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SUMMARY

Humans can easily focus on one speaker in a multi-talker acoustic environment, but how different 

areas of the human auditory cortex (AC) represent the acoustic components of mixed speech is 

unknown. We obtained invasive recordings from the primary and non-primary AC in neurosurgical 

patients as they listened to multi-talker speech. We found that neural sites in the primary AC 

responded to individual speakers in the mixture and were relatively unchanged by attention. In 

contrast, neural sites in the nonprimary AC were less discerning of individual speakers but 

selectively represented the attended speaker. Moreover, the encoding of the attended speaker in the 

nonprimary AC was invariant to the degree of acoustic overlap with the unattended speaker. 

Finally, this emergent representation of attended speech in the nonprimary AC was linearly 

predictable from the primary AC responses. Our results reveal the neural computations underlying 

the hierarchical formation of auditory objects in human AC during multi-talker speech perception.
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How different areas of the human auditory cortex (AC) represent mixed speech is unclear. 

O’Sullivan et al. obtained invasive recordings from subjects listening to multi-talker speech. They 

found that the primary AC represented the individual speakers and was unchanged by attention. In 

contrast, the nonprimary AC selectively represented the attended speaker, was invariant to the 

acoustic overlap with unattended speaker, and was linearly predictable from the primary AC. 

These results reveal the neural underpinnings of the hierarchical formation of auditory objects in 

human AC.

INTRODUCTION

In multi-talker acoustic environments, humans can easily focus their attention on one 

speaker even in the absence of any spatial separation between the talkers (Cherry, 1953). In 

such scenarios, the spectrotemporal acoustic components of the speakers are highly mixed at 

a listener’s auditory periphery (Brungart et al., 2001). Successful perception of a particular 

speaker in this condition requires identifying and separating the spectrotemporal features of 

that speaker from the background and regrouping the acoustic components into a coherent 

auditory object that is unaffected by the variable acoustic overlap with other speakers 

(Bizley and Cohen, 2013; Shinn-Cunningham, 2008). The required neural computations that 

underlie this cognitive task in the human auditory system remain speculative, and this task 

has proved extremely challenging to model algorithmically (Luo and Mesgarani, 2019; Luo 

et al., 2018).

Studies on sound encoding in the mammalian auditory pathway have postulated the 

existence of a hierarchical, feedforward processing framework that starts from the auditory 

nerve and continues to primary and nonprimary auditory cortex (Hickok and Poeppel, 2007; 

Rauschecker, 1997). Neurons in this ascending auditory pathway have increasingly complex 

and multi-featured tuning properties (King and Nelken, 2009; Miller et al., 2002; Santoro et 

al., 2014). This encoding hierarchy results in a multidimensional and multiplexed 

representation of stimulus features in primary auditory areas that can facilitate auditory 

scene analysis (Patel et al., 2018; Walker et al., 2011). In parallel, substantial evidence 

indicates the existence of descending connections throughout the entire auditory pathway 

(Rasmussen, 1964). These task-dependent feedback connections modulate the tuning 

properties of auditory neurons, which likely support the extraction of target sound sources 

from the background acoustic scene (Fritz et al., 2003; Kilian-Hütten et al., 2011; Mesgarani 

et al., 2009a). The interaction between bottom-up and top-down mechanisms is particularly 

critical when attending to a target speaker in multi-talker acoustic conditions as the target 

and interfering sound sources overlap substantially in both time and frequency. Previous 

studies on multi-talker speech perception in the human auditory cortex have confirmed the 

emergence of a selective and enhanced representation of attended speech in higher auditory 

areas, such as superior temporal gyrus (STG; Mesgarani and Chang, 2012; Zion Golumbic et 

al., 2013). Additionally, noninvasive studies have shown that attended and unattended talkers 

are co-represented in early components of neural responses, with distinct responses to the 

attended speaker appearing in only late response components and in only nonprimary 

auditory areas (Ding and Simon, 2012; Kerlin et al., 2010; Petkov et al., 2004; Power et al., 

2012; Puvvada and Simon, 2017).

O’Sullivan et al. Page 2

Neuron. Author manuscript; available in PMC 2021 April 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Although these findings suggest a progressive and hierarchical emergence of target speech 

from the mixed sound, how the primary and nonprimary auditory cortical areas represent 

mixed speech and how they interact to selectively enhance the target speech relative to the 

acoustic background remains unknown. In addition, whether these auditory cortical areas 

represent an attended speaker as an auditory object remains unclear (Bizley and Cohen, 

2013; Shinn-Cunningham, 2008). An auditory object representation implies invariance to the 

degree of spectrotemporal overlap with unattended speech, similar to the response 

permanence to partially occluded visual objects (Gibson, 2014). Although previous studies 

have shown a selective representation of attended speech in STG (Mesgarani and Chang, 

2012), the difference between the neural responses to masked and unmasked 

spectrotemporal features of the attended speaker in primary and nonprimary areas is 

unknown.

To shed light on the encoding of mixed speech in primary and nonprimary auditory areas, 

we recorded from invasive electrodes implanted in patients undergoing neurosurgery as they 

focused on specific speakers in a multi-talker speech perception task. We used a 

combination of depth (stereotactic electroencephalogram [EEG]) and surface (subdural 

electrocorticography) recording techniques to reach both STG and Heschl’s gyrus (HG). 

These speech-responsive areas (Khalighinejad et al., 2019; Mesgarani et al., 2014; 

Steinschneider et al., 2013) are easily identifiable from the macroscopic landmarks and are 

consistently present in all subjects, as opposed to the functional organization of auditory 

cortical fields which remains debated (Hackett et al., 2001; Moerel et al., 2014) and has a 

large intrasubject variability (Rademacher et al., 1993). While these regions are 

heterogeneous and each contain multiple auditory fields (Hamilton et al., 2018; Nourski, 

2017), HG includes mostly the primary auditory cortex, and STG is considered mostly a 

nonprimary auditory area (Clarke and Morosan, 2012). Therefore, measuring the neural 

activity from both HG and STG areas allowed us to determine the encoding properties and 

functional relationship between these regions. Our results revealed significant differences 

between the representation of multi-talker speech in these two areas, a finding that 

contributes to a more complete functional and anatomical understanding of speech 

processing and auditory object formation in the human auditory cortex.

RESULTS

Eight subjects participated in this study, with varying amounts of electrode coverage over 

their left and right auditory cortices. Two subjects had high-density electroencephalography 

(ECoG) grids implanted over their left temporal lobe with coverage of STG, and one of 

these subjects also had a stereotactic EEG (sEEG) depth electrode implanted in left HG. 

Depth electrodes with coverage over the left and right HG, as well as other auditory cortical 

regions, were implanted in the remaining 6 subjects. Figure 1A shows the electrodes from all 

subjects displayed on an average brain along with their corresponding measure of effect size 
(Cohen’s D; Cohen, 2013) resulting from the comparison of the responses to speech versus 

silence (STAR Methods). Out of 624 electrodes, 230 were responsive to speech (effect size 

greater than 0.2), with 67 and 56 of these electrodes located in HG and STG, respectively. 

