelic imbalance direction. The top two panels 

show examples of events that do not overlap, or that have conflicting event type. The term 
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‘mirrored allelic imbalance’ has been used to describe instances when samples from the 

same individual exhibit opposite haplotypes in imbalance, which is shown in the middle 

panel. As shown in the middle panel, this analysis can help identify conflicting events that 

are of the same type, or those that are too subtle for classification, which are hereafter 

referred to as undetermined (und.).
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Fig. 2 |. Summary of results.
a, A summary of sCnAs with tissue-specific patterns of enrichment. b, Genes that were 

gained or lost in nAT tissues and that were also gained or lost in the matched tumor, but 

show mirrored allelic imbalance and are inferred to have arisen independently in separate 

clonal lineages.
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Fig. 3 |. Landscape of sCNAs.
a, The landscape of autosomal sCNAs across blood and NAT tissues. Chromosomes are 

ordered along the x axis and sCNAs were binned in 1-Mb genomic segments on the basis of 

their overlap with that region. The number of sCNAs (y axis) is plotted using a different 

color for each event type. b, The landscape of chromosome X sCNAs in female blood and 

NAT tissues.
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Fig. 4 |. Arm-level sCNAs in NAT tissues.
Arm-level sCNA summary for each mosaic NAT tissue, arranged by cancer site. Each 

column represents one NAT sample with detectable sCNAs. Chromosome arms are ordered 

by sCNA frequency.
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Table 1 |

Mosaicism rates

Cancer and tCGA study abbreviation Blood NAt

Adrenocortical carcinoma (ACC) 1/79 (1.3%) 0/2 (0%)

Bladder urothelial carcinoma (BLAC) 7/343 (2.0%) 5/28 (18%)

Breast invasive carcinoma (BrCA) 14/885 (1.6%) 13/114 (11%)

Cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) 1/257 (0.4%) 0/6 (0%)

Cholangiocarcinoma (CHOL) 1/34 (2.9%) 0/14 (0%)

Colon adenocarcinoma (COAD) 9/346 (2.6%) 0/83 (0%)

Esophageal carcinoma (ESCA) 2/121 (1.7%) 1/57 (2%)

Glioblastoma multiforme (GBM) 8/421 (1.9%) 0/4 (0%)

Head and neck squamous cell carcinoma (HNSC) 7/459 (1.5%) 18/72 (25%)

Kidney chromophobe (KICH) 0/9 (0.0%) 0/56 (0%)

Kidney renal clear cell carcinoma (KIRC) 1/94 (1.1%) 4/332 (1%)

Kidney renal papillary cell carcinoma (KIRP) 7/212 (3.3%) 2/77 (3%)

Liver hepatocellular carcinoma (LIHC) 2/287 (0.7%) 3/75 (4%)

Lung adenocarcinoma (LUAD) 14/382 (3.7%) 4/166 (2%)

Lung squamous cell carcinoma (LUSC) 4/250 (1.6%) 4/223 (2%)

Mesothelioma (MESO) 4/84 (4.8%) 0/1 (0%)

Ovarian (OV) 7/390 (1.8%) 9/100 (9%)

Pancreatic adenocarcinoma (PAAD) 3/149 (2.0%) 0/33 (0%)

Pheochromocytoma and paraganglioma (PCPG) 4/170 (2.4%) 1/5 (20%)

Rectum adenocarcinoma (READ) 5/142 (3.5%) 1/15 (7%)

Sarcoma (SARC) 4/219 (1.8%) 2/19 (11%)

Skin cutaneous melanoma (SKCM) 5/456 (1.1%) 1/2 (50%)

Stomach adenocarcinoma (STAD) 9/350 (2.6%) 8/84 (10%)

Thyroid carcinoma (THCA) 3/401 (0.7%) 2/93 (2%)

Thymoma (THYM) 0/107 (0.0%) 0/11 (0%)

Uterine corpus endometrial carcinoma (UCEC) 7/458 (1.5%) 0/32 (0%)

Uterine carcinosarcoma (UCS) 1/44 (2.3%) 0/4 (0%)

Prostate adenocarcinoma (PRAD) 7/407 (1.7%) 0/109 (0%)

Number of blood and NAT TCGA samples with detectable sCnA/total number of samples tested (percentage of mosaic samples). PrAD was 
excluded on the basis of TCGA annotation (Methods).
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