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Abstract
The total number of low-molecular-weight compounds in the plant kingdom, most of 
which are secondary metabolites, is hypothesized to be over one million, although 
only a limited number of plant compounds have been characterized. Untargeted anal-
ysis, especially using mass spectrometry (MS), has been useful for understanding the 
plant metabolome; however, due to the limited availability of authentic compounds 
for MS-based identification, the identities of most of the ion peaks detected by MS 
remain unknown. Accurate mass values of peaks obtained by high accuracy mass 
measurement and, if available, MS/MS fragmentation patterns provide abundant an-
notation for each peak. Here, we carried out an untargeted analysis of compounds in 
the mature fruit of 25 tomato cultivars using liquid chromatography-Orbitrap MS for 
accurate mass measurement, followed by manual curation to construct the metabo-
lome database TOMATOMET (http://metab​olites.in/tomat​o-fruit​s/). The database 
contains 7,118 peaks with accurate mass values, in which 1,577 ion peaks are anno-
tated as members of a chemical group. Remarkably, 71% of the mass values are not 
found in the accurate masses detected previously in Arabidopsis thaliana, Medicago 
truncatula or Jatropha curcas, indicating significant chemical diversity among plant 
species that remains to be solved. Interestingly, substantial chemical diversity exists 
also among tomato cultivars, indicating that chemical profiling from distinct cultivars 
contributes towards understanding the metabolome, even in a single organ of a spe-
cies, and can prioritize some desirable metabolic targets for further applications such 
as breeding.
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1  | INTRODUC TION

Untargeted analysis of metabolites using liquid chromatography-
mass spectrometry (LC-MS) is a promising technology for under-
standing the metabolism of organisms of interest and for finding 
valuable metabolites for breeding and industrial uses such as 
medicines or new materials development (Tohge & Fernie, 2015; 
Wang, 2008; Wurtzel & Kutchan, 2016). Afendi et al. (2012) pro-
posed that the total number of metabolites in the plant kingdom 
is over one million based on the species specificity of metabolites 
from a wide range of organisms appearing in KNApSAcK, a me-
tabolite database that contains published chemical information of 
51,179 metabolites. Although plant extracts from leaves, stems, 
roots, flowers and fruits of various plant species obtained from 
several growth stages or conditions have been analysed in an 
untargeted manner almost for two decades, we are still far away 
from understanding all features of plant metabolomes. As LC-MS 
is applicable to the analysis of a wide range of metabolites with 
high sensitivity, except for volatiles, this technique has been used 
widely to detect metabolites in metabolomic studies. However, the 
major bottleneck of metabolome analyses is the lack of authentic 
chemical standards capable of identifying the most detected me-
tabolites (Chaleckis et al., 2019; Viant et al., 2017; Wishart, 2009). 
Therefore, annotation of an ion peak detected by MS may not 
mean that the compound has been identified; rather, additional 
information about some chemical features must be linked to the 
detected ion. Various bioinformatics approaches have been devel-
oped for better annotation (Fukushima & Kusano, 2013; Hufsky & 
Böcker, 2017). Only 17%–25% of the compounds tested are identi-
fied correctly by in silico algorithms alone (Blaženović et al., 2017), 
although the accuracy and confidence of structural elucidation 
from tandem mass spectrometry (MS/MS) spectra and isotope 
ions have increased. Therefore, alternative ways of improving me-
tabolite identification are needed.

Including specific information about the sample such as tissue 
specificity or the taxonomic relationship of the species with other 
plants improves metabolite identification significantly (Tsugawa, 
2018). A large dataset of gas chromatography-mass spectrome-
try (GC-MS) profiles from 114,795 samples of various origins ar-
chived in the BinBase database was used successfully to discover 
some metabolites that accumulate specifically in cancer tissues (Lai 
et al., 2018). By combining information about taxonomy, known bio-
activity, and the chemical relationship of compounds based on MS/
MS spectra similarity (molecular network) with in-house LC-MS data 
from 292 plant species in the Euphorbiaceae analysed by the same 
LC-MS procedures, seven bioactive natural compounds were dis-
covered (Olivon et al., 2017). In contrast with GC-MS, the difficulty 
in standardizing LC-MS conditions hampers a direct comparison of 
LC-MS data with those obtained by other analytical procedures. 
Nevertheless, accurate mass values with an error of a few ppm ob-
tained by high-resolution LC-MS when the molecules are softly ion-
ized to retain the intact form allow direct comparison of datasets 
with those of others, although a coincidental accurate mass value 

of a molecule with others is insufficient to consider them the same 
compound. Therefore, accumulation and publication of detected ac-
curate mass values (hereafter we refer to them as “accurate mass 
records (AMRs)”) to compare samples of interest, is a meaningful 
concept in metabolomics.

Providing AMRs of an organism in public is a practical way for 
exploratory data comparison of untargeted metabolome data ob-
tained by LC-MS. It is known that a significant number of peaks 
detected by LC-MS are those of derivative ions that originated 
from the same compounds, such as adduct ions, multimers and 
in-source fragments, and the real number of unique compounds in 
a sample is much smaller than the observed peak numbers (Brown 
et al., 2011; Jankevics et al., 2012; Mahieu & Patti, 2017). Various 
bioinformatics tools to encapsulate the multiple derivative ions 
into the original compound have been reported, such as xMSan-
notator (Uppal et  al.,  2017), MS-FLO (DeFelice et  al.,  2017) and 
CliqueMS (Senan et al., 2019). However, it is not practically feasi-
ble to perform such encapsulation in a similar quality for all data 
obtained by various researchers using various LC-MS apparatus 
and conditions, because of the two reasons as follows: (a) as the 
encapsulation approaches are based on the co-elution of peaks for 
peak annotation, the results depend on the MS sensitivity, sample 
concentration and peak detection parameters; (b) generation of 
the variation of adduct ions, multimers and fragments depend on 
the type of apparatus, setting of the apparatus, sample concentra-
tion, solvents and co-eluting contaminants. In contrast with the 
difficulty or, in practice, the impossibility of applying equal quality 
of encapsulation for all peaks detected in the research community, 
a researcher can encapsulate and annotate the peak data for se-
lected several peaks in their own equal quality when the raw data 
including AMRs and calculated information about adduct ion, mul-
timer and fragmentation are provided as reference. The resource 
should be useful for future improvement of the encapsulation 
strategies and standardization of its quality.