Further analyses were restricted to these electrodes in HG and STG (all electrodes are shown 

in Figure S1A).
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Stimuli and Example Responses

The subjects listened to stories read by a male speaker and female speaker, hereafter referred 

to as Spk1 and Spk2, respectively. The stimuli were presented in isolation (single-talker) and 

mixed together (multi-talker) with no spatial separation between them. The multi-talker 

condition was split into 4 blocks, and the subjects were instructed to pay attention to either 

Spk1 or Spk2 at the beginning of each block. The stories were intermittently paused, and the 

subjects were asked to repeat the last sentence of Spk1/2 in the single-talker condition or to 

repeat the last sentence of the attended speaker in the multi-talker condition to ensure that 

the subjects were engaged in the task. The performance for all subjects in the multi-talker 

condition was high (mean = 90%, STD = 8%, minimum = 80%).

Figure 1B shows portions of the stimuli and corresponding neural responses from 2 example 

electrodes in 1 subject, with one in STG (E1) and the other in HG (E2). By “response” here 

and in the rest of the manuscript, we are referring to the envelope of the high-gamma band 

(70–150 Hz; STAR Methods). The left panel shows a stimulus from the multi-talker 

condition (displayed as the superposition of the 2 speakers for visualization purposes). 

Qualitatively, the response of the neural site in STG (E1) changes depending on who is 

being attended, even though the stimulus is identical in both cases. Comparing the multi-

talker responses with those obtained in the single-talker condition (middle and right panels) 

shows thatthe response of this site to the attended speaker is similar to the response to that 

speaker in isolation. Conversely, the neural site in HG (E2) responds similarly to the sound 

mixture irrespective of whether the subject is attending to Spk1 or Spk2. Comparing these 

responses with those in the single-talker condition suggests that the response of this site is 

the same as the response to Spk1 alone even when attending to Spk2. This visualization 

demonstrates the following response types: (1) sites that are modulated by attention to 

represent the attended speaker, and (2) sites that preferentially respond to a specific speaker 

even when not attending to that speaker. Motivated by this observation, we examined the 

extent to which each site was modulated by attention or was more responsive to one of the 

speakers.

Selective Responses of Neural Sites to Specific Speakers

To study the preferential response of sites to the speakers across HG and STG, we examined 

the responses to the speakers in the single-talker condition. To compare the responses, we 

calculated the distribution of the normalized magnitude of the electrodes’ response to Spk1 

and Spk2. Figure 2A shows the response histograms for two example sites in HG. The 

difference between the medians of the distributions in Figure 2A confirms that these sites 

respond more strongly to Spk1 (left) or Spk2 (right). We quantified the preference for either 

speaker (the degree of the difference between the response distributions) by calculating the 

effect size (Cohen’s D) of the difference. We term this metric the speaker-selectivity index 

(SSI); positive and negative values indicate a preference for Spk1 and Spk2, respectively. 

Evaluating the SSI (absolute values) across all electrodes revealed significantly more 

speaker-selective neural sites in HG than in STG (Figure 2B; unpaired t test, p < 0.001). This 

difference is also demonstrated by the wider distribution of the SSI in HG (SD of the SSI in 

HG and STG= 0.2 and 0.07, respectively). Figure S1B shows the spatial distribution of the 

SSI across the brain.
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To examine the extent to which the observed preferred response to one speaker over the 

other can be explained by spectrotemporal tuning properties (Steinschneider et al., 2014), we 

first calculated the spectrotemporal receptive field (STRF) of each neural site. A STRF is a 

linear mapping between a stimulus (spectrogram) and the evoked response to that stimulus 

(Theunissen et al., 2000) that estimates the spectrotemporal features to which a neural site is 

tuned. The STRFs were calculated from the responses to the single-talker stimuli. Figure 2C 

displays the average STRFs from all electrodes that had an SSI either greater than +0.2 or 

less than −0.2 (selective for Spk1 or Spk2, respectively). To relate these tuning properties to 

the acoustic features of the speakers, we calculated the average acoustic spectrum of each 

speaker (labeled Spk1 and Spk2 Acous.; STAR Methods). To directly compare the acoustic 

spectrum of the speakers with each site’s frequency tuning, we removed the temporal 

component of the STRFs by obtaining their 1st principal component (PC) along the spectral 

dimension. Therefore, we will abbreviate STRFs as spectral receptive fields (SRFs). The 

correlation (Pearson’s r) between the SRFs that are selective for Spk1/2 and the spectral 

profile of Spk1/2 are 0.72 and 0.67, respectively (p < 0.001 for both; Figure 2D). The 

correlation between the difference in the SRFs and the difference in the spectral profile of 

the speakers is 0.82 (p < 0.001). These large correlation values suggest that the observed 

speaker selectivity of a neural site is largely due to a match between the spectral profile of 

the speakers and the frequency tuning of that site.

To examine the extent to which the SSI of each site could be predicted from its SRF, we 

used linear regression to map all sites in HG and STG from the SRF to SSI (STAR Methods; 

Figure S2). Figure 2E shows that speaker selectivity can be predicted for HG and STG 

electrodes with an accuracy of 0.89 and 0.67, respectively (p < 0.001 for both; Pearson’s r 

value). The higher speaker preference prediction in HG indicates a more acoustically 

organized representation of the speakers in this area than that in STG. Together, these results 

suggest that sites in HG have more diverse spectral tuning properties, which results in an 

explicit representation of the distinct acoustic features of the two speakers.

Attentional Modulation of Neural Responses

We showed that cortical areas have varied preferences for particular speakers and that sites 

in HG are more speaker selective than sites in STG. To determine the degree of attentional 

modulation of these sites, we compared the multi-talker and single-talker responses to 

measure how much the neural response to the mixed speech changed to resemble the 

response to the attended speaker in the single-talker condition (see Figure 1B, electrode e1 

for an example). Therefore, we define the attentional modulation index (AMI) of neural sites 

as follows:

AMI = corr Spk1attend, Spk1alone − corr Spk1attend, Spk2alone + corr Spk2attend, Spk2alone − corr
Spk2attend, Spk1alone

where SpkX refers to the response to speaker X either in the single-talker condition (alone) 

or when they are attended in the multi-talker condition (attend).
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Larger AMI values indicate more attentional modulation of a neural site. Figure 3A displays 

the AMI across all neural sites that showed a significant response to speech. Figure 3B 

compares the AMI between HG, STG, and a null distribution obtained by randomly 

shuffling the trial order (gray line; STAR Methods). Figure 3B shows that a higher number 

of sites in STG are modulated by attention than those in HG, with 34 out of 56 sites in STG 

possessing an AMI significantly above chance (3σ; STAR Methods) compared with only 4 

out of 67 sites in HG. This result shows that the representation in STG is more dynamic than 

that in HG and that the attentional state of the listener changes the representation in STG 

more than in HG. Notably, the population of HG sites as a whole had a distribution of AMI 

significantly above that of the null distribution (unpaired t test; p < 0.001), suggesting a 

weak but significant effect of attention in HG. In addition, Figure 3C shows a linear increase 

in the AMI with increasing distance from posterior HG (MNI coordinates: x = 35, y = −30 

and z = 18; r = 0.4, p < 0.001). This finding reveals a gradient of attentional modulation 

from posterior HG toward STG. Figure 3D shows the latency of the responses in HG and 

STG (mean ± SE) with respect to the attended (solid) and unattended (dashed) speakers. 

