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Abstract
The total number of low- molecular- weight compounds in the plant kingdom, most of 
which are secondary metabolites, is hypothesized to be over one million, although 
only a limited number of plant compounds have been characterized. Untargeted anal-
ysis,	especially	using	mass	spectrometry	(MS),	has	been	useful	for	understanding	the	
plant metabolome; however, due to the limited availability of authentic compounds 
for	MS-	based	identification,	the	identities	of	most	of	the	ion	peaks	detected	by	MS	
remain unknown. Accurate mass values of peaks obtained by high accuracy mass 
measurement	and,	if	available,	MS/MS	fragmentation	patterns	provide	abundant	an-
notation for each peak. Here, we carried out an untargeted analysis of compounds in 
the	mature	fruit	of	25	tomato	cultivars	using	liquid	chromatography-	Orbitrap	MS	for	
accurate mass measurement, followed by manual curation to construct the metabo-
lome	 database	 TOMATOMET	 (http://metab	olites.in/tomat	o-	fruit	s/).	 The	 database	
contains 7,118 peaks with accurate mass values, in which 1,577 ion peaks are anno-
tated as members of a chemical group. Remarkably, 71% of the mass values are not 
found in the accurate masses detected previously in Arabidopsis thaliana, Medicago 
truncatula or Jatropha curcas, indicating significant chemical diversity among plant 
species that remains to be solved. Interestingly, substantial chemical diversity exists 
also among tomato cultivars, indicating that chemical profiling from distinct cultivars 
contributes towards understanding the metabolome, even in a single organ of a spe-
cies, and can prioritize some desirable metabolic targets for further applications such 
as breeding.

K E Y W O R D S

bioinformatics, chemical diversity, metabolite annotation, metabolome, tomato cultivar, 
tomato fruit

www.wileyonlinelibrary.com/journal/pld3
https://orcid.org/0000-0003-1754-2837
https://orcid.org/0000-0001-5861-6228
https://orcid.org/0000-0001-6596-9881
mailto:
https://orcid.org/0000-0002-2384-595X
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:shibata@kazusa.or.jp
http://metabolites.in/tomato-fruits/


2 of 12  |     ARA et Al.

1  | INTRODUC TION

Untargeted analysis of metabolites using liquid chromatography- 
mass	spectrometry	 (LC-	MS)	 is	a	promising	technology	for	under-
standing the metabolism of organisms of interest and for finding 
valuable metabolites for breeding and industrial uses such as 
medicines	or	new	materials	development	 (Tohge	&	Fernie,	2015;	
Wang,	2008;	Wurtzel	&	Kutchan,	2016).	Afendi	et	al.	(2012)	pro-
posed that the total number of metabolites in the plant kingdom 
is over one million based on the species specificity of metabolites 
from a wide range of organisms appearing in KNApSAcK, a me-
tabolite database that contains published chemical information of 
51,179 metabolites. Although plant extracts from leaves, stems, 
roots, flowers and fruits of various plant species obtained from 
several growth stages or conditions have been analysed in an 
untargeted manner almost for two decades, we are still far away 
from	understanding	all	features	of	plant	metabolomes.	As	LC-	MS	
is applicable to the analysis of a wide range of metabolites with 
high sensitivity, except for volatiles, this technique has been used 
widely to detect metabolites in metabolomic studies. However, the 
major bottleneck of metabolome analyses is the lack of authentic 
chemical standards capable of identifying the most detected me-
tabolites	(Chaleckis	et	al.,	2019;	Viant	et	al.,	2017;	Wishart,	2009).	
Therefore,	 annotation	 of	 an	 ion	 peak	 detected	 by	 MS	 may	 not	
mean that the compound has been identified; rather, additional 
information about some chemical features must be linked to the 
detected ion. Various bioinformatics approaches have been devel-
oped	for	better	annotation	(Fukushima	&	Kusano,	2013;	Hufsky	&	
Böcker,	2017).	Only	17%–	25%	of	the	compounds	tested	are	identi-
fied	correctly	by	in	silico	algorithms	alone	(Blaženović	et	al.,	2017),	
although the accuracy and confidence of structural elucidation 
from	 tandem	 mass	 spectrometry	 (MS/MS)	 spectra	 and	 isotope	
ions have increased. Therefore, alternative ways of improving me-
tabolite identification are needed.

Including specific information about the sample such as tissue 
specificity or the taxonomic relationship of the species with other 
plants improves metabolite identification significantly (Tsugawa, 
2018).	 A	 large	 dataset	 of	 gas	 chromatography-	mass	 spectrome-
try	 (GC-	MS)	 profiles	 from	 114,795	 samples	 of	 various	 origins	 ar-
chived in the BinBase database was used successfully to discover 
some metabolites that accumulate specifically in cancer tissues (Lai 
et	al.,	2018).	By	combining	information	about	taxonomy,	known	bio-
activity,	and	the	chemical	relationship	of	compounds	based	on	MS/
MS	spectra	similarity	(molecular	network)	with	in-	house	LC-	MS	data	
from 292 plant species in the Euphorbiaceae analysed by the same 
LC-	MS	 procedures,	 seven	 bioactive	 natural	 compounds	 were	 dis-
covered	(Olivon	et	al.,	2017).	In	contrast	with	GC-	MS,	the	difficulty	
in	standardizing	LC-	MS	conditions	hampers	a	direct	comparison	of	
LC-	MS	 data	 with	 those	 obtained	 by	 other	 analytical	 procedures.	
Nevertheless, accurate mass values with an error of a few ppm ob-
tained	by	high-	resolution	LC-	MS	when	the	molecules	are	softly	ion-
ized to retain the intact form allow direct comparison of datasets 
with those of others, although a coincidental accurate mass value 

of a molecule with others is insufficient to consider them the same 
compound. Therefore, accumulation and publication of detected ac-
curate mass values (hereafter we refer to them as “accurate mass 
records	 (AMRs)”)	 to	 compare	 samples	 of	 interest,	 is	 a	meaningful	
concept in metabolomics.