However, well-curated and reusable AMR data are limited, so 
far, to comparative studies between distinct species. Although 
untargeted high-resolution MS analyses of strawberry (Fragaria 
x ananassa; Aharoni et al., 2002), Arabidopsis thaliana (Giavalisco 
et  al.,  2011), Medicago truncatula (Kera et  al.,  2018) and tomato 
(Iijima et  al.,  2008) have been reported, the MS data shown in 
the tables or the supplementary tables of these articles are not 
ready to direct comparison with other datasets. MetaboLights, a 
metabolomics data management system, contains high-accuracy 
datasets from 2,851 analyses of 543 peaks from several plants 
(Steinbeck et al., 2012); however, a search function with mass val-
ues is not provided on the website. The metabolomics repository 
Metabolomics Workbench (Sud et  al.,  2016) is well-designed to 
search metabolites by mass values; however, the distribution of 
matched peaks among species is not available from the search re-
sult page. The Medicinal Plant Metabolomics Resource (Wurtele 
et  al.,  2012) contains datasets of identified metabolites from 14 
medicinal plant species and provides the capability to search for 
mass values with low resolution. The Global Natural Products 
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Social Molecular Networking site (GNPS; Wang et al., 2016) is de-
signed for the curation of mass spectrometry data but does not 
include a mass value search function. The metabolomics database 
KomicMarket (Sakurai et  al.,  2014) has assembled metabolome 
datasets for several plant species and has a mass value-search 
function, but the search speed is slow for practical use. The Food 
Metabolome Repository (Sakurai & Shibata, 2017) covers a wide 
variety of food samples including 57 vegetables and 28 fruits, and 
provides search APIs; however, potential false-positive peaks re-
main to be curated since sample preparation was not replicated. 
Therefore, efforts to generate curated and reusable AMRs for a 
wide range of organisms or foods are required for a better under-
standing of plant metabolism or the chemical world surrounding 
us.

We chose to use tomato fruits to construct an AMR dataset 
in this study. According to statistics provided by the Food and 
Agriculture Organization of United Nations (FAOSTAT, http://
www.fao.org/faostat), the worldwide production of tomatoes 
has been the highest among 23 primary vegetables in the world 
since 1961. Tomato ingredients attract much attention due to 
their health benefits. Associations between tomato consumption 
and decreased risk of diseases such as cancer have been reported 
(Giovannucci,  1999; Martí et  al.,  2016; Raiola et  al.,  2014). Our 
previous study using mice also showed that certain oxo-fatty 
acids in tomato act as potent agonists of a ligand-activated tran-
scription factor, peroxisome proliferator-activated receptor α 
(PPARα), and possibly improve obesity-induced dyslipidemia and 
hepatic steatosis (Kim et  al.,  2012). Only two resources provide 
tomato AMRs data for open access: (a) a dataset of 869 peaks 
of fruit metabolites from “Micro-Tom”, a model tomato cultivar, 
detected by LC-Fourier transform ion cyclotron resonance-mass 
spectrometry (FT-ICR-MS) reported in a supplementary table of 
an article published by Iijima et  al.  (2008) and a dataset acces-
sible at KomicMarket (http://webs2.kazusa.or.jp/komic​marke​t/). 
(b) Accurate mass data for 413 identified peaks from eight tomato 
studies are available at MetaboLights (https://www.ebi.ac.uk/
metab​oligh​ts/). Unfortunately, the accurate mass data for >2,000 
peaks of tomato metabolites published by Perez-Fons et al. (2014) 
are not accessible from public websites. A set of 2014 identified 
peaks from 10 tomato studies is deposited at the GNPS, although 
the data are not accessible by mass value searches. Therefore, the 
accumulation of curated and reusable tomato AMRs is required for 
understanding the fundamentals of metabolisms.

Here, we report a reusable dataset of 7,118 AMRs from tomato 
fruits of 25 tomato cultivars. The dataset was produced from peak 
information detected by accurate mass measurement and laborious 
manual curation. Remarkably, 71% of the mass values of the AMRs 
are not found in AMRs detected previously in A. thaliana, M. trunca-
tula, or Jatropha curcas. A large diversity of compounds among the 
evaluated tomato cultivars is also revealed that should be considered 
in tomato breeding. To exemplify the suitability of the AMRs for pri-
oritizing candidate metabolites, we annotated some tomato-specific 
compounds as esculeoside- and tomatine-derivatives. The AMR data 

are available at the TOMATOMET website (http://metab​olites.in/
tomat​o-fruits) for open access.

2  | E XPERIMENTAL PROCEDURES

2.1 | Plant materials

The tomato cultivars used in this study are listed in Table S1. Cultivars 
No.1 to 23 were grown in the greenhouses of KAGOME CO., LTD. 
located in Tochigi and Fukushima Prefectures, Japan from summer 
2013 to spring 2014. Cultivar No.24 (“Kyo-temari”) was grown in the 
greenhouses of the Kyoto University experimental farm located in 
Takatsuki, Osaka Prefecture, Japan from winter 2013 to spring 2014. 
Cultivar No.25 (“Micro-Tom”) was greenhouse-grown at the Kazusa 
DNA Research Institute located at Kisarazu, Chiba Prefecture, Japan 
from spring 2014 to summer 2014. The fruits or seeds of cultivars 
No.1 to 23 were provided by KAGOME CO., LTD. Cultivars No. 
24 and No. 25 were provided by the Experimental Farm of Kyoto 
University and the Tomato National BioResource Project (http://
tomato.nbrp.jp/index​En.html), respectively. Tomato fruits were 
harvested at the fully ripe stage by judging the fruit colour for each 
cultivar (red, orange, pink or black). The harvested fruits were im-
mediately frozen in liquid nitrogen and stored at −80°C until use.