These response latencies were obtained by averaging the STRFs across frequency to obtain 

the temporal response profile for each site. This finding shows that STG responds later than 

HG and further illustrates the greater suppression of the unattended speaker in STG.

To examine the relationship between the speaker selectivity of sites and their degree of 

attentional modulation, we calculated the joint distribution of the SSI and AMI (Figure 4A), 

comparing STG (orange) and HG (green). Figure 4B displays the AMI and SSI across all 

neural sites that showed a significant response to speech. These plots illustrate a 

fundamental difference between the organization of the neural responses in HG and STG 

where HG is relatively static and responds preferentially to speaker differences, whereas 

STG favorably represents the attended speaker.

Emergence of Auditory Objects: The Neural Representation of Masked versus Unmasked 
Acoustic Features

Motivated by the clear difference between the organization of responses to multi-talker 

speech in HG and STG (Figure 4), we further examined the similarity of the neural 

responses to speakers from the single to multi-talker conditions. The speech signal varies 

across both time and frequency; therefore, the spectrotemporal features of an attended 

speaker variably overlaps with interfering speakers (Figure 1B). Here, we examined how the 

variable overlap between attended and unattended speakers affected the neural responses in 

HG and STG.

The overlap between two competing speakers is easy to quantify in the time-frequency 

domain (i.e., the spectrogram); however, the neurons in auditory cortex can have complex 

and often nonlinear tuning properties, making it difficult to assess the degree of overlap 

between the features to which they are tuned. To circumvent this problem, we developed a 

model-independent method to evaluate neural responses as a function of the relative energy 

of both speakers with respect to the feature to which a neural site is tuned. To accomplish 

this goal, we superimposed the magnitude of the responses in the multi-talker condition onto 

the joint distribution of the responses to Spk1 and Spk2 alone. Figure 5A shows an example 

O’Sullivan et al. Page 6

Neuron. Author manuscript; available in PMC 2021 April 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



STG electrode. The top panel shows the responses in the S-T condition to Spk1 (blue) and 

Spk2 (red). The bottom panel shows the responses in the M-T condition when Spk1 is 

attended (top) or when Spk2 is attended (bottom). The color in these cases represents the 

amplitude of the response. Three time points are denoted (a, b, and c). The top-right panel 

shows the 2D histogram of the joint distribution of the responses to Spk1 (x axis) and Spk2 

(y axis) in the S-T condition. The 3 time points (a, b, and c) are marked. In the bottom-right 

panel, the response amplitude of the M-T condition is superimposed on the S-T histogram 

(from above). The color corresponds to the response amplitude in the M-T condition. This 

calculation is performed separately for each attention condition (A1: attend Spk1, and A2: 

attend Spk2). For this example STG electrode, the representation rotates 90 degrees when 

the attended speaker changes. This change can be summarized by adding A1 to the transpose 

of A2 to obtain a single matrix that shows the magnitude of the multi-talker response with 

respect to the attended and unattended speakers (Figure 5B). The rows of this matrix show 

the response to the attended speaker as the magnitude of the unattended speaker varies 

(changing colors). This finding reveals that this site responds as a linear function of the 

attended speaker. However, there is an effect of energetic masking at the extrema when the 

magnitude of the unattended speaker is very large relative to the attended speaker (dark 

lines, left of figure). Alternatively, the columns of the matrix show that this site is almost 

unaffected by the magnitude of the unattended speaker except when the magnitude of the 

attended speaker is very small (light colored lines). To summarize the response of this 

electrode, we took the average across the rows and columns (Figure 5B, next-to-last right 

panel). In summary, this site responds as a linear function of the features of the attended 

speaker, meaning that louder features of the attended speaker result in a larger response. At 

the same time, this site is mostly unaffected by the unattended speaker, meaning that despite 

the change in the overlap between the features of the unattended and attended speakers, this 

change in masking is not reflected in the responses. Figure 5B (bottom panels) shows the 

same analyses of an example electrode in HG. This neural site appears to be unaffected by 

attention, responding linearly with respect to both speakers. This observation means that this 

site responds to the acoustic feature to which it is tuned irrespective of whether that feature 

belongs to the attended or unattended speaker. However, we observed a slight effect of 

attention at the extrema, which is further illustrated in Figure S6.

Figure 5B (right-most panel) illustrates the effect of masking across the population of neural 

sites in HG and STG. This analysis reveals that (1) STG sites respond to the acoustic 

features of the attended speaker and are unaffected by how much these features are masked 

by the unattended speaker. (2) HG sites respond to the features of both speakers. Although 

previous studies have postulated that attention may act as a linear gain change to enhance 

attended and suppress unattended speakers, our findings show that the unattended speaker is 

not simply attenuated (which would result in a linear interaction with the attended speaker) 

but is nonlinearly suppressed in STG responses. This nonlinear effect is quantified in Figure 

S6C where we calculate a linear fit to each masking curve in HG and STG (i.e., Figure 5). A 

linear fit performs well for attended speech in HG (goodness of fit [GOF] = median ± STD: 

0.98 ± 0.07) and STG (GOF = 0.98 ± 0.14) and unattended speech in HG (GOF = 0.96 ± 

0.12). However, a linear fit performs poorly for unattended speech in STG (GOF = 0.63 ± 

0.28). The linear response of HG sites to the degree of masking indicates the acoustic nature 
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of the representation in this region with no evidence for feature grouping. Nonetheless, the 

nonlinear suppression of masking in STG responses indicates that the speaker features are 

grouped and represented as a coherent auditory object in this area.

Separability of Speakers in the Population Activity of HG

We have demonstrated an acoustic and linear representation of mixed speakers in HG with 

relatively small attentional modulation effects. Primary auditory cortex, however, is several 

synapses away from the auditory periphery. Hence, the speech signal must go through a 

series of transformations before it gets to the primary auditory cortex (Webster and Fay, 

2013). To shed light on the encoding properties of the population responses in HG to mixed 

speech, we tested how the population of neural responses in HG can support speaker 

separation. We used a rudimentary linear decoder to measure how well the clean speaker 

spectrograms can be extracted from the HG responses to the mixed speech. To do so, we 

used a method known as stimulus reconstruction, which finds a linear mapping (decoder) 

between a stimulus (spectrogram) and corresponding evoked neural responses (Akbari et al., 

2019; Mesgarani et al., 2009b).

We used the stimulus reconstruction method to decode the representation of Spk1 and Spk2 

from HG responses to the mixture, as shown in Figure 6A. The top figure shows the acoustic 

mixture (for visualization purposes, Spk1 [blue] is superimposed on Spk2 [red]). The middle 

and bottom panels show example reconstructed spectrograms from the neural responses to 

mixed speech in HG when the decoders were trained to map the neural responses to the 

clean spectrograms of Spk1 (middle panel) or Spk2 (bottom panel; Figure S4A). The high 

correlation between the actual and reconstructed spectrograms for Spk1 (0.64, p < 0.001) 

and Spk2 (0.65, p < 0.001) shows that the speakers are highly separable in the population 

activity of HG.