Providing	AMRs	of	an	organism	in	public	is	a	practical	way	for	
exploratory data comparison of untargeted metabolome data ob-
tained	by	LC-	MS.	 It	 is	known	 that	a	 significant	number	of	peaks	
detected	 by	 LC-	MS	 are	 those	 of	 derivative	 ions	 that	 originated	
from the same compounds, such as adduct ions, multimers and 
in- source fragments, and the real number of unique compounds in 
a sample is much smaller than the observed peak numbers (Brown 
et	al.,	2011;	Jankevics	et	al.,	2012;	Mahieu	&	Patti,	2017).	Various	
bioinformatics tools to encapsulate the multiple derivative ions 
into	 the	original	compound	have	been	reported,	such	as	xMSan-
notator	 (Uppal	 et	 al.,	 2017),	MS-	FLO	 (DeFelice	 et	 al.,	 2017)	 and	
CliqueMS	(Senan	et	al.,	2019).	However,	it	is	not	practically	feasi-
ble to perform such encapsulation in a similar quality for all data 
obtained	 by	 various	 researchers	 using	 various	 LC-	MS	 apparatus	
and	conditions,	because	of	the	two	reasons	as	follows:	 (a)	as	the	
encapsulation approaches are based on the co- elution of peaks for 
peak	annotation,	the	results	depend	on	the	MS	sensitivity,	sample	
concentration	 and	 peak	 detection	 parameters;	 (b)	 generation	 of	
the variation of adduct ions, multimers and fragments depend on 
the type of apparatus, setting of the apparatus, sample concentra-
tion, solvents and co- eluting contaminants. In contrast with the 
difficulty or, in practice, the impossibility of applying equal quality 
of encapsulation for all peaks detected in the research community, 
a researcher can encapsulate and annotate the peak data for se-
lected several peaks in their own equal quality when the raw data 
including	AMRs	and	calculated	information	about	adduct	ion,	mul-
timer and fragmentation are provided as reference. The resource 
should be useful for future improvement of the encapsulation 
strategies and standardization of its quality.

However,	well-	curated	and	reusable	AMR	data	are	limited,	so	
far, to comparative studies between distinct species. Although 
untargeted	 high-	resolution	 MS	 analyses	 of	 strawberry	 (Fragaria 
x ananassa;	Aharoni	et	al.,	2002),	Arabidopsis thaliana (Giavalisco 
et	 al.,	 2011),	Medicago truncatula	 (Kera	 et	 al.,	 2018)	 and	 tomato	
(Iijima	 et	 al.,	 2008)	 have	 been	 reported,	 the	MS	 data	 shown	 in	
the tables or the supplementary tables of these articles are not 
ready	to	direct	comparison	with	other	datasets.	MetaboLights,	a	
metabolomics data management system, contains high- accuracy 
datasets from 2,851 analyses of 543 peaks from several plants 
(Steinbeck	et	al.,	2012);	however,	a	search	function	with	mass	val-
ues is not provided on the website. The metabolomics repository 
Metabolomics	Workbench	 (Sud	 et	 al.,	 2016)	 is	 well-	designed	 to	
search metabolites by mass values; however, the distribution of 
matched peaks among species is not available from the search re-
sult	page.	The	Medicinal	Plant	Metabolomics	Resource	 (Wurtele	
et	 al.,	 2012)	 contains	datasets	of	 identified	metabolites	 from	14	
medicinal plant species and provides the capability to search for 
mass values with low resolution. The Global Natural Products 
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Social	Molecular	Networking	site	(GNPS;	Wang	et	al.,	2016)	is	de-
signed for the curation of mass spectrometry data but does not 
include a mass value search function. The metabolomics database 
KomicMarket	 (Sakurai	 et	 al.,	 2014)	 has	 assembled	 metabolome	
datasets for several plant species and has a mass value- search 
function,	but	the	search	speed	is	slow	for	practical	use.	The	Food	
Metabolome	Repository	 (Sakurai	&	Shibata,	2017)	covers	a	wide	
variety of food samples including 57 vegetables and 28 fruits, and 
provides search APIs; however, potential false- positive peaks re-
main to be curated since sample preparation was not replicated. 
Therefore,	 efforts	 to	generate	 curated	and	 reusable	AMRs	 for	 a	
wide range of organisms or foods are required for a better under-
standing of plant metabolism or the chemical world surrounding 
us.

We	chose	 to	use	 tomato	 fruits	 to	 construct	 an	AMR	dataset	
in	 this	 study.	 According	 to	 statistics	 provided	 by	 the	 Food	 and	
Agriculture	 Organization	 of	 United	 Nations	 (FAOSTAT,	 http://
www.fao.org/faostat),	 the	 worldwide	 production	 of	 tomatoes	
has been the highest among 23 primary vegetables in the world 
since 1961. Tomato ingredients attract much attention due to 
their health benefits. Associations between tomato consumption 
and decreased risk of diseases such as cancer have been reported 
(Giovannucci,	 1999;	Martí	 et	 al.,	 2016;	 Raiola	 et	 al.,	 2014).	 Our	
previous study using mice also showed that certain oxo- fatty 
acids in tomato act as potent agonists of a ligand- activated tran-
scription factor, peroxisome proliferator- activated receptor α 
(PPARα),	 and	possibly	 improve	obesity-	induced	dyslipidemia	 and	
hepatic	 steatosis	 (Kim	 et	 al.,	 2012).	Only	 two	 resources	 provide	
tomato	 AMRs	 data	 for	 open	 access:	 (a)	 a	 dataset	 of	 869	 peaks	
of	 fruit	 metabolites	 from	 “Micro-	Tom”,	 a	 model	 tomato	 cultivar,	
detected	by	 LC-	Fourier	 transform	 ion	 cyclotron	 resonance-	mass	
spectrometry	 (FT-	ICR-	MS)	 reported	 in	 a	 supplementary	 table	 of	
an	 article	 published	 by	 Iijima	 et	 al.	 (2008)	 and	 a	 dataset	 acces-
sible	 at	 KomicMarket	 (http://webs2.kazusa.or.jp/komic	marke	t/).	
(b)	Accurate	mass	data	for	413	identified	peaks	from	eight	tomato	
studies	 are	 available	 at	 MetaboLights	 (https://www.ebi.ac.uk/
metab	oligh	ts/).	Unfortunately,	the	accurate	mass	data	for	>2,000 
peaks	of	tomato	metabolites	published	by	Perez-	Fons	et	al.	(2014)	
are not accessible from public websites. A set of 2014 identified 
peaks from 10 tomato studies is deposited at the GNPS, although 
the data are not accessible by mass value searches. Therefore, the 
accumulation	of	curated	and	reusable	tomato	AMRs	is	required	for	
understanding the fundamentals of metabolisms.

Here,	we	report	a	reusable	dataset	of	7,118	AMRs	from	tomato	
fruits of 25 tomato cultivars. The dataset was produced from peak 
information detected by accurate mass measurement and laborious 
manual	curation.	Remarkably,	71%	of	the	mass	values	of	the	AMRs	
are	not	found	in	AMRs	detected	previously	in	A. thaliana, M. trunca-
tula, or Jatropha curcas. A large diversity of compounds among the 
evaluated tomato cultivars is also revealed that should be considered 
in	tomato	breeding.	To	exemplify	the	suitability	of	the	AMRs	for	pri-
oritizing candidate metabolites, we annotated some tomato- specific 
compounds	as	esculeoside-		and	tomatine-	derivatives.	The	AMR	data	

are	 available	 at	 the	 TOMATOMET	 website	 (http://metab	olites.in/
tomat	o-	fruits)	for	open	access.

2  | E XPERIMENTAL PROCEDURES

2.1 | Plant materials

The tomato cultivars used in this study are listed in Table S1. Cultivars 
No.1	to	23	were	grown	in	the	greenhouses	of	KAGOME	CO.,	LTD.	
located	in	Tochigi	and	Fukushima	Prefectures,	Japan	from	summer	
2013	to	spring	2014.	Cultivar	No.24	(“Kyo-	temari”)	was	grown	in	the	
greenhouses of the Kyoto University experimental farm located in 
Takatsuki,	Osaka	Prefecture,	Japan	from	winter	2013	to	spring	2014.	
Cultivar	No.25	(“Micro-	Tom”)	was	greenhouse-	grown	at	the	Kazusa	
DNA	Research	Institute	located	at	Kisarazu,	Chiba	Prefecture,	Japan	
from spring 2014 to summer 2014. The fruits or seeds of cultivars 
No.1	 to	 23	 were	 provided	 by	 KAGOME	 CO.,	 LTD.	 Cultivars	 No.	
24	and	No.	25	were	provided	by	 the	Experimental	Farm	of	Kyoto	
University and the Tomato National BioResource Project (http://
tomato.nbrp.jp/index	En.html),	 respectively.	 Tomato	 fruits	 were	
harvested at the fully ripe stage by judging the fruit colour for each 
cultivar	 (red,	orange,	pink	or	black).	The	harvested	 fruits	were	 im-
mediately	frozen	in	liquid	nitrogen	and	stored	at	−80°C	until	use.

2.2 | Liquid chromatography- mass 
spectrometry analysis

Calyxes	 were	 removed	 from	 the	 frozen	 fruits.	 For	 each	 culti-
var	 (Table	 S1),	 three	 frozen	 fruits	 (with	 both	 flesh	 and	 peel)	were	
pooled, finely ground using a mortar and pestle under liquid nitro-
gen,	and	then	lyophilized	for	48	hr.	The	lyophilized	powder	(50	mg)	
was extracted with 1 ml of 80% v/v methanol containing 1.25 μM	
7-	hydroxy-	5-	methylflavone	 (Sigma-	Aldrich)	 as	 an	 internal	 stand-
ard. After homogenizing the sample for 5 min using a bead crusher 
(Beads Crusher μT-	12,	TAITEC)	and	a	 stainless-	steel	bead	 (5.0	mm	
diameter,	Bio	Medical	Science)	in	a	2	ml	tube,	the	homogenates	were	
centrifuged (20,400 g	 for	10	min	at	4°C).	The	supernatant	was	fil-
tered through a 0.2 μm	polytetrafluoroethylene	 (PTFE)	membrane	
(Millex-	LG,	Merck	Millipore)	and	used	 for	LC-	MS	analysis.	The	un-
targeted metabolome analysis was performed using an Agilent 1200 
system	 (Agilent	Technologies	Ltd.)	 coupled	 to	an	LTQ	Orbitrap	XL	
(Thermo	Fisher	Scientific	Co.	Ltd.).	The	filtrate	(5	μl)	was	applied	to	
a TSK- gel column ODS- 100V (3.0 × 50 mm, 5 μm,	TOSOH	Co.	Ltd.).	
Water	(HPLC	grade;	solvent	A)	and	acetonitrile	(HPLC	grade;	solvent	
B)	were	used	as	the	mobile	phase	with	0.1%	v/v formic acid added 
to	both	solvents.	The	gradient	program	was	as	follows:	3%	B	(0	min),	
97%	B	(15	min),	97%	B	(20	min),	3%	B	(20.1	min)	and	3%	B	(25	min).	
The flow rate was set to 0.4 ml/min, and the column oven temper-
ature	was	 set	at	40°C.	Compounds	were	detected	 in	electrospray	
ionization	 (ESI)-	positive	mode	over	 the	m/z	 range	of	100–	1,500,	a	
mass resolution of 60,000 (at m/z	400)	and	a	 lock	mass	set	at	m/z 

http://www.fao.org/faostat
http://www.fao.org/faostat
http://webs2.kazusa.or.jp/komicmarket/
https://www.ebi.ac.uk/metabolights/
https://www.ebi.ac.uk/metabolights/
http://metabolites.in/tomato-fruits
http://metabolites.in/tomato-fruits
http://tomato.nbrp.jp/indexEn.html
http://tomato.nbrp.jp/indexEn.html


4 of 12  |     ARA et Al.

391.284286.	For	the	four	most	intense	ions	of	the	precursor	scan,	
MS/MS	analyses	were	carried	out	using	collision-	induced	dissocia-
tion in a linear ion trap detector with a normalized collision energy 
of 35.0%. The frozen powder from a single cultivar was extracted 
and	 subjected	 to	 LC-	MS	 analysis	 as	 described	 above	 in	 triplicate.	
Mock	 samples	were	prepared	as	above	without	adding	 the	 frozen	
powdered	material.	Five	series	of	LC-	MS	runs	for	 the	triplicate	25	
cultivars were carried out, in which three mock samples and five 
triplicate samples were analysed for each series. Data were acquired 
using	 Xcalibur	 software	 version	 2.1	 (Thermo	 Fisher	 Scientific).	
Further	details	of	the	procedures	are	available	at	the	Metabolonote	
website	(http://metab	olono	te.kazusa.or.jp/SE40:/;	Ara	et	al.,	2015).

2.3 | Peak detection and peak alignment

Mass	chromatogram	data	obtained	by	Xcalibur	 (.raw	 format)	were	
converted	 to	 a	 text-	based	 format	 using	 MSGet	 software	 (http://
www.kazusa.or.jp/komic	s/softw	are/MSGet).	 Ion	 peaks	 were	 de-
tected	using	the	PowerFT	module	of	the	PowerGet	software,	version	
3.5.4beta (http://www.kazusa.or.jp/komic s/softw are/PowerGet; 
Sakurai	et	al.,	2014).	Information	such	as	accurate	m/z values, type 
of adduct ions and the ratio of the intensity of 13C1 isotopic peak 
to	that	of	the	monoisotopic	peak	was	estimated	by	PowerFT.	Peaks	
were	aligned	between	the	samples	using	 the	PowerMatch	module	
of PowerGet based on m/z values, retention times, and similarity of 
MS/MS	spectra	 if	available.	A	file	set	of	the	setting	parameters	of	
PowerGet	used	in	this	study	is	available	at	TOMATOMET	website.

2.4 | Manual curation of the alignment results and 
characterization of peaks

The alignment results were manually curated using the alignment 
editing	 function	 in	 the	 PowerMatch	module	 by	 checking	 the	 raw	
mass chromatogram for the identity of estimated m/z values, reten-
tion	times,	MS/MS	spectra	if	available	and	for	any	other	closely	de-
tected peaks. An in- house Perl program was used to check these 
identities. Inappropriate ion peaks were removed from the align-
ment. Inappropriately separated aligned peak groups that were 
derived from the same putative compound were merged into a 
single alignment. Although retention times of most compounds on 
chromatograms are stable between experiments, misalignments 
that sometimes occurred by unpredictable drifts in retention times 
were	corrected	manually.	Peaks	associated	with	the	MS/MS	spectral	
data and peaks of higher intensity were prioritized for this manual 
curation. Peaks that were also detected in the mock samples were 
removed. Peaks that were reproducibly detected in at least two of 
the three analytical replications were regarded as valid peaks. After 
curation of the alignment results, the ion valence was checked and 
curated based on the distances between the 13C isotopic peaks using 
the	 MassChroViewer	 software	 (Sakurai	 &	 Shibata,	 2017)	 whose	
2- dimensional mass chromatogram presentation and mass ruler 

function are suitable for checking this parameter. Peaks of more 
than or equal to pentavalent ions were ignored and were not ana-
lysed further.

Compound database searches and predictions of elemen-
tal composition based on the average m/z values and the adduct 
ions	 of	 the	 alignment	were	 performed	using	 the	MFSearcher	 tool	
(Sakurai	 et	 al.,	 2012).	We	 search	 the	 candidates	 using	 the	 follow-
ing three types of databases in this order and later ones were used 
when	no	candidate	was	found	in	the	former:	(a)	The	compound	da-
tabases	(KEGG,	KNApSAcK,	LIPID	MAPS	and	HMDB,	see	below),	(b)	
Pep1000	database	in	MFSearcher	for	prediction	of	linear	peptides,	
and	(c)	EX-	HR2	database	in	MFSearcher	for	prediction	of	elemental	
compositions. The mass tolerances 1, 2 and 5 ppm were given for 
each search in this order and the larger tolerance was applied when 
no candidate was found with the smaller. Of the adduct ions pre-
dicted by PowerGet, ones of the same ion valence estimated using 
MassChroViewer	were	applied	for	calculation	of	the	mass	value	of	
neutralized	molecule	for	search.	When	no	candidate	was	found,	the	
adduct ions of the same ion valence out of the following adduct ions 
were used in this order and the later one was used when no can-
didate	was	found	with	the	former:	[M	+ H]+,	[M	+ NH4]+,	[M	+ K]+, 
[M	+ Na]+,	[M	+ 2H]2+,	[M	+ 2Na]2+,	[M	+ Na + H]2+,	[M	+ NH4 + H]2+, 
[M	+ K + H]2+,	[M	+ 2NH4]2+,	[M	+ 2K]2+,	[M	+ 3H]3+,	[M	+ 3Na]3+, 
[M	+ 3NH4]3+,	 [M	+ 3K]3+,	 [M	+ Na + 2H]3+,	 [M	+ 2Na + H]3+, 
[M	+ NH4 + 2H]3+,	[M	+ 2NH4 + H]3+,	[M	+ K + 2H]3+,	[M	+ 2K + H]3+, 
[M	+ 4H]4+,	[M	+ 4Na]4+,	[M	+ 4NH4]4+,	[M	+ 4K]4+,	[M	+ Na + 3H]4+, 
[M	 + 2Na + 2H]4+,	 [M	 + 3Na + H]4+,	 [M	 + NH4 + 3H]4+, 
[M	+ 2NH4 + 2H]4+,	 [M	+ 3NH4 + H]4+. The existence of the can-
didates was judged after filtering the search results as below: In the 
case of compound database search, the candidates containing halo-
gens and silicon were excluded; In the case of elemental composition 
prediction	by	EX-	HR2,	the	candidates	with	no	hydrogen	or	oxygen/
phosphorus ratio less than 2 assuming phosphate derived- moieties 
were excluded. As exceptions, for the 14 peaks with the compound 
database	results	and	the	52	peaks	with	the	EX-	HR2	results,	we	manu-
ally selected appropriate candidates with considerations of accurate 
mass	values	and	the	predicted	elemental	compositions	of	MS2 prod-
uct ions which were attributed by the observation of typical neutral 
losses	 of	 glycosides	 and	 so	 on.	We	used	 the	 following	 compound	
databases and the release date of the datasets: KEGG (Kanehisa 
et	al.,	2002),	5	December,	2018;	KNApSAcK	(Afendi	et	al.,	2012),	28	
June,	2017;	LIPID	MAPS	(Fahy	et	al.,	2007),	28	June,	2017;	HMDB	
(Wishart	 et	 al.,	 2018),	 26	November,	2018.	The	EX-	HR2	database	
contains possible elemental compositions as molecules that fulfil 
Senior-  and Lewis-  valent rules and the Seven Golden Rules (Kind 
&	Fiehn,	2007)	under	the	maximum	number	of	the	atoms:	C,100;	H,	
200;	O,	5;	N,	10;	P,	10	and	S,	10	(Sakurai	et	al.,	2012).	The	threshold	
values of the mass tolerances were determined based on the mass 
accuracy as approximately 1 ppm in our study in which a lock mass 
was applied for mass calibration and averaging of mass values in the 
alignment of the peaks from replicational analysis of multiple to-
mato cultivars. Using the results from 73 metabolites identified by 
authentic	chemicals	(see	the	Metabolite	identification	section)	and	

http://metabolonote.kazusa.or.jp/SE40:/
http://www.kazusa.or.jp/komics/software/MSGet
http://www.kazusa.or.jp/komics/software/MSGet
http://www.kazusa.or.jp/komics/software/PowerGet
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their theoretical mass values ranging from 104 to 1,034, the mass 
accuracy was estimated as less than 0.83 and 0.41 ± 0.21 ppm on 
average.	Therefore,	we	set	1	ppm	for	the	first	search.	We	set	2	ppm	
to capture the candidates excluded by the strict threshold value, and 
5 ppm at the maximum by considerations of the cases of insufficient 
corrections by PowerGet for the mass shifts observed in the higher 
intensity ions and the mass fluctuations observed in the peaks with 
higher m/z	values.	We	described	the	search	and/or	prediction	results	
in Table S2 as follows. The compound IDs found in the compound 
database search, predicted peptides by Pep1000, and the number of 
predicted	elemental	compositions	(0,	1	or	multiple)	by	EX-	HR2	were	
described	in	the	“Database	hits”	column.	An	elemental	composition	
was	described	in	the	“Annotation”	column	when	the	candidates	con-
tain a single elemental composition.

2.5 | Classification of chemical categories and 
metabolite annotation

In	 accordance	 with	 the	 study	 of	 Sano	 et	 al.	 (2012),	 the	 chemical	
structures of candidate compounds were manually checked, and if 
all of them shared a common structure, we classified the peak into 
one of the following chemical categories: alkaloids, aminocarbox-
ylic acids, carotenoids, coumarins, fatty acid derivatives, flavonoids, 
glycolipids, iridoids, nucleotides, organic acids, phenolics, phospho-
lipids, porphyrins, steroids, sugars and terpenoids. These catego-
ries	have	some	overlapping	relationships.	For	example,	iridoids	and	
flavonoids are subcategories of phenolics. In cases where all can-
didate structures were in a specific subcategory, we assigned the 
subcategory	instead	of	the	parent	category.	In	cases	where	an	MS/
MS	spectrum	was	obtained,	spectrum	similarity	searches	were	con-
ducted	using	MassBank	 (Horai	 et	 al.,	 2010)	 and	MS-	MS	Fragment	
Viewer (http://webs2.kazusa.or.jp/msmsf ragme ntvie wer/; Sakurai 
et	al.,	2014).	We	assigned	typical	neutral	losses,	namely,	NH3, H2O, 
CH2O2, C5H8O4 and C6H10O5	(Ma	et	al.,	2014)	from	MS/MS	spectra,	
and if the observed neutral loss fragments were not assumed for the 
candidate structures, the candidates were excluded from the above 
classification.

The number of glycosyl substituents was counted manually look-
ing	 at	 the	 candidate	 chemical	 structures.	 If	 an	 MS/MS	 spectrum	
was available, the results were verified by checking the neutral loss 
fragments for - C6H10O5 and - C6H12O6. Only the number of hexoses 
was accounted for in this study because no candidates having only 
pentoses were found, despite careful checking. In case additional 
pentoses might be attached to hexoses, we described this possibility 
in Table S2.

Metabolite	annotation	and	the	annotation	levels	of	MSI	(Sumner	
et	al.,	2007)	were	assigned	to	peaks	as	follows:	 (a)	 if	the	peak	was	
identified	by	authentic	standards	(MSI	level	1,	see	next	section),	the	
compound	name	and	chemical	formula	were	assigned;	(b)	if	the	com-
pound	category	and	a	single	compound	were	candidates	(MSI	level	
2),	the	category	name,	candidate	compound	name,	presence	and	ab-
sence of phosphate and sulphate residues, and a chemical formula 

were	assigned;	(c)	if	the	compound	category	was	determined	but	a	
single	candidate	compound	could	not	be	predicted	(MSI	level	3),	the	
category	name	was	assigned;	(d)	if	the	compound	category	was	not	
determined	and	a	single	elemental	composition	was	predicted	(MSI	
level	4),	the	elemental	composition	was	assigned;	and	(e)	if	the	com-
pound category was not determined and multiple elemental compo-
sitions	were	predicted	(MSI	level	4),	no	term	was	assigned.	In	the	MSI	
level 3 compounds, 16 peaks marked by superscript “a”	in	Table	S2	
were qualified by comparison with the authentic compounds but 
could not be identified due to detections of multiple isomers eluted 
closely at the retention times of the authentic compounds.

In cases in which the types and numbers of the substituents 
(such	as	glycosyl	groups)	were	predicted	by	manual	assignment	of	
MS/MS	spectral	 fragments,	 the	 information	was	added	 to	 the	an-
notation	(Table	S2).	If	possible,	the	distinction	of	lipid	subclass	name	
(e.g.	 triacylglycerol	 [TG],	 phosphatidylethanolamine	 [PE])	 was	 at-
tached to peaks in the categories of fatty acid derivatives, glycolipids 
or phospholipids.

2.6 | Metabolite identification

Metabolites	were	 identified	 by	 checking	 the	 identities	 of	m/z val-
ues,	retention	times	and	MS/MS	spectra	compared	to	those	of	the	
authentic	 standard	 compounds	 measured	 using	 the	 same	 LC-	MS	
conditions. The authentic standards were purchased from the sup-
pliers	 as	 follows:	 6-	hydroxycoumarin,	 adenine,	 adenosine,	 AMP,	
biotin,	 chlorogenic	 acid,	 citrate,	 CMP,	 cytidine,	 cytosine,	 GABA,	
gamma-	L-	glutamyl-	L-	cysteine,	 glutathione,	 GMP,	 guanine,	 guano-
sine, inosine, isocitrate, kaempferol 3- O- rutinoside, L- arginine, 
L- asparagine, L- aspartate, L- cysteine, L- glutamate, L- glutamine, 
L- histidine, L- lysine, L- methionine, L- phenylalanine, L- proline, L- 
serine, L- threonine, L- tryptophan, L- tyrosine, NAD, nicotinamide, 
S-	adenosyl-	L-	methionine,	 trans-	feruloyltyramine,	 UMP,	 uracil	 and	
uridine were from Sigma- Aldrich; 7- hydroxycoumarin, anthranilic 
acid, caffeic acid, L- kynurenine and tomatine were from Tokyo 
Chemical Industry Co., Ltd.; L- norleucine, nicotinate, pantothenate, 
rutin,	 spermidine	 and	 spermine	 were	 from	 FUJIFILM	Wako	 Pure	
Chemical	 Co.;	 cis-	aconitate	 and	 FMN	were	 from	 Nakarai	 Tesque,	
Inc.; 13- oxoODA and serotonin were from Cayman Chemical Co.; 
eriodictyol 7- O- glucoside, eriodictyol, fustin, hesperetin, kaemp-
ferol 3- O- glucoside, naringin and prunin were from Extrasynthese; 
p- coumaric acid and succinate semialdehyde were from Santa Cruz 
Biotechnology,	Inc.;	N-	p-	trans-	coumaroyltyramine	was	from	Wuhan	
ChemFaces	 Biochemical	 Co.,	 Inc.;	 quinic	 acid	 was	 from	 Kanto	
Chemical Co., Inc.

2.7 | Comparison of AMR data with those in 
previous reports

To	compare	AMRs	with	those	previously	reported,	we	surveyed	the	
literature and databases for untargeted metabolome data obtained 

http://webs2.kazusa.or.jp/msmsfragmentviewer/
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by	positive	 ion	mode	ESI	and	with	high-	resolution	MS,	namely	FT-	
ICR-	MS	or	Orbitrap-	MS	(Thermo	Fisher	Scientific).	Supplementary	
data in the following research papers were found and used in 
this	 study:	 Iijima	 et	 al.	 (2008)	 for	 Solanum lycopersicum; Krueger 
et	 al.	 (2011),	Giavalisco	 et	 al.	 (2011),	Gläser	 et	 al.	 (2014)	 and	Cao	
et	al.	(2016)	for	A. thaliana;	Kera	et	al.	(2018)	for	M. truncatula and 
Sano	 et	 al.	 (2012)	 for	 J. curcas. The following studies were found 
in	 the	MetaboLights	database	 (Steinbeck	et	al.,	2012)	 for	Solanum 
lycopersicum:	 MTBLS36	 (Beisken	 et	 al.,	 2014),	 MTBLS107	 (Van	
Meulebroek	et	 al.,	 2015)	 and	MTBLS693	 (Garbowicz	et	 al.,	 2018).	
The files containing metabolite information were downloaded and 
used in this study. The mass values that were unique in each spe-
cies and those shared among multiple species were calculated by 
grouping the mass values at a given 5- ppm mass tolerance using an 
in- house Perl program.

2.8 | Statistical analysis

Principal	component	analysis	(PCA)	was	performed	using	the	prcomp	
function	 of	 the	 R	 program	 (version	 3.1)	 based	 on	 the	 variance-	
covariance matrix. The peak intensities were transformed to log- 
based 10 and normalized by the average for each sample. Average 
values of the triplicate samples were used for PCA. The missing val-
ues were compensated with a small value that is 1/10 of the smallest 
intensities among all samples.

2.9 | Database construction

TOMATOMET	 (http://metab	olites.in/tomat	o-	fruit	s/)	 was	 con-
structed	using	Java	8	(Oracle	Corporation)	and	Spring	Boot	(Pivotal	
Software,	Inc.).

3  | RESULTS AND DISCUSSION

3.1 | Construction of a dataset of tomato AMRs 
from fruits of 25 tomato cultivars

We	analysed	tomato	extracts	of	mature	fruits	for	accurate	mass	meas-
urement	by	reversed	phase-	LC	and	high-	resolution	MS	(LTQ-	Orbitrap,	
Thermo	Fisher	Scientific)	 in	the	electrospray	ionization	(ESI)-	positive	
mode. Twenty five cultivars suitable for fresh market, processing and 
ornamental	 uses	were	 selected	 for	 the	 analysis	 (Table	 S1).	 The	 ion	
peaks of triplicate biological samples were detected and aligned using 
PowerGet	software	(Sakurai	et	al.,	2014),	resulting	in	a	total	of	505,662	
alignments. As the automatically calculated results might have con-
tained	latent	false	positives	(Mahieu	&	Patti,	2017),	we	corrected	inap-
propriate peak detections, misalignments and misassignments of the 
adduct ions and removed noise peaks manually with the help of the 
editing function of PowerGet software and the mass chromatogram 
viewer	 software	MassChroViewer	 (Sakurai	 &	 Shibata,	 2017).	 In	 this	

study, we defined the peaks detected in more than two of the tripli-
cate samples from each cultivar as unequivocally detected peaks. This 
designation was necessary because the quantity of some metabolites 
in biological samples may change significantly even if the sampling 
conditions were controlled as metabolite levels reach the detection 
limits	of	the	instrument.	Finally,	the	dataset	that	includes	7,118	peaks,	
in	which	1,491	peaks	(21%)	containing	MS/MS	spectral	data,	was	se-
lected	(Table	S2).	The	mass	values	of	the	curated	7,118	peaks	can	be	
used	as	accurate	mass	records	(AMRs)	for	comparison	with	those	from	
other plant samples.

We	 annotated	 the	 peaks	 using	 the	 accurate	 mass	 values	 and	
if	 available,	 MS/MS	 spectral	 data.	 Using	 the	 accurate	 mass	 values,	
searches against compound databases were carried out with a de-
fined 5- ppm mass tolerance at the maximum, followed by manually 
evaluating the matching chemical structures for individual peaks (see 
EXPERIMENTAL	 PROCEDURES	 for	 the	 details).	 Of	 7,118	 peaks,	
1,577	peaks	(22.2%)	were	categorized	into	one	of	16	metabolite	cat-
egories	 (Sano	 et	 al.,	 2012;	 Table	 S3).	 The	 confidence	 in	 identifying	
these peaks corresponds to level 3, “putatively characterized com-
pound	classes”,	 as	defined	by	 the	Metabolomics	Standards	 Initiative	
(MSI;	Sumner	et	al.,	2007;	Viant	et	al.,	2017).	Compound	names	were	
predicted for 142 peaks in the categorized chemical groups (identifica-
tion	level	2,	“putatively	annotated	compounds”),	and	the	metabolites	
for 73 peaks were further identified by comparison with authentic 
standard	compounds	 (identification	 level	1,	 “identified	compounds”).	
Information	 about	 the	 curated	AMRs	 is	 available	 at	 the	 tomato	 da-
tabase	TOMATOMET	 (http://metab	olites.in/tomat	o-	fruit	s/)	 that	was	
constructed in this study (see below for Construction of a database 
for	searching	tomato	AMRs).	Our	annotations	could	include	false	as-
signments due to unexpected adduct ions, although we considered 31 
types of possible adduct ions and in- source fragmentation products 
that are analytical artefacts produced during compound ionization.

In this study, we separated compounds by reversed- phase LC 
under conditions that are suitable for separating a wide range of sec-
ondary metabolites that have medium to low polarity. Therefore, some 
metabolites with high polarity may be undetected. Analysis of high po-
larity	compounds	will	be	a	subject	of	future	studies.	We	chose	the	ESI	
positive	mode	for	the	MS	analysis	because	in	the	well-	accessed	pub-
lic	MS	databases	MassBank	(Horai	et	al.,	2010)	and	mzCloud	(https://
www.mzclo	ud.org/),	~70% of the datasets were obtained using the 
ESI	positive	mode.	Future	research	should	focus	on	obtaining	datasets	
using the negative mode to complement present- day datasets.

3.2 | Comparison of the tomato AMRs with those 
from other plants

We	compared	the	7,118	AMRs	directly	with	other	plant	AMRs	to	
reveal	any	unique	characteristics	of	the	tomato	datasets.	From	a	
thorough search of the literature and metabolome data reposi-
tories	 (see	 EXPERIMENTAL	 PROCEDURES),	 we	 collected	 the	
AMRs	produced	by	FT-	ICR	or	Orbitrap-	MS	of	four	plant	species,	
namely, tomato (Beisken et al., 2014; Garbowicz et al., 2018; Iijima 

http://metabolites.in/tomato-fruits/
http://metabolites.in/tomato-fruits/
https://www.mzcloud.org/
https://www.mzcloud.org/
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et	al.,	2008),	A. thaliana (Cao et al., 2016; Giavalisco et al., 2011; 
Gläser	 et	 al.,	 2014;	 Krueger	 et	 al.,	 2011),	 M. truncatula (Kera 
et	al.,	2018)	and	J. curcas	(Sano	et	al.,	2012).	For	this	comparison,	
we	define	"unique	mass	value(s)"	as	that(those)	that	has(have)	the	
same	mass	value(s)	when	selected	by	a	mass	tolerance	at	5-	ppm,	
although a unique mass value may correspond to more than one 
peak.	The	AMRs	that	did	not	match	with	any	of	the	AMRs	of	other	
plants were considered to be specific to the plant. Although it is 
obvious that matching accurate mass values is not a sufficient cri-
terion to consider two molecules to be the same chemical or to 
distinguish the difference between isomers and isobars; however, 
matches are useful for prioritizing some chemicals with the same 
mass for further study. The number of the unique mass values of 
this	study	was	4,417	of	7,118	AMRs	(62.1%),	whereas	those	of	pre-
viously published studies of tomato, A. thaliana, M. truncatula and 
J. curcas	were	598	of	727	(82.3%),	4,272	of	6,681	(63.9%),	401	of	
511	(72.8%)	and	4,340	of	6,778	(64.0%)	respectively.

The tomato unique masses identified by our study overlapped 
with	334	unique	masses	(55.9%)	identified	by	previous	tomato	stud-
ies. The low degree of matching between these studies suggests 
that cultivars, fruit maturity and growth conditions significantly 
affect	tomato	fruit	metabolism.	For	example,	the	datasets	of	Iijima	
et	al.	(2008),	which	represent	70%	of	the	AMRs	used	in	this	compar-
ison, were obtained from fruits of maturing and fully mature stages 
of	a	single	cultivar	“Micro-	Tom”.	The	authors	reported	significant	dif-
ferences	in	metabolites	during	tomato	maturation.	Further	metabo-
lomic analyses of tomato samples grown under other conditions are 
needed to characterize unknown metabolic pathways.

A comparison of the 4,417 unique mass values revealed by this 
study with those of other studies resulted in no matches with 3,414 
unique masses identified in A. thaliana	 (79.9%),	 193	 unique	masses	
identified in M. truncatula	(48.1%),	and	3,066	unique	masses	identified	
in J. curcas	(70.6%),	respectively.	The	number	of	unique	tomato	mass	
values in our study that did not have any matches with any of the four 
plants	was	3,113	unique	mass	values,	corresponding	to	4,239	AMRs.	
Of 3,113 unique mass values, only 328 unique mass values matched 
with known metabolites that are registered in the metabolism data-
bases	KEGG	(Kanehisa	et	al.,	2002),	KNApSAcK	(Afendi	et	al.,	2012),	
LIPID	MAPS	(Fahy	et	al.,	2007)	and	HMDB	(Wishart	et	al.,	2018).

We	 also	 compared	 the	 4,417	 unique	 mass	 values	 to	 accurate	
mass	values	archived	in	the	Food	Metabolome	Repository	(version	
0.4.4),	which	has	969,352	peaks	(149,310	unique	mass	values)	from	
222 foods (57 vegetables, 31 fishes, 28 fruits, 17 seasonings, 15 
beverages, 11 cereals, 11 nuts and seeds, 11 beans, 10 milk prod-
ucts,	8	mushrooms,	8	meats,	5	potatoes,	5	sweets,	4	algae	and	1	egg)	
detected	in	the	ESI	positive	mode	(Sakurai	&	Shibata,	2017).	There	
were 3,813 unique mass values that matched in the repository. The 
604	 that	did	not	match	 them	corresponded	 to	951	 tomato	AMRs.	
This	 finding	 suggests	 that	 reporting	 AMRs	 from	 diverse	 samples	
should improve the prioritization of peaks for further investigation 
of plant metabolism based on sample specificity.

A	comparison	of	the	tomato	AMRs	with	known	metabolites	was	
carried out using the metabolism databases TomatoCyc (version 4.0, 

https://plant	cyc.org/datab	ases/tomat	ocyc/4.0;	 1,432	 metabolites)	
and PlantCyc (version 12.0, https://www.plant cyc.org/datab ases/
plant	cyc/12.0;	3,208	metabolites),	 in	which	information	about	me-
tabolites along with their published biosynthetic pathways has been 
collected	 (Schläpfer	 et	 al.,	 2017).	 The	 unique	mass	 values	 of	 189	
and	323	AMRs	were	matched	to	those	of	TomatoCyc	and	PlantCyc,	
respectively. The intermediate metabolites and apolar compounds 
that are included in these databases were not matched as such com-
pounds were not detected under the analytical conditions of our 
study.

As shown here, we compared the compound peaks based on 
the	AMRs	rather	than	the	putative	actual	compounds	by	encapsu-
lating the variety of adduct ions, multimers and fragments derived 
from the same compound, because the application and quality of 
the encapsulation in each data source are not uniform. The com-
parison	based	on	the	AMRs,	we	proposed	here,	is	one	of	the	ways	
to overcome this limitation and makes the untargeted metabolome 
data more useful to shed light on the unknown peaks for further 
metabolite annotation as exemplified below.

3.3 | Examples of predicting unknown peaks

To	 demonstrate	 the	 use	 of	 the	 AMRs,	 especially	 for	 the	 tomato-	
specific unknown peaks we annotated some peaks as candidate steroi-
dal	glycoalkaloids.	From	the	908	AMRs	that	had	MS/MS	fragmentation	
information but were not annotated with specific chemical names, 
560	tomato-	specific	peaks	that	did	not	match	with	the	AMRs	in	the	
A. thaliana, M. truncatula or J. curcas datasets were selected. To analyse 
common metabolites of tomato, 62 peaks of the 560 tomato- specific 
peaks that were found commonly in the 24 cultivars were selected 
(Figure	1).	From	the	62	selected	peaks,	we	focused	on	KTP_024858	
and	KTP_019601	because	their	MS/MS	fragmentation	patterns	were	
familiar to us as those of glycoalkaloids similar to tomatine, a steroi-
dal	alkaloid	that	is	commonly	found	in	maturing	tomatoes.	We	found	
that	the	MS/MS	fragmentation	of	tomatine	that	was	obtained	under	

F I G U R E  1   A workflow chart showing how peaks were selected 
for detailed manual annotation. The steps in selecting peaks for 
detailed	manual	annotation.	For	unknown	peaks,	MS/MS	spectra	
and tomato- specificity were used as criteria for selection

https://plantcyc.org/databases/tomatocyc/4.0
https://www.plantcyc.org/databases/plantcyc/12.0
https://www.plantcyc.org/databases/plantcyc/12.0
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the	same	LC-	MS	conditions	as	those	used	in	this	study	was	similar	to	
that	of	KTP_024858	in	terms	of	neutral	losses;	the	retention	time	of	
the peak when analysed by LC was also close to the retention time 
for tomatine. Combining this information with the predicted chemical 
formula C50H81NO21, we annotated this unknown peak as an isomer of 
dehydrotomatine. Only one isomer of dehydrotomatine was previously 
identified	in	tomato	(Friedman	et	al.,	1997;	Ono	et	al.,	1997),	although	
some papers had predicted the presence of other possible isomers 
(Itkin	 et	 al.,	 2011;	Mintz-	Oron	 et	 al.,	 2008;	 Schilmiller	 et	 al.,	 2010).	
Further	studies	on	the	isomer	will	determine	its	chemical	structure.

Expecting	KTP_019601	to	be	a	steroidal	alkaloid	from	the	MS/
MS	 fragmentation,	 we	 found	 that	 KTP_019640,	 annotated	 as	
	Ly-coperoside	F/G	or	Esculeoside	A	(C58H95NO29),	had	a	similar	MS/
MS	 fragmentation	 pattern	 based	on	 the	 neutral	 losses	 and	 reten-
tion	time	close	to	that	of	KTP_019601.	Therefore,	from	the	chemical	

formula C58H93NO29,	KTP_019601	was	 annotated	as	 an	 isomer	of	
dehydro-	Lycoperoside	 F/G	 or	 dehydro-	Esculeoside	 A.	 As	 several	
peaks with similar m/z values to those of the glycoalkaloids exist 
near	the	retention	time	on	the	LC-	MS	chromatogram,	further	studies	
should find additional isomers.

3.4 | Secondary metabolites are diverse in 
tomato cultivars

To understand fundamentally why there was an increase in the num-
ber of new compounds using peak information, we further investi-
gated the diversity of compounds in the tomato cultivars. Principal 
component analysis showed a large difference in metabolite profiles 
between	 cultivars	 (Figure	 2a).	 The	 number	 of	 peaks	 also	 differed	

F I G U R E  2   Comparison of accurate 
mass peaks detected among tomato 
cultivars.	(a)	PCA	was	used	to	compare	
peaks	detected	in	all	25	cultivars.	(b)	The	
number of detected peaks in each cultivar. 
(c)	Cultivar	specificity	of	detected	peaks.	
For	the	number	of	detected	cultivars	
grouped	into	five	classes	(1–	5,	6–	10,	11–	
15,	16–	20,	21–	25),	the	number	of	peaks	
in	common	(black	bars)	or	not	in	common	
(white	bars)	with	a	5-	ppm	margin	to	AMRs	
previously reported in other plant species 
(Arabidopsis thaliana, Medicago truncatula, 
tomato, Jatropha curcas)

(a)

(b)

(c)
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between cultivars, ranging from 1,322 peaks in cultivar #21 to 2,196 
peaks	in	cultivar	#12	(Figure	2b).	As	shown	in	Figure	2c,	many	peaks	
were commonly detected in small numbers of tomato cultivars, and 
more than half of the peaks were newly detected in comparison with 
those	from	previous	reports	(see	the	previous	section).	These	results	
implied that sample- specific metabolites exist within the tomato 
cultivars.	We	found	that	most	of	the	primary	metabolites	resolved	
by	 LC-	MS	 that	 were	 identified	 using	 authentic	 compounds	 were	
detected	in	many	cultivars	 (Table	1).	The	67	metabolites	 identified	
after comparison to authentic standards were further classified into 
primary	metabolites	and	secondary	metabolites	 (Table	S4).	Among	
the	46	peaks	classified	as	42	primary	metabolites,	31	(67.4%)	were	
shared	 among	 21–	25	 species,	whereas,	 the	 24	 peaks	 classified	 as	
23 secondary metabolites did not show such a tendency. This re-
sult implies that the secondary metabolites rather than the primary 
metabolites might contribute to the increase in metabolite diversity. 
Indeed, peak numbers that were annotated as putative flavonoids 
and	 steroids	 were	 very	 diverse	 among	 cultivars	 (Figure	 3a,b).	 By	
manually	 checking	 the	 appropriateness	 of	 MS/MS	 fragments	 and	
the annotated chemical structure, we further assigned obvious 

O- glycosides for the flavonoids and steroids and found that more 
than 90% of the flavonoids and steroids were putative glycosides 
(Figure	3).

These results suggested that the diversity of secondary me-
tabolites largely contributes to the wide diversity of metabolites 
among tomato cultivars. Our results showed good agreement 
with	a	previous	 study	by	Slimestad	and	Verheul	 (2009),	who	 re-
ported some secondary metabolite diversity in tomato cultivars. 
Glycosylation has also been identified as a contributor to the in-
creased diversity of secondary metabolites (Gachon et al., 2005; 
Tiwari	 et	 al.,	 2016).	 In	 this	 study,	we	also	 found	other	modifica-
tions such as methylation and acetylation. Because we could not 
determine if these substituents were directly attached to the core 
structure or indirectly attached via glycosyl groups, the diversity 
and magnitude of these other modifications are unclear. Similar 
to glycosylation, these modifications might contribute to the wide 
diversity of secondary metabolites among cultivars and species. 
To uncover the entire chemical space of unknown compounds in 
plants, similar protocols for metabolome analyses to enhance the 
number	of	AMRs	should	be	performed	using	a	wide	range	of	spe-
cies and cultivars.

3.5 | Construction of a database for searching 
tomato AMRs

We	 constructed	 a	 searchable	 tomato	 database,	 “TOMATOMET”,	
containing the peaks detected in this study (http://metab olites.in/
tomat	o-	fruit	s/).	The	peaks	can	be	searched	by	their	accurate	mass	
values and information, such as compound annotation, category 
classification, distribution among cultivars cross- species- specificity, 
as	well	as	retention	times,	MS/MS	spectra	and	types	of	adduct	ions.	
Peaks with types of variation in adduct ions that originate from a 

TA B L E  1   Relationship between the number of peaks detected 
among cultivars and their annotation

Annotated AMRs

Number of cultivars

1– 5 6– 10
11– 
15

16– 
20

21– 
25

Primary metabolites 
(MSI	level	1	and	2)

3 3 4 6 35

Secondary metabolites 
(MSI	level	1	and	2)

10 10 8 14 21

AMRs	(MSI	level	3) 694 300 176 106 162

Total 707 313 188 126 218

F I G U R E  3   The number of peaks 
annotated as flavonoids or steroids among 
cultivars. The black bars indicate peaks 
annotated as glycosides and the white 
bars indicate annotated peaks without 
glycans.	(a)	flavonoids	(b)	steroids

(a)

(b)

http://metabolites.in/tomato-fruits/
http://metabolites.in/tomato-fruits/
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single putative metabolite were stored as individual records in 
TOMATOMET	because	 these	 results	will	 be	 useful	 for	metabolite	
annotation based on cross- species- specificities and annotated ad-
duct ion types. The search functions are available as application 
programming	 interfaces	 (APIs)	 in	manners	 of	 representation	 state	
transfer	(REST),	and	the	results	are	available	in	a	JavaScript	object	
notation	(JSON)	format.	These	facilitate	researchers	to	integrate	the	
search function into other bioinformatics tools and to search a vast 
number of mass values. As the datasets are available in Table S2 in 
the Excel format, users can search them by user's parameters.

4  | CONCLUSIONS

We	constructed	a	set	of	peaks	confidently	detected	 in	mature	 to-
mato fruits from 25 cultivars by manual curation and published the 
data	via	a	 searchable	database,	 “TOMATOMET”.	The	dataset	 con-
tributes	 a	 significant	 enhancement	 in	 the	 numbers	 of	 AMRs	 and	
unique mass values when compared to previous reports. A large 
portion	of	the	newly	detected	AMRs	is	cultivar	specific,	and	modifi-
cation of secondary metabolites is undoubtedly involved to gener-
ate the wide diversity of metabolites found among cultivars. Using 
cross- sample- specificity, we annotated two previously unknown 
peaks as steroid glycoalkaloids. These results suggest that the en-
hancement	of	AMRs	is	useful	for	depicting	the	actual	chemical	space	
for mass- based metabolite annotation and annotation based on 
cross-	sample-	specificity.	 Therefore,	 AMRs	 should	 be	 reported	 for	
diverse cultivars, tissue and organ types, and developmental stages 
even within a plant species.
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