2.2 | Liquid chromatography-mass 
spectrometry analysis

Calyxes were removed from the frozen fruits. For each culti-
var (Table  S1), three frozen fruits (with both flesh and peel) were 
pooled, finely ground using a mortar and pestle under liquid nitro-
gen, and then lyophilized for 48 hr. The lyophilized powder (50 mg) 
was extracted with 1 ml of 80% v/v methanol containing 1.25 μM 
7-hydroxy-5-methylflavone (Sigma-Aldrich) as an internal stand-
ard. After homogenizing the sample for 5 min using a bead crusher 
(Beads Crusher μT-12, TAITEC) and a stainless-steel bead (5.0 mm 
diameter, Bio Medical Science) in a 2 ml tube, the homogenates were 
centrifuged (20,400 g for 10 min at 4°C). The supernatant was fil-
tered through a 0.2 μm polytetrafluoroethylene (PTFE) membrane 
(Millex-LG, Merck Millipore) and used for LC-MS analysis. The un-
targeted metabolome analysis was performed using an Agilent 1200 
system (Agilent Technologies Ltd.) coupled to an LTQ Orbitrap XL 
(Thermo Fisher Scientific Co. Ltd.). The filtrate (5 μl) was applied to 
a TSK-gel column ODS-100V (3.0 × 50 mm, 5 μm, TOSOH Co. Ltd.). 
Water (HPLC grade; solvent A) and acetonitrile (HPLC grade; solvent 
B) were used as the mobile phase with 0.1% v/v formic acid added 
to both solvents. The gradient program was as follows: 3% B (0 min), 
97% B (15 min), 97% B (20 min), 3% B (20.1 min) and 3% B (25 min). 
The flow rate was set to 0.4 ml/min, and the column oven temper-
ature was set at 40°C. Compounds were detected in electrospray 
ionization (ESI)-positive mode over the m/z range of 100–1,500, a 
mass resolution of 60,000 (at m/z 400) and a lock mass set at m/z 
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391.284286. For the four most intense ions of the precursor scan, 
MS/MS analyses were carried out using collision-induced dissocia-
tion in a linear ion trap detector with a normalized collision energy 
of 35.0%. The frozen powder from a single cultivar was extracted 
and subjected to LC-MS analysis as described above in triplicate. 
Mock samples were prepared as above without adding the frozen 
powdered material. Five series of LC-MS runs for the triplicate 25 
cultivars were carried out, in which three mock samples and five 
triplicate samples were analysed for each series. Data were acquired 
using Xcalibur software version 2.1 (Thermo Fisher Scientific). 
Further details of the procedures are available at the Metabolonote 
website (http://metab​olono​te.kazusa.or.jp/SE40:/; Ara et al., 2015).

2.3 | Peak detection and peak alignment

Mass chromatogram data obtained by Xcalibur (.raw format) were 
converted to a text-based format using MSGet software (http://
www.kazusa.or.jp/komic​s/softw​are/MSGet). Ion peaks were de-
tected using the PowerFT module of the PowerGet software, version 
3.5.4beta (http://www.kazusa.or.jp/komic​s/softw​are/PowerGet; 
Sakurai et al., 2014). Information such as accurate m/z values, type 
of adduct ions and the ratio of the intensity of 13C1 isotopic peak 
to that of the monoisotopic peak was estimated by PowerFT. Peaks 
were aligned between the samples using the PowerMatch module 
of PowerGet based on m/z values, retention times, and similarity of 
MS/MS spectra if available. A file set of the setting parameters of 
PowerGet used in this study is available at TOMATOMET website.

2.4 | Manual curation of the alignment results and 
characterization of peaks

The alignment results were manually curated using the alignment 
editing function in the PowerMatch module by checking the raw 
mass chromatogram for the identity of estimated m/z values, reten-
tion times, MS/MS spectra if available and for any other closely de-
tected peaks. An in-house Perl program was used to check these 
identities. Inappropriate ion peaks were removed from the align-
ment. Inappropriately separated aligned peak groups that were 
derived from the same putative compound were merged into a 
single alignment. Although retention times of most compounds on 
chromatograms are stable between experiments, misalignments 
that sometimes occurred by unpredictable drifts in retention times 
were corrected manually. Peaks associated with the MS/MS spectral 
data and peaks of higher intensity were prioritized for this manual 
curation. Peaks that were also detected in the mock samples were 
removed. Peaks that were reproducibly detected in at least two of 
the three analytical replications were regarded as valid peaks. After 
curation of the alignment results, the ion valence was checked and 
curated based on the distances between the 13C isotopic peaks using 
the MassChroViewer software (Sakurai & Shibata,  2017) whose 
2-dimensional mass chromatogram presentation and mass ruler 

function are suitable for checking this parameter. Peaks of more 
than or equal to pentavalent ions were ignored and were not ana-
lysed further.

Compound database searches and predictions of elemen-
tal composition based on the average m/z values and the adduct 
ions of the alignment were performed using the MFSearcher tool 
(Sakurai et  al.,  2012). We search the candidates using the follow-
ing three types of databases in this order and later ones were used 
when no candidate was found in the former: (a) The compound da-
tabases (KEGG, KNApSAcK, LIPID MAPS and HMDB, see below), (b) 
Pep1000 database in MFSearcher for prediction of linear peptides, 
and (c) EX-HR2 database in MFSearcher for prediction of elemental 
compositions. The mass tolerances 1, 2 and 5 ppm were given for 
each search in this order and the larger tolerance was applied when 
no candidate was found with the smaller. Of the adduct ions pre-
dicted by PowerGet, ones of the same ion valence estimated using 
MassChroViewer were applied for calculation of the mass value of 
neutralized molecule for search. When no candidate was found, the 
adduct ions of the same ion valence out of the following adduct ions 
were used in this order and the later one was used when no can-
didate was found with the former: [M + H]+, [M + NH4]+, [M + K]+, 
[M + Na]+, [M + 2H]2+, [M + 2Na]2+, [M + Na + H]2+, [M + NH4 + H]2+, 
[M + K + H]2+, [M + 2NH4]2+, [M + 2K]2+, [M + 3H]3+, [M + 3Na]3+, 
[M +  3NH4]3+, [M +  3K]3+, [M +  Na  +  2H]3+, [M +  2Na  +  H]3+, 
[M + NH4 + 2H]3+, [M + 2NH4 + H]3+, [M + K + 2H]3+, [M + 2K + H]3+, 
[M + 4H]4+, [M + 4Na]4+, [M + 4NH4]4+, [M + 4K]4+, [M + Na + 3H]4+, 
[M  +  2Na  +  2H]4+, [M  +  3Na  +  H]4+, [M  +  NH4  +  3H]4+, 
[M + 2NH4 + 2H]4+, [M + 3NH4 + H]4+. The existence of the can-
didates was judged after filtering the search results as below: In the 
case of compound database search, the candidates containing halo-
gens and silicon were excluded; In the case of elemental composition 
prediction by EX-HR2, the candidates with no hydrogen or oxygen/
phosphorus ratio less than 2 assuming phosphate derived-moieties 
were excluded. As exceptions, for the 14 peaks with the compound 
database results and the 52 peaks with the EX-HR2 results, we manu-
ally selected appropriate candidates with considerations of accurate 
mass values and the predicted elemental compositions of MS2 prod-
uct ions which were attributed by the observation of typical neutral 
losses of glycosides and so on. We used the following compound 
databases and the release date of the datasets: KEGG (Kanehisa 
et al., 2002), 5 December, 2018; KNApSAcK (Afendi et al., 2012), 28 
June, 2017; LIPID MAPS (Fahy et al., 2007), 28 June, 2017; HMDB 
(Wishart et  al.,  2018), 26 November, 2018. The EX-HR2 database 
contains possible elemental compositions as molecules that fulfil 
Senior- and Lewis- valent rules and the Seven Golden Rules (Kind 
& Fiehn, 2007) under the maximum number of the atoms: C,100; H, 
200; O, 5; N, 10; P, 10 and S, 10 (Sakurai et al., 2012). The threshold 
values of the mass tolerances were determined based on the mass 
accuracy as approximately 1 ppm in our study in which a lock mass 
was applied for mass calibration and averaging of mass values in the 
alignment of the peaks from replicational analysis of multiple to-
mato cultivars. Using the results from 73 metabolites identified by 
authentic chemicals (see the Metabolite identification section) and 

http://metabolonote.kazusa.or.jp/SE40:/
http://www.kazusa.or.jp/komics/software/MSGet
http://www.kazusa.or.jp/komics/software/MSGet
http://www.kazusa.or.jp/komics/software/PowerGet
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their theoretical mass values ranging from 104 to 1,034, the mass 
accuracy was estimated as less than 0.83 and 0.41 ± 0.21 ppm on 
average. Therefore, we set 1 ppm for the first search. We set 2 ppm 
to capture the candidates excluded by the strict threshold value, and 
5 ppm at the maximum by considerations of the cases of insufficient 
corrections by PowerGet for the mass shifts observed in the higher 
intensity ions and the mass fluctuations observed in the peaks with 
higher m/z values. We described the search and/or prediction results 
in Table S2 as follows. The compound IDs found in the compound 
database search, predicted peptides by Pep1000, and the number of 
predicted elemental compositions (0, 1 or multiple) by EX-HR2 were 
described in the “Database hits” column. An elemental composition 
was described in the “Annotation” column when the candidates con-
tain a single elemental composition.

2.5 | Classification of chemical categories and 
metabolite annotation

In accordance with the study of Sano et  al.  (2012), the chemical 
structures of candidate compounds were manually checked, and if 
all of them shared a common structure, we classified the peak into 
one of the following chemical categories: alkaloids, aminocarbox-
ylic acids, carotenoids, coumarins, fatty acid derivatives, flavonoids, 
glycolipids, iridoids, nucleotides, organic acids, phenolics, phospho-
lipids, porphyrins, steroids, sugars and terpenoids. These catego-
ries have some overlapping relationships. For example, iridoids and 
flavonoids are subcategories of phenolics. In cases where all can-
didate structures were in a specific subcategory, we assigned the 
subcategory instead of the parent category. In cases where an MS/
MS spectrum was obtained, spectrum similarity searches were con-
ducted using MassBank (Horai et  al.,  2010) and MS-MS Fragment 
Viewer (http://webs2.kazusa.or.jp/msmsf​ragme​ntvie​wer/; Sakurai 
et al., 2014). We assigned typical neutral losses, namely, NH3, H2O, 
CH2O2, C5H8O4 and C6H10O5 (Ma et al., 2014) from MS/MS spectra, 
and if the observed neutral loss fragments were not assumed for the 
candidate structures, the candidates were excluded from the above 
classification.

The number of glycosyl substituents was counted manually look-
ing at the candidate chemical structures. If an MS/MS spectrum 
was available, the results were verified by checking the neutral loss 
fragments for -C6H10O5 and -C6H12O6. Only the number of hexoses 
was accounted for in this study because no candidates having only 
pentoses were found, despite careful checking. In case additional 
pentoses might be attached to hexoses, we described this possibility 
in Table S2.

Metabolite annotation and the annotation levels of MSI (Sumner 
et al., 2007) were assigned to peaks as follows: (a) if the peak was 
identified by authentic standards (MSI level 1, see next section), the 
compound name and chemical formula were assigned; (b) if the com-
pound category and a single compound were candidates (MSI level 
2), the category name, candidate compound name, presence and ab-
sence of phosphate and sulphate residues, and a chemical formula 

were assigned; (c) if the compound category was determined but a 
single candidate compound could not be predicted (MSI level 3), the 
category name was assigned; (d) if the compound category was not 
determined and a single elemental composition was predicted (MSI 
level 4), the elemental composition was assigned; and (e) if the com-
pound category was not determined and multiple elemental compo-
sitions were predicted (MSI level 4), no term was assigned. In the MSI 
level 3 compounds, 16 peaks marked by superscript “a” in Table S2 
were qualified by comparison with the authentic compounds but 
could not be identified due to detections of multiple isomers eluted 
closely at the retention times of the authentic compounds.

In cases in which the types and numbers of the substituents 
(such as glycosyl groups) were predicted by manual assignment of 
MS/MS spectral fragments, the information was added to the an-
notation (Table S2). If possible, the distinction of lipid subclass name 
(e.g. triacylglycerol [TG], phosphatidylethanolamine [PE]) was at-
tached to peaks in the categories of fatty acid derivatives, glycolipids 
or phospholipids.

2.6 | Metabolite identification

Metabolites were identified by checking the identities of m/z val-
ues, retention times and MS/MS spectra compared to those of the 
authentic standard compounds measured using the same LC-MS 
conditions. The authentic standards were purchased from the sup-
pliers as follows: 6-hydroxycoumarin, adenine, adenosine, AMP, 
biotin, chlorogenic acid, citrate, CMP, cytidine, cytosine, GABA, 
gamma-L-glutamyl-L-cysteine, glutathione, GMP, guanine, guano-
sine, inosine, isocitrate, kaempferol 3-O-rutinoside, L-arginine, 
L-asparagine, L-aspartate, L-cysteine, L-glutamate, L-glutamine, 
L-histidine, L-lysine, L-methionine, L-phenylalanine, L-proline, L-
serine, L-threonine, L-tryptophan, L-tyrosine, NAD, nicotinamide, 
S-adenosyl-L-methionine, trans-feruloyltyramine, UMP, uracil and 
uridine were from Sigma-Aldrich; 7-hydroxycoumarin, anthranilic 
acid, caffeic acid, L-kynurenine and tomatine were from Tokyo 
Chemical Industry Co., Ltd.; L-norleucine, nicotinate, pantothenate, 
rutin, spermidine and spermine were from FUJIFILM Wako Pure 
Chemical Co.; cis-aconitate and FMN were from Nakarai Tesque, 
Inc.; 13-oxoODA and serotonin were from Cayman Chemical Co.; 
eriodictyol 7-O-glucoside, eriodictyol, fustin, hesperetin, kaemp-
ferol 3-O-glucoside, naringin and prunin were from Extrasynthese; 
p-coumaric acid and succinate semialdehyde were from Santa Cruz 
Biotechnology, Inc.; N-p-trans-coumaroyltyramine was from Wuhan 
ChemFaces Biochemical Co., Inc.; quinic acid was from Kanto 
Chemical Co., Inc.

2.7 | Comparison of AMR data with those in 
previous reports

To compare AMRs with those previously reported, we surveyed the 
literature and databases for untargeted metabolome data obtained 

http://webs2.kazusa.or.jp/msmsfragmentviewer/
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by positive ion mode ESI and with high-resolution MS, namely FT-
ICR-MS or Orbitrap-MS (Thermo Fisher Scientific). Supplementary 
data in the following research papers were found and used in 
this study: Iijima et  al.  (2008) for Solanum lycopersicum; Krueger 
et  al.  (2011), Giavalisco et  al.  (2011), Gläser et  al.  (2014) and Cao 
et al. (2016) for A. thaliana; Kera et al. (2018) for M. truncatula and 
Sano et  al.  (2012) for J.  curcas. The following studies were found 
in the MetaboLights database (Steinbeck et al., 2012) for Solanum 
lycopersicum: MTBLS36 (Beisken et  al.,  2014), MTBLS107 (Van 
Meulebroek et  al.,  2015) and MTBLS693 (Garbowicz et  al.,  2018). 
The files containing metabolite information were downloaded and 
used in this study. The mass values that were unique in each spe-
cies and those shared among multiple species were calculated by 
grouping the mass values at a given 5-ppm mass tolerance using an 
in-house Perl program.

2.8 | Statistical analysis

Principal component analysis (PCA) was performed using the prcomp 
function of the R program (version 3.1) based on the variance-
covariance matrix. The peak intensities were transformed to log-
based 10 and normalized by the average for each sample. Average 
values of the triplicate samples were used for PCA. The missing val-
ues were compensated with a small value that is 1/10 of the smallest 
intensities among all samples.

2.9 | Database construction

TOMATOMET (http://metab​olites.in/tomat​o-fruit​s/) was con-
structed using Java 8 (Oracle Corporation) and Spring Boot (Pivotal 
Software, Inc.).

3  | RESULTS AND DISCUSSION

3.1 | Construction of a dataset of tomato AMRs 
from fruits of 25 tomato cultivars

We analysed tomato extracts of mature fruits for accurate mass meas-
urement by reversed phase-LC and high-resolution MS (LTQ-Orbitrap, 
Thermo Fisher Scientific) in the electrospray ionization (ESI)-positive 
mode. Twenty five cultivars suitable for fresh market, processing and 
ornamental uses were selected for the analysis (Table  S1). The ion 
peaks of triplicate biological samples were detected and aligned using 
PowerGet software (Sakurai et al., 2014), resulting in a total of 505,662 
alignments. As the automatically calculated results might have con-
tained latent false positives (Mahieu & Patti, 2017), we corrected inap-
propriate peak detections, misalignments and misassignments of the 
adduct ions and removed noise peaks manually with the help of the 
editing function of PowerGet software and the mass chromatogram 
viewer software MassChroViewer (Sakurai & Shibata,  2017). In this 

study, we defined the peaks detected in more than two of the tripli-
cate samples from each cultivar as unequivocally detected peaks. This 
designation was necessary because the quantity of some metabolites 
in biological samples may change significantly even if the sampling 
conditions were controlled as metabolite levels reach the detection 
limits of the instrument. Finally, the dataset that includes 7,118 peaks, 
in which 1,491 peaks (21%) containing MS/MS spectral data, was se-
lected (Table S2). The mass values of the curated 7,118 peaks can be 
used as accurate mass records (AMRs) for comparison with those from 
other plant samples.

We annotated the peaks using the accurate mass values and 
if available, MS/MS spectral data. Using the accurate mass values, 
searches against compound databases were carried out with a de-
fined 5-ppm mass tolerance at the maximum, followed by manually 
evaluating the matching chemical structures for individual peaks (see 
EXPERIMENTAL PROCEDURES for the details). Of 7,118 peaks, 
1,577 peaks (22.2%) were categorized into one of 16 metabolite cat-
egories (Sano et  al.,  2012; Table  S3). The confidence in identifying 
these peaks corresponds to level 3, “putatively characterized com-
pound classes”, as defined by the Metabolomics Standards Initiative 
(MSI; Sumner et al., 2007; Viant et al., 2017). Compound names were 
predicted for 142 peaks in the categorized chemical groups (identifica-
tion level 2, “putatively annotated compounds”), and the metabolites 
for 73 peaks were further identified by comparison with authentic 
standard compounds (identification level 1, “identified compounds”). 
Information about the curated AMRs is available at the tomato da-
tabase TOMATOMET (http://metab​olites.in/tomat​o-fruit​s/) that was 
constructed in this study (see below for Construction of a database 
for searching tomato AMRs). Our annotations could include false as-
signments due to unexpected adduct ions, although we considered 31 
types of possible adduct ions and in-source fragmentation products 
that are analytical artefacts produced during compound ionization.

In this study, we separated compounds by reversed-phase LC 
under conditions that are suitable for separating a wide range of sec-
ondary metabolites that have medium to low polarity. Therefore, some 
metabolites with high polarity may be undetected. Analysis of high po-
larity compounds will be a subject of future studies. We chose the ESI 
positive mode for the MS analysis because in the well-accessed pub-
lic MS databases MassBank (Horai et al., 2010) and mzCloud (https://
www.mzclo​ud.org/), ~70% of the datasets were obtained using the 
ESI positive mode. Future research should focus on obtaining datasets 
using the negative mode to complement present-day datasets.

3.2 | Comparison of the tomato AMRs with those 
from other plants

We compared the 7,118 AMRs directly with other plant AMRs to 
reveal any unique characteristics of the tomato datasets. From a 
thorough search of the literature and metabolome data reposi-
tories (see EXPERIMENTAL PROCEDURES), we collected the 
AMRs produced by FT-ICR or Orbitrap-MS of four plant species, 
namely, tomato (Beisken et al., 2014; Garbowicz et al., 2018; Iijima 

http://metabolites.in/tomato-fruits/
http://metabolites.in/tomato-fruits/
https://www.mzcloud.org/
https://www.mzcloud.org/
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et al., 2008), A. thaliana (Cao et al., 2016; Giavalisco et al., 2011; 
Gläser et  al.,  2014; Krueger et  al.,  2011), M.  truncatula (Kera 
et al., 2018) and J. curcas (Sano et al., 2012). For this comparison, 
we define "unique mass value(s)" as that(those) that has(have) the 
same mass value(s) when selected by a mass tolerance at 5-ppm, 
although a unique mass value may correspond to more than one 
peak. The AMRs that did not match with any of the AMRs of other 
plants were considered to be specific to the plant. Although it is 
obvious that matching accurate mass values is not a sufficient cri-
terion to consider two molecules to be the same chemical or to 
distinguish the difference between isomers and isobars; however, 
matches are useful for prioritizing some chemicals with the same 
mass for further study. The number of the unique mass values of 
this study was 4,417 of 7,118 AMRs (62.1%), whereas those of pre-
viously published studies of tomato, A. thaliana, M. truncatula and 
J. curcas were 598 of 727 (82.3%), 4,272 of 6,681 (63.9%), 401 of 
511 (72.8%) and 4,340 of 6,778 (64.0%) respectively.

The tomato unique masses identified by our study overlapped 
with 334 unique masses (55.9%) identified by previous tomato stud-
ies. The low degree of matching between these studies suggests 
that cultivars, fruit maturity and growth conditions significantly 
affect tomato fruit metabolism. For example, the datasets of Iijima 
et al. (2008), which represent 70% of the AMRs used in this compar-
ison, were obtained from fruits of maturing and fully mature stages 
of a single cultivar “Micro-Tom”. The authors reported significant dif-
ferences in metabolites during tomato maturation. Further metabo-
lomic analyses of tomato samples grown under other conditions are 
needed to characterize unknown metabolic pathways.

A comparison of the 4,417 unique mass values revealed by this 
study with those of other studies resulted in no matches with 3,414 
unique masses identified in A.  thaliana (79.9%), 193 unique masses 
identified in M. truncatula (48.1%), and 3,066 unique masses identified 
in J. curcas (70.6%), respectively. The number of unique tomato mass 
values in our study that did not have any matches with any of the four 
plants was 3,113 unique mass values, corresponding to 4,239 AMRs. 
Of 3,113 unique mass values, only 328 unique mass values matched 
with known metabolites that are registered in the metabolism data-
bases KEGG (Kanehisa et al., 2002), KNApSAcK (Afendi et al., 2012), 
LIPID MAPS (Fahy et al., 2007) and HMDB (Wishart et al., 2018).

We also compared the 4,417 unique mass values to accurate 
mass values archived in the Food Metabolome Repository (version 
0.4.4), which has 969,352 peaks (149,310 unique mass values) from 
222 foods (57 vegetables, 31 fishes, 28 fruits, 17 seasonings, 15 
beverages, 11 cereals, 11 nuts and seeds, 11 beans, 10 milk prod-
ucts, 8 mushrooms, 8 meats, 5 potatoes, 5 sweets, 4 algae and 1 egg) 
detected in the ESI positive mode (Sakurai & Shibata, 2017). There 
were 3,813 unique mass values that matched in the repository. The 
604 that did not match them corresponded to 951 tomato AMRs. 
This finding suggests that reporting AMRs from diverse samples 
should improve the prioritization of peaks for further investigation 
of plant metabolism based on sample specificity.

A comparison of the tomato AMRs with known metabolites was 
carried out using the metabolism databases TomatoCyc (version 4.0, 

https://plant​cyc.org/datab​ases/tomat​ocyc/4.0; 1,432 metabolites) 
and PlantCyc (version 12.0, https://www.plant​cyc.org/datab​ases/
plant​cyc/12.0; 3,208 metabolites), in which information about me-
tabolites along with their published biosynthetic pathways has been 
collected (Schläpfer et  al.,  2017). The unique mass values of 189 
and 323 AMRs were matched to those of TomatoCyc and PlantCyc, 
respectively. The intermediate metabolites and apolar compounds 
that are included in these databases were not matched as such com-
pounds were not detected under the analytical conditions of our 
study.

As shown here, we compared the compound peaks based on 
the AMRs rather than the putative actual compounds by encapsu-
lating the variety of adduct ions, multimers and fragments derived 
from the same compound, because the application and quality of 
the encapsulation in each data source are not uniform. The com-
parison based on the AMRs, we proposed here, is one of the ways 
to overcome this limitation and makes the untargeted metabolome 
data more useful to shed light on the unknown peaks for further 
metabolite annotation as exemplified below.

3.3 | Examples of predicting unknown peaks

To demonstrate the use of the AMRs, especially for the tomato-
specific unknown peaks we annotated some peaks as candidate steroi-
dal glycoalkaloids. From the 908 AMRs that had MS/MS fragmentation 
information but were not annotated with specific chemical names, 
560 tomato-specific peaks that did not match with the AMRs in the 
A. thaliana, M. truncatula or J. curcas datasets were selected. To analyse 
common metabolites of tomato, 62 peaks of the 560 tomato-specific 
peaks that were found commonly in the 24 cultivars were selected 
(Figure 1). From the 62 selected peaks, we focused on KTP_024858 
and KTP_019601 because their MS/MS fragmentation patterns were 
familiar to us as those of glycoalkaloids similar to tomatine, a steroi-
dal alkaloid that is commonly found in maturing tomatoes. We found 
that the MS/MS fragmentation of tomatine that was obtained under 

F I G U R E  1   A workflow chart showing how peaks were selected 
for detailed manual annotation. The steps in selecting peaks for 
detailed manual annotation. For unknown peaks, MS/MS spectra 
and tomato-specificity were used as criteria for selection

https://plantcyc.org/databases/tomatocyc/4.0
https://www.plantcyc.org/databases/plantcyc/12.0
https://www.plantcyc.org/databases/plantcyc/12.0
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the same LC-MS conditions as those used in this study was similar to 
that of KTP_024858 in terms of neutral losses; the retention time of 
the peak when analysed by LC was also close to the retention time 
for tomatine. Combining this information with the predicted chemical 
formula C50H81NO21, we annotated this unknown peak as an isomer of 
dehydrotomatine. Only one isomer of dehydrotomatine was previously 
identified in tomato (Friedman et al., 1997; Ono et al., 1997), although 
some papers had predicted the presence of other possible isomers 
(Itkin et  al.,  2011; Mintz-Oron et  al.,  2008; Schilmiller et  al.,  2010). 
Further studies on the isomer will determine its chemical structure.

Expecting KTP_019601 to be a steroidal alkaloid from the MS/
MS fragmentation, we found that KTP_019640, annotated as 
Ly-coperoside F/G or Esculeoside A (C58H95NO29), had a similar MS/
MS fragmentation pattern based on the neutral losses and reten-
tion time close to that of KTP_019601. Therefore, from the chemical 

formula C58H93NO29, KTP_019601 was annotated as an isomer of 
dehydro-Lycoperoside F/G or dehydro-Esculeoside A. As several 
peaks with similar m/z values to those of the glycoalkaloids exist 
near the retention time on the LC-MS chromatogram, further studies 
should find additional isomers.

3.4 | Secondary metabolites are diverse in 
tomato cultivars

To understand fundamentally why there was an increase in the num-
ber of new compounds using peak information, we further investi-
gated the diversity of compounds in the tomato cultivars. Principal 
component analysis showed a large difference in metabolite profiles 
between cultivars (Figure  2a). The number of peaks also differed 

F I G U R E  2   Comparison of accurate 
mass peaks detected among tomato 
cultivars. (a) PCA was used to compare 
peaks detected in all 25 cultivars. (b) The 
number of detected peaks in each cultivar. 
(c) Cultivar specificity of detected peaks. 
For the number of detected cultivars 
grouped into five classes (1–5, 6–10, 11–
15, 16–20, 21–25), the number of peaks 
in common (black bars) or not in common 
(white bars) with a 5-ppm margin to AMRs 
previously reported in other plant species 
(Arabidopsis thaliana, Medicago truncatula, 
tomato, Jatropha curcas)

(a)

(b)

(c)
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between cultivars, ranging from 1,322 peaks in cultivar #21 to 2,196 
peaks in cultivar #12 (Figure 2b). As shown in Figure 2c, many peaks 
were commonly detected in small numbers of tomato cultivars, and 
more than half of the peaks were newly detected in comparison with 
those from previous reports (see the previous section). These results 
implied that sample-specific metabolites exist within the tomato 
cultivars. We found that most of the primary metabolites resolved 
by LC-MS that were identified using authentic compounds were 
detected in many cultivars (Table 1). The 67 metabolites identified 
after comparison to authentic standards were further classified into 
primary metabolites and secondary metabolites (Table S4). Among 
the 46 peaks classified as 42 primary metabolites, 31 (67.4%) were 
shared among 21–25 species, whereas, the 24 peaks classified as 
23 secondary metabolites did not show such a tendency. This re-
sult implies that the secondary metabolites rather than the primary 
metabolites might contribute to the increase in metabolite diversity. 
Indeed, peak numbers that were annotated as putative flavonoids 
and steroids were very diverse among cultivars (Figure  3a,b). By 
manually checking the appropriateness of MS/MS fragments and 
the annotated chemical structure, we further assigned obvious 

O-glycosides for the flavonoids and steroids and found that more 
than 90% of the flavonoids and steroids were putative glycosides 
(Figure 3).

These results suggested that the diversity of secondary me-
tabolites largely contributes to the wide diversity of metabolites 
among tomato cultivars. Our results showed good agreement 
with a previous study by Slimestad and Verheul (2009), who re-
ported some secondary metabolite diversity in tomato cultivars. 
Glycosylation has also been identified as a contributor to the in-
creased diversity of secondary metabolites (Gachon et al., 2005; 
Tiwari et  al.,  2016). In this study, we also found other modifica-
tions such as methylation and acetylation. Because we could not 
determine if these substituents were directly attached to the core 
structure or indirectly attached via glycosyl groups, the diversity 
and magnitude of these other modifications are unclear. Similar 
to glycosylation, these modifications might contribute to the wide 
diversity of secondary metabolites among cultivars and species. 
To uncover the entire chemical space of unknown compounds in 
plants, similar protocols for metabolome analyses to enhance the 
number of AMRs should be performed using a wide range of spe-
cies and cultivars.

3.5 | Construction of a database for searching 
tomato AMRs

We constructed a searchable tomato database, “TOMATOMET”, 
containing the peaks detected in this study (http://metab​olites.in/
tomat​o-fruit​s/). The peaks can be searched by their accurate mass 
values and information, such as compound annotation, category 
classification, distribution among cultivars cross-species-specificity, 
as well as retention times, MS/MS spectra and types of adduct ions. 
Peaks with types of variation in adduct ions that originate from a 

TA B L E  1   Relationship between the number of peaks detected 
among cultivars and their annotation

Annotated AMRs

Number of cultivars

1–5 6–10
11–
15

16–
20

21–
25

Primary metabolites 
(MSI level 1 and 2)

3 3 4 6 35

Secondary metabolites 
(MSI level 1 and 2)

10 10 8 14 21

AMRs (MSI level 3) 694 300 176 106 162

Total 707 313 188 126 218

F I G U R E  3   The number of peaks 
annotated as flavonoids or steroids among 
cultivars. The black bars indicate peaks 
annotated as glycosides and the white 
bars indicate annotated peaks without 
glycans. (a) flavonoids (b) steroids

(a)

(b)

http://metabolites.in/tomato-fruits/
http://metabolites.in/tomato-fruits/
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single putative metabolite were stored as individual records in 
TOMATOMET because these results will be useful for metabolite 
annotation based on cross-species-specificities and annotated ad-
duct ion types. The search functions are available as application 
programming interfaces (APIs) in manners of representation state 
transfer (REST), and the results are available in a JavaScript object 
notation (JSON) format. These facilitate researchers to integrate the 
search function into other bioinformatics tools and to search a vast 
number of mass values. As the datasets are available in Table S2 in 
the Excel format, users can search them by user's parameters.

4  | CONCLUSIONS

We constructed a set of peaks confidently detected in mature to-
mato fruits from 25 cultivars by manual curation and published the 
data via a searchable database, “TOMATOMET”. The dataset con-
tributes a significant enhancement in the numbers of AMRs and 
unique mass values when compared to previous reports. A large 
portion of the newly detected AMRs is cultivar specific, and modifi-
cation of secondary metabolites is undoubtedly involved to gener-
ate the wide diversity of metabolites found among cultivars. Using 
cross-sample-specificity, we annotated two previously unknown 
peaks as steroid glycoalkaloids. These results suggest that the en-
hancement of AMRs is useful for depicting the actual chemical space 
for mass-based metabolite annotation and annotation based on 
cross-sample-specificity. Therefore, AMRs should be reported for 
diverse cultivars, tissue and organ types, and developmental stages 
even within a plant species.

ACCESSION NUMBERS

All raw MS data generated by this study were deposited in the metab-
olome data repository MassBase (http://webs2.kazusa.or.jp/massb​
ase/) under accession numbers MDLC1_46828 to MDLC1_46929 
and MDLC_146933 to MDLC1_46935.
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