Although the high reconstruction accuracy shows faithful decoding of the spectrotemporal 

features of each speaker, it does not specify which time-frequency components are more 

decodable. Figure 6B shows a scatterplot of the reconstructed spectrograms of the same 

mixture sound from the reconstruction decoder trained on Spk1 (x axis) plotted against the 

reconstruction decoder trained on Spk2 (y axis). Each dot represents a time-frequency bin of 

the reconstructed spectrogram and is colored according to the relative magnitude of the 

speakers in that bin in the original acoustic mixture. Blue dots correspond to a time-

frequency bin in which the magnitude of Spk1 was greater than that of Spk2 and vice versa 

(STAR Methods; Figure S4B). The separability of red and blue dots in Figure 6B shows that 

the linear model can correctly pull out the time-frequency bins of Spk1 and Spk2. This 

observation further supports the notion that HG responses give rise to a representation of the 

mixture in which the acoustic features of each speaker become readily decodable.

The previous analyses showed a di0076erse and explicit representation of the speakers at 

individual HG sites and that the speakers are separable at the population level. To relate the 

local and population encoding properties in HG, we examined whether the neural sites that 

are highly tuned to the acoustic features of each speaker are responsible for successfully 

reconstructing the individual speakers from the mixture. Since a linear decoder is a 

spatiotemporal filter that applies a weight to each electrode at a specified number of time 
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lags, we can gain insights into how a decoder learns to separate the speakers by examining 

these weights. Figure 6D displays the weight applied to each electrode plotted against the 

SSI for that electrode (to obtain a single weight for each electrode, we averaged the weights 

across frequency and time, as well as across attention conditions). As shown, the decoders 

learn to place larger weights on the speaker-specific electrodes and alternate the weights 

depending on the speaker to be extracted (r = 0.7 and r = −0.78, when trained to extract Spk1 

and Spk2, respectively). This result shows the high contribution of speaker-selective sites in 

HG to decoding the individual speakers from the responses to the mixture.

The successful decoding of speakers from the HG responses to the mixture suggests that the 

representation of mixed speech in HG may serve as a basis for higher auditory areas, such as 

STG, in which the attended speaker can be extracted by changing the weights from the HG 

responses. However, for this computation to work, the readout of a specific speaker from 

specific HG sites should not be affected by the attentional state. Otherwise, the decoding 

scheme would also need to be updated as the listener switches attention. To examine whether 

speaker decoding accuracy depends on the attentional state, we trained and tested linear 

decoders from all possible combinations of training/testing and attention (Figure 6C). The 

left panel illustrates the decoders that were trained on the attended speaker. The light gray 

bars display the correlation between the reconstructed and actual spectrogram of the speaker 

on which the decoder was trained. The dark gray bars display the correlation between the 

reconstructed and actual spectrogram of the speaker on which the decoder was not trained. 

The x axis is partitioned into instances when the trained speaker was either attended or 

ignored during testing. Each decoder was trained on the clean spectrogram of the attended 

speaker on a portion of the data (4-fold cross-validation). This decoder was then used to 

reconstruct a spectrogram from 2 different test sets when (1) the trained speaker was 

attended to and (2) the trained speaker was ignored. The right panel illustrates a similar 

combination of training and testing, and the only difference is that the decoders were trained 

on the ignored speakers. The small change in reconstruction accuracy as attention switches 

demonstrates that a decoder that is trained to separate a speaker from the mixture of 

responses in HG generalizes well to the condition where that speaker is attended to or 

ignored. By training a decoder on data when a speaker is attended but testing the decoder on 

data when that speaker is ignored, we have shown that the decoding scheme that is required 

to segregate a speaker from HG responses remains unchanged, which is an important 

property of the representation because it enables the constancy of decoding the sound 

sources from HG. Although we do see a small effect of attention when decoding a speaker 

from HG responses (the difference between the decoding of a speaker in the attended/

ignored condition; p < 0.001, t test), this effect is likely caused by the small effect of 

attention on HG that we showed previously (Figure 3B).

Emergent Representation of Attended Speech in ST

The exact connectivity between HG and STG is not yet fully established in humans, yet 

ample evidence suggests that HG includes the primary auditory cortex, whereas STG 

contains mostly non-primary belt and parabelt areas (Hackett, 2008; Moerel et al., 2014). 

Consistent with this notion, STG sites in our study had significantlylongerresponselatencies 

thandid HGsites (Figure 7A; STAR Methods). To estimate the response latency of an 
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electrode, we squared its STRF, averaged across frequency, and measured the latency as the 

peak magnitude of the result. In addition, the responses in STG were significantly better 

predicted from the responses in HG than vice versa (Figure 7B; unpaired t test, p = 0.033; 

STAR Methods). This observation was made despite the significantly better prediction of 

responses by STRFs in HG than in STG (Figure 7B; unpaired t test, p = 0.016). These 

results suggest that the STG sites in our study may be more downstream relative to the HG 

sites, which is consistent with the architectonic studies of these regions (Clarke and 

Morosan, 2012).

To examine whether the representation of attended speech in STG can be predicted from the 

responses in HG, we used linear regression to estimate the responses in STG from the 

population of HG sites separately for when Spk1 or Spk2 was being attended. Figure 7C 

(left panel) shows the results of this analysis for an example electrode in STG. Each green 

dot on the left of the figure represents an electrode in HG, and the orange dot on the right 

represents one example electrode in STG. The electrodes are plotted according to their SSI 

and AMI (similar to the plot in Figure 4A). The color of the lines connecting HG electrodes 

to STG electrodes indicates the change in prediction weight between the 2 attention 

conditions (see Figure S5A for the weights in each attention case). As shown, the largest 

weight changes correspond to the most speaker-selective sites. The correlation between the 

weight change and SSI for this electrode is 0.69 (Pearson’s r). Figure 7C (right panel) shows 

the change in weights for all STG sites, illustrating a consistent effect across the population. 

For all STG electrodes, the correlation between the average weight change and SSI is 0.83 (p 

< 0.001; Figure 7D). In addition, we found a strong correlation between the AMI of an STG 

site and the change in HG weights (r = 0.54, p < 0.001; Figure S5B). This dynamic 

modulation of the weights from HG suggests a possible computational mechanism for the 

selective representation of the attended speaker and the suppression of the unattended 

speaker in STG (Mesgarani and Chang, 2012). That is, STG sites may change their synaptic 

weight to increase the input from HG electrodes that are selective for the attended speaker 

and decrease the input from HG electrodes that are selective for the unattended speaker.

Our proposed computational model requires known decoding weights for STG sites from 

HG. Even though we showed that the decoding weights are highly correlated with the SSI of 

each site, the SSI of each site in the multi-talker condition is not given. To determine 

whether speaker decoding weights given to each electrode in HG can be determined in an 

unsupervised manner, we tested a plausible mechanism known as the temporal-coherence 

model of stream segregation (Shamma et al., 2011). This theory posits that mixed sources 

can be segregated because the various constituent components of a single source will be 

correlated over time and uncorrelated with the components of another source. In the case of 

the two speakers, the neural sites in HG that are selective for Spk1 should be uncorrelated 

with those that are selective for Spk2. Figure 8A shows the correlation between all HG 

electrodes over time sorted according to their SSI (STAR Methods). Figure 8B shows the 

magnitude of the sum of the first three principle components (PCs) of this matrix, plotted 

against the corresponding SSI for each electrode. The high correlation (r = 0.87, p < 0.001) 

demonstrates that temporal coherence highly predicts the speaker selectivity of neural sites. 

In addition, the high correlation (r = 0.79, p < 0.001; Figure 8C) between these PCs and 

corresponding HG weight changes for speakers shows that the linear weights required to 

O’Sullivan et al. Page 10

Neuron. Author manuscript; available in PMC 2021 April 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



separate a particular speaker from the mixed HG representation can be found automatically, 

without needing any prior knowledge or supervision.

DISCUSSION

By leveraging invasive neural recordings from the human auditory cortex, we examined the 

hierarchical and progressive extraction of attended speech in a multi-talker scenario. The 

high spatial and temporal resolution of our method allowed us to determine the encoding 

properties of target and interfering sources from primary (posterior HG) to nonprimary 

(STG) auditory cortical areas and to relate the representation of mixed speech between these 

regions that leads to the enhanced encoding of attended speech. Specifically, based on our 

findings, HG has more diverse spectrotemporal tuning properties than does STG, which 

results in more selectivity for the distinct features of individual speakers. The HG 

representation is also relatively static, i.e., showing little effect of attention. However, the 

population of responses in HG support a simple readout of the individual speakers in the 

mixture. In contrast, STG is more dynamic and selectively encodes the acoustic features of 

the attended speaker. Moreover, by examining the degree of acoustic overlap between the 

target and interfering speakers, we found that STG (but not HG) nonlinearly suppresses the 

overlapping features of interfering sources, which results in an invariant representation of 

the target speaker. Finally, we examined the relationship between the representation in HG 

and STG using a linear model and successfully accounted for the formation of the target 

speaker representation in STG from HG. In this model, attention changes the weights of the 

input from HG to STG to utilize the speaker-selective sites in HG to extract either speaker. 

Importantly, these weights can be determined solely from the temporal coherence of the 

neural activity in HG.

Our results show a stark contrast between the encoding properties of multi-talker speech in 

HG and STG where HG creates a rich representation of the mixed sound, and STG 

invariantly represents the attended source. We showed that representation of mixed speech in 

HG enables decoding of both attended and unattended speakers and may facilitate their 

extraction in down-stream cortical areas (Puschmann et al., 2018). The neural 

transformations of the acoustic signal that enable such a representation in HG remain an 

open question. Previous research has shown a hierarchical transformation of the acoustic 

signal as it travels from the auditory nerve to primary and nonprimary auditory cortical areas 

(Hickok and Poeppel, 2007; Rauschecker and Scott, 2009). Specifically, neurons in the 

ascending auditory pathway are tuned to increasingly more complex and multi-featured 

spectrotemporal patterns (Linden et al., 2003; Miller et al., 2001, 2002), which results in a 

multidimensional and joint encoding of a multitude of acoustic dimensions in primary 

auditory areas (Bizley et al., 2009; Mesgarani et al., 2008; Patel et al., 2018; Walker et al., 

2011). This increasingly complex tuning to multiple acoustic features results in an explicit 

representation of the spectrotemporal features of an acoustic stimulus from which the 

informative aspects of that stimulus can be more easily decoded (Han et al., 2019; 

Mesgarani et al., 2008; O’Sullivan et al., 2017; Walker et al., 2011). Consistent with our 

findings, the multidimensional representation of stimuli in early auditory areas supports the 

grouping of coherent acoustic dimensions and the formation of auditory objects in higher 

auditory areas where categorical and perception-driven representations of acoustic stimuli 
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emerge (Bidelman et al., 2013; Bizley et al., 2013; Chang et al., 2010; Elhilali et al., 2009; 

Leaver and Rauschecker, 2010; Nourski et al., 2015, 2019; Teki et al., 2016). The stimulus 

cues used by the auditory pathway to enable this grouping are not completely clear. 

Computational models of speech separation (Luo and Mesgarani, 2019; Luo et al., 2018; 

Mesgarani et al., 2010) have shown the efficacy of several acoustic cues, including common 

onset and offset, spectral profile, and harmonicity. In addition, areas in STG encode 

linguistic cues (Mesgarani et al., 2014), which could be used to facilitate segregation or the 

recovery of masked features (Leonard et al., 2016), including phonotactic probability 

(Brodbeck et al., 2018; Leonard et al., 2015; Di Liberto et al., 2019), syntax (Fedorenko et 

al., 2016; Nelson et al., 2017), and semantics (Broderick et al., 2018; de Heer et al., 2017; 

Huth et al., 2016). Future studies that directly manipulate the linguistic structure of 

sentences in multi-talker conditions are needed to investigate the extent to which these cues 

may be used for speaker segregation in the human auditory cortex. In addition, what top-

down mechanisms drive speaker segregation in STG remains an open question. The fronto-

parietal attention network has shown to play a role, in particular, the frontal eye fields, the 

temporoparietal junction, and the intraparietal sulcus (Hill and Miller, 2010; Lee et al., 2014; 

Molenberghs et al., 2007; Salmi et al., 2009). Future studies with invasive electrodes in these 

areas may provide further information on their mechanistic contribution to speaker 

segregation.

We found a gradient of attentional modulation from posterior to anterior HG that continued 

toward the posterior STG. This finding is consistent with the anatomical and functional 

organization studies of the human auditory cortex, which suggests that primary auditory 

cortex originates in posterior HG, with belt/parabelt regions extending to anterior HG and 

STG (De Martino et al., 2015; Moerel et al., 2014; Morosan et al., 2001; Nourski, 2017; 

Steinschneider et al., 2014). Previous studies have found a similar organization of attentional 

modulation in humans (Nourski et al., 2017; Obleser et al., 2007; Petkov et al., 2004; 

Puvvada and Simon, 2017; Steinschneider et al., 2014). Our choice of focusing on the 

anatomical division of HG and STG, however, is functionally imprecise, because HG is not a 

single functional area and anterolateral HG may be higher in the cortical hierarchy than 

portions of STG (De Martino et al., 2015; Moerel et al., 2014; Nourski et al., 2017). In a 

similar vein, STG may also contain further subfields (Hamilton et al., 2018). Future studies 

with higher density neural recordings (Khodagholy et al., 2015) from these areas can further 

tease apart the response properties within each cortical region and provide information that 

is critically needed to fully describe the functional organization of human auditory cortex.

Similar to our finding of higher attentional modulation of responses in STG compared to 

HG, animal studies have also reported substantially more enhanced responses to target 

stimuli in secondary auditory areas compared to the primary auditory cortex (Atiani et al., 

2014) and subcortical areas (Slee and David, 2015). These studies, however, reported a 

higher attentional effects in primary areas compared to what we observed in HG. One 

possible reason for this bigger effect could be the simplicity of the stimuli used in those 

studies (e.g., pure tones) where the target and interfering sounds were separable even along 

the tonotopic axis at the auditory periphery. The combined evidence suggests that the 

attentional modulation of the neural representation of target sound sources may occur only at 

a level of representation where the tuning properties of the neurons has enough capacity to 
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realize sound separation. Additional experiments comparing the attentional modulation of 

various auditory cortical areas with tasks that systematically increase the spectrotemporal 

overlap of the target and background scene can further shed light on this hypothesis. An 

alternative explanation is the difference between the behavioral demands and the ecological 

relevance of the stimulus used in our study compared to animal studies (Atiani et al., 2009), 

which may differently recruit the neural circuits of attention which varies as the task’s 

reward structure changes (David et al., 2012). Since the performance of the subjects in our 

task was close to ceiling, we could not study the effect of behavioral performance on the 

modulation of neural responses. However, previous studies have found correlates of 

behavioral failure in the neural data recorded from the human STG (Mesgarani and Chang, 

2012).

We demonstrated that a linear model can successfully map the responses in HG to those in 

STG, and this connection can account for the attentional modulation of STG responses from 

HG in the multi-talker condition. Importantly, the required changes in the weights of the 

model can be found simply from the temporal correlation of the neural activity in HG 

(Krishnan et al., 2014; O’Sullivan et al., 2015; Shamma et al., 2011; Thakur et al., 2015). 

Although debates regarding the anatomical and functional connectivity of these two regions 

are ongoing (Moerel et al., 2014), recent fMRI work supports a hierarchical model of speech 

processing progressing from HG to STG and beyond (de Heer et al., 2017). In addition, 

intracranial recordings have shown functional connectivity between HG and STG, with 

bottom-up information transfer observed in a similar frequency band as in our study (higher 

than 40 Hz; Fontolan et al., 2014). Future research that tests the causal relationship between 

these two regions, for example, by using cortico-cortical evoked potentials (CCEPs; Keller 

et al., 2014) during multi-talker speech perception, might be particularly suitable to shed 

light on the information transfer and dynamic connectivity of these areas as the attentional 

focus of the subject changes. We did not find any significant differences between the two 

hemispheres with regards to speaker selectivity or attentional modulation (Figure S7B), 

which could be due to the lack of enough anatomical coverage. Future studies with more 

extensive coverage may be able to shed light on potential hemispheric differences in the 

acoustic processing of speech (Flinker et al., 2019).

We tested the formation of auditory objects in HG and STG by examining the responses to 

target features in the presence of variable overlap with the interfering speaker (Bizley and 

Cohen, 2013; Shamma, 2008; Shinn-Cunningham, 2008). We found that HG sites respond to 

the total sum of spectrotemporal energy in the acoustic signal irrespective of whether the 

energy belongs to the target or interfering speaker. This observation confirms that HG does 

not represent segregated and grouped spectrotemporal features of target sound sources; 

hence, the attended auditory objects are not yet formed in this region. However, STG 

showed nonlinear suppression of the acoustic overlap with the interfering source, resulting in 

an invariant representation of the attended features that is unaffected by the amount of 

acoustic overlap, indicating the presence of auditory objects in this region. These findings 

are consistent with previous noninvasive studies that showed a late emergence of attended 

speech (Ding and Simon, 2012; Power et al., 2012) in only higher auditory regions (Petkov 

et al., 2004). However, the high temporal and spatial resolution of our recording method 
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allowed us to further determine the encoding properties of target and interfering sound 

sources in these areas.

By examining the representational and encoding properties of speech in primary and 

nonprimary auditory areas, our study takes a major step toward determining the neural 

computations underlying multi-talker speech perception and the interaction between bottom-

up and top-down signal transformations that occur in the auditory pathway that gives rise to 

a segregated and grouped representation of attended auditory objects.

STAR☆METHODS

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Nima Mesgarani (nima@ee.columbia.edu). This study did not 

generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human Subjects—Eight subjects who were undergoing clinical treatment for epilepsy 

participated in this study. All subjects gave their written informed consent to participate in 

research. Five subjects were located at North Shore University Hospital (NSUH), and 3 

subjects were located at Columbia University Medical Center (CUMC). All research 

protocols were approved and monitored by the institutional review board at the Feinstein 

Institute for Medical Research and Columbia University Medical Center (CUMC) and 

informed written consent to participate in research studies was obtained from each subject 

before implantation of electrodes. Two subjects were implanted with high density subdural 

electrode arrays over the left (language dominant) temporal lobe with coverage of STG, and 

one of those subjects also had a depth electrode implanted in the left auditory cortex with 

coverage of HG. The remaining 6 subjects had depth electrodes implanted bilaterally, with 

varying amounts of coverage over the left and right auditory cortices for each subject (Figure 

1A).

Stimuli and Experiments—Each subject participated in the following experiments for 

this study: a single-talker and multi-talker experiment. The single-talker experiment was 

used as a control. Each subject listened to 4 stories read by a male speaker and female 

speaker (hereafter referred to as Spk1 and Spk2, respectively) for a total of 8 stories (4 

stories twice). Each story lasted approximately 3.5 minutes. Both Spk1 and Spk2 were 

native American English speakers and were recorded in house. The average F0 of Spk1 and 

Spk2 was 65Hz and 175Hz, respectively. The stories were intermittently paused, and the 

subject was instructed to repeat the last sentence to ensure the attentional engagement of 

each subject. For the multi-talker experiment, subjects were presented with a mixture of the 

same female and male speakers (Spk1 and Spk2), with no spatial separation between them. 

The acoustic waveform of each speaker was matched to have the same root mean squared 

(RMS) intensity. All stimuli were presented using a single Bose® SoundLink® Mini 2 

speaker situated directly in front of the subject. The sound level was adjusted for each 

subject to be at a comfortable level.
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The multi-talker experiment was divided into 4 blocks. Before each block, the subject was 

instructed to focus their attention on one speaker and to ignore the other. All subjects began 

the experiment by attending to the male speaker and switched their attention to the alternate 

speaker on each subsequent block. The story was intermittently paused, and the subjects 

were asked to repeat the last sentence of the attended speaker to ensure that the subjects 

were engaged in the task. The stories were paused on average every 20 s (min 9 s, max 30 s). 

The locations of the pauses were predetermined and were the same for all subjects, but the 

subjects were unaware of when the pauses would occur. In total, there were 11 minutes and 

37 s of audio presented to each subject during the multi-talker experiment. The single-talker 

experiment lasted twice as long as each subject was required to listen to each story read by 

each speaker independently.

METHOD DETAILS

Data Preprocessing and Hardware—The subjects at NSUH were recorded using 

Tucker Davis Technologies (TDT®) hardware and sampled at 2441 Hz. One subject at 

CUMC was recorded using Xltek® hardware and sampled at 500 Hz, and the other 2 

subjects at CUMC were recorded using Black-rock® hardware and sampled at 3 kHz. All 

further processing steps were performed offline. All filters were designed using 

MATLAB’s® Filter Design Toolbox and were used in both forward and backward directions 

to remove phase distortion. The TDT and Blackrock data were resampled to 500 Hz. A 1st-

order Butterworth high-pass filter with a cut-off frequency at 1 Hz was used to remove DC 

drift. Data were subsequently re-referenced using a local scheme whereby each electrode 

was referenced relative to its nearest neighbors. Line noise at 60 Hz and its harmonics (up to 

240 Hz) were removed using 2nd order IIR notch filters with a bandwidth of 1 Hz. A period 

of silence lasting 1 minute was recorded before the single-talker and multi-talker 

experiments, and the corresponding data were normalized by subtracting the mean and 

dividing by the standard deviation of this pre-stimulus period.

Then, data were filtered into the high-gamma band (70–150 Hz); the envelope of this band is 

modulated by speech. To obtain the envelope of this broad band, we first filtered the data 

into 8 frequency bands between 70 and 150 Hz, each with a bandwidth of 10 Hz, using 

Chebyshev Type 2 filters. Then, the envelope of each band was obtained by taking the 

absolute value of the Hilbert transform. We took the average of all 8 frequency bands as the 

final envelope. This method is commonly used in neuroscience research(Bouchard et al., 

2013). Electrodes were tested for speech responsiveness by calculating the effect size 

(Cohen’s D) between the distributions of the responses during speech and silence 

(instantaneous envelope of the high gamma band at each time point). Electrodes with an 

effect size greater than 0.2 (considered a small but significant effect size) were retained for 

further analysis.

Acoustic Spectrum of Speakers—The spectrograms were first z-scored and then 

filtered using the NSL toolbox(Chi et al., 2005), specifically using the static cortical 

representation (aud2cors) to obtain the average acoustic spectrum of each speaker. This 

process provided a more defined representation of the harmonic structure of both speakers. 
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The spectrograms were sampled at 100Hz, and split into 50 frequency bands logarithmically 

spaced between 50Hz and 8kHz.

STRFs and Stimulus Reconstruction—STRFs and stimulus reconstruction decoders 

were calculated using custom code to implement ridge regression. K-fold cross-validation 

was used to select a ridge parameter that would optimally predict neural data in the case of a 

STRF or optimally reconstruct spectrograms in the case of stimulus reconstruction. To 

estimate the response latency of an electrode, we took the peak magnitude of its STRF after 

averaging across frequency. For reconstruction, we used only electrodes in HG whose AMI 

was less than the threshold previously established for statistical significance (i.e., AMI < 

0.15). Only 4 electrodes were rejected using this criterion.

Predicting Speaker Selectivity and Attentional Modulation—Before predicting the 

SSI of each site, we removed the temporal dimension of their STRFs by obtaining their 1st 

PC in the spectral dimension. Therefore, we will abbreviate these STRFs to SRFs. Next, we 

used ridge regression to find a set of weights that would predict the SSI for each site using 

its SRF (see Figure S1). Ten-fold cross-validation was used to optimize the ridge parameter.

Mapping HG to STG—Mappings between HG and STG were calculated in the same 

manner as the STRFs (i.e., k-fold ridge regression). However, only causal time lags were 

used (0–400 ms). In addition, only STG electrodes from the two subjects with high density 

grids were used. This requirement was used to prevent predictions with spuriously large 

correlations with the actual data due to shared noise between contacts on the same electrode 

arrays. That is, we used data from the depth electrodes to predict the data on the grid 

electrodes.

Temporal Coherence—Because every retained HG electrode responded significantly to 

the presence of speech, this introduced spuriously large correlations across all electrodes. To 

remove this confound and focus more on what was discriminative between electrodes, we 

subtracted the first PC from the neural responses. Then, we found the correlation between all 

HG electrodes to obtain a 2D pairwise correlation matrix. To relate this 2D matrix to the 1D 

array of speaker-selectivity indices, we performed PCA on this matrix. The correlations 

between speaker selectivity and the first 3 PCs are 0.76, 0.3 and 0.35. The correlation in the 

results section (Figure 8B) is between speaker selectivity and the sum of the first 3 PCs. The 

matrix shown (Figure 8A) is the projection of the first 3 PCs onto the 2D pairwise 

correlation matrix.

Transformation of Electrode Locations onto an Average Brain—The electrodes 

were first mapped onto the brain of each subject using co-registration by iELVis (Groppe et 

al., 2017) followed by their identification on the post-implantation CT scan using BioImage 

Suite(Papademetris et al., 2006). To obtain the anatomical location labels of these electrodes, 

we used Freesurfer’s automated cortical parcellation(Dykstra et al., 2012; Fischl et al., 1999, 

2004) by the Destrieux brain atlas(Destrieux et al., 2010). These labels were closely 

inspected by the neurosurgeons using the subject’s co-registered post-implant MRI. We 

plotted the electrodes on the average Freesurfer brain template.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Speaker-Selectivity Index (SSI)—The SSI was calculated as the effect size (Cohen’s D) 

of the difference in the magnitude of the responses to each speaker in the single-talker 

condition. Figure 2A shows histograms of the responses to Spk1 and Spk2 in the single-

talker condition for 2 example electrodes. The responses were normalized by concatenating 

the responses to each speaker together, and then z-scoring them. This ensured that any 

difference in response magnitude to either speaker would be maintained in the normalized 

representation.

Attentional Modulation Index (AMI)—A chance level for the AMI was obtained by 

randomly shuffling the temporal order of the neural data and calculating the AMI per 

electrode as follows:

AMI = corr Spk1attend, Spk1alone − corr Spk1attend, Spk2alone +
corr Spk2attend, Spk2alone − corr Spk2attend, Spk1alone

Where SpkX refers to the response to speaker X either in the single-talker condition (alone) 

or when they are attended in the multi-talker condition (attend).

This calculation resulted in a null distribution of the AMI. As expected, the chance level of 

the AMI was zero (mean of the null distribution). To determine what could be considered an 

AMI significantly above chance, we used three times the standard deviation of the null 

distribution, which corresponds to an AMI of 0.15. Figure S3 shows a linear correlation 

between speech responsiveness (effect size: speech versus silence) and AMI in STG (r = 

0.71, p < 0.001) but not in HG (r = 0). This result was observed probably because our 

measure of attention is based on the correlation between the multi- and single-talker 

responses and is affected by the signal-to-noise ratio (SNR) of the recording at each 

electrode.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Mixed speech is encoded differently in primary and nonprimary auditory 

cortex (AC)

• Primary AC selectively represented individual speakers unchanged with 

attention

• Nonprimary AC represented the attended speaker invariant to acoustic overlap

• These results show the neural underpinnings of auditory object formation in 

AC
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Figure 1. Example of Neural Responses in Single- and Multi-talker Conditions
(A) Electrode coverage and speech responsiveness. Electrodes from all 8 subjects were 

transformed onto an average brain. The left panel shows the left hemisphere, with HG 

(containing primary auditory cortex) highlighted in green, and STG (nonprimary auditory 

cortex) highlighted in orange. Middle and right panels show the inflated left and right 

hemispheres to assist visualization. The color of each electrode corresponds to the effect size 

(Cohen’s D), measuring its response to speech versus silence. Only electrodes with an effect 

size >0.2 are shown.

(B) Stimuli. Portions of the stimuli (spectrograms) in the multi-talker (left) and single-talker 

(middle and right) panels. In the multi-talker condition, the spectrograms of Spk1 (male) and 

Spk2 (female) are superimposed for visualization purposes.

(C) Example neural responses from 2 electrodes in 1 subject: one in STG (e1) and the other 

in HG (e2). The response of e1 changes depending on which speaker is being attended, 

resembling the response to that speaker in isolation. Conversely, e2 responds similarly when 

attending to Spk1 and Spk2, as if it was responding to Spk1 alone, even when Spk2 is 

attended. This visualization demonstrates two response types: (1) sites with a modulated 

response to represent the attended speaker, and (2) sites that preferentially respond to one 

speaker irrespective of attention.

O’Sullivan et al. Page 24

Neuron. Author manuscript; available in PMC 2021 April 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Selective Responses of Neural Sites to Specific Speakers
(A) The distribution of the responses to Spk1 and Spk2 in the single-talker condition from 2 

example electrodes in HG. Electrodes 1 and 2 respond preferentially to Spk1 and Spk2, 

respectively. The dashed lines indicate the median of each distribution. The speaker 

selectivity index (SSI) is the effect size (Cohen’s D) of the difference in the response to the 2 

speakers. Positive numbers indicate a preference for Spk1, and vice versa.

(B) The distribution of the SSI in HG (green) and STG (orange) shows significantly more 

speaker-selective sites in HG (p < 0.001).

(C) Comparing the spectrotemporal tuning properties of neural sites with the acoustic profile 

of each speaker. Left panel: the average spectrotemporal receptive field (STRF) for all sites 

showing a preference for Spk1 (SSI >0.2) and the average acoustic spectrum of Spk1 

(labeled Spk1 Acous.). Right panel: the average STRF for all sites showing a preference for 

Spk2 and the average acoustic spectrum of Spk2.

(D) The correlation between the average STRFs and average acoustics (after removing the 

temporal component of the STRFs by obtaining their 1st PC). Left panel: the correlation 

between the STRFs of Spk1 selective (SSI >0.2) sites (solid line) and the average acoustic 

spectrum of Spk1 (dashed line). Middle panel: the correlation between the STRFs of Spk2 

selective sites and the average acoustics of Spk2. Right panel: the correlation between the 

difference in the 2 groups of STRFs and the difference in the acoustics of the 2 speakers.

(E) Predicting the SSI of a site from its STRF for all sites in HG (green) and STG (orange).
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Figure 3. Attentional Modulation of Neural Sites
(A) The anatomical distribution of the AMI.

(B) The distribution of AMI in HG (green) and STG (orange) compared with a null 

distribution of the AMI (gray line). A significant AMI was defined as 3 times the standard 

deviation of the null distribution (3σ). Significantly more sites in STG (60%) than in HG 

(0.06%) are modulated by attention.

(C) The AMI of each site in HG compared with its distance from posterior HG. The positive 

correlation (r = 0.4, p < 0.001) demonstrates a gradient of attentional modulation emanating 

from this area.

(D) The response latency of the responses in HG (green) and STG (orange; mean ± SE) with 

respect to the attended (solid) and unattended (dashed) speakers. These plots were obtained 

by averaging the STRFs across frequency to obtain the temporal response profile for each 

site. This result demon-strates that STG sites respond later than do HG sites and shows 

greater suppression of the unattended speaker.
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Figure 4. Speaker-Selectivity Index versus Attention-Modulation Index (AMI)
(A) The joint distribution of the AMI (x axis) and SSI (y axis) in HG (green) and STG 

(orange). This distribution further illustrates that HG shows the small effect of attention and 

a large amount of speaker selectivity. Conversely, STG exhibits a large effect of attention 

and little speaker selectivity.

(B) The anatomical distribution of the SSI (cyan) and AMI (magenta). These plots illustrate 

a fundamental difference between the nature of the representation in HG and STG where HG 

provides a feature-rich, relatively static representation of the speakers, whereas STG filters 

out the unwanted source and selectively represents the attended speaker.
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Figure 5. The Representation of Auditory Objects in HG and STG
The magnitude of the responses in the multi-talker (M-T) condition are superimposed onto 

the joint distribution of the responses to Spk1 and Spk2 in the single-talker (S-T) condition.

(A) For an example STG electrode, the top panel shows the responses in the S-T condition to 

Spk1 (blue) and Spk2 (red). The bottom panel shows the responses in the M-T condition 

when Spk1 is attended (top) or when Spk2 is attended (bottom). The color in these cases 

represents the magnitude of the response. Three time points are denoted (a, b, and c). The 

top-right panel shows the 2D histogram of the joint distribution of the responses to Spk1 (x 

axis) and Spk2 (y axis) in the S-T condition. The 3 time points (a, b, and c) and marked. In 

the bottom-right panel, the response magnitude of the M-T condition is superimposed on the 

S-T histogram (from above). The color corresponds to the response magnitude in the M-T 

condition. This calculation is performed separately for each attention condition (A1: attend 
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Spk1, and A2: attend Spk2), illustrating a large effect of attention as the representation 

rotates 90 degrees.

(B) Summarizing the responses by adding A1 to the transpose of A2. The rows of this 

matrix show the response to the attended speaker as the magnitude of the unattended speaker 

varies (changing colors), and the columns show the response to the unattended speaker as 

the magnitude of the attended speaker varies. This finding reveals that this site responds as a 

linear function of the attended speaker and is almost unaffected by the magnitude of the 

unattended speaker. Taking the average across the rows and columns allows for a summary 

of this response type (right panel). The bottom panels show the same analysis for an 

example electrode in HG. This finding reveals that this neural site appears to be unaffected 

by attention, responding linearly with respect to both speakers. The right-most panels show 

the average summary plots across the population of neural sites in HG and STG. This 

analysis reveals that (1) STG sites respond to the acoustic features of the attended speaker 

and are unaffected by how much these features overlap by the unattended speaker, providing 

evidence for the grouping of features of the attended speaker. (2) HG sites respond to the 

features of both speakers with no evidence of a coherent response to attended speaker 

features.
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Figure 6. Speakers Are Linearly Separable in HG
(A) Training linear decoders to extract either speaker from the representation of the mixture 

in HG. Top panel: the spectrogram of the mixture (displayed as the superposition of Spk1 

and Spk2). Linear decoders can reconstruct either Spk1 (middle) or Spk2 (bottom) from the 

neural responses in HG to the mixture.

(B) Scatterplot of the amplitude of all time-frequency (TF) bins when reconstructing Spk1 (x 

axis) versus reconstructing Spk2 (y axis). The dots are colored according to the dominant 

speaker in the corresponding T-F bin.

(C) Irrespective of the actual attended speaker, both speakers can be extracted from the 

representation of the mixture in HG. Left panel: decoders were trained on the attended 

speaker and tested when that speaker was either attended or ignored (see x labels). Right 

panel: decoders were trained on the ignored (unattended) speaker and tested when that 

speaker was either attended or ignored (see x labels). Light gray bars indicate the correlation 

(mean ± STD) with the trained speaker, and dark gray bars indicate the correlation with the 

untrained speaker. In all cases, the reconstruction has a significantly higher correlation (p < 

0.001) with the trained speaker than with the untrained speaker.

(D) The SSI for each electrode in HG (green dots) is plotted against the average weight that 

the decoders learn to apply to them when the decoders are tasked with extracting Spk1 (left 

panel) or Spk2 (right panel). The decoders learn to enhance/suppress the electrodes that are 

selective for Spk1/Spk2 depending on the speaker to be extracted.
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Figure 7. Mapping HG to STG
(A) STG (orange) responds with a longer latency than HG (green), suggesting that STG is 

further downstream (cf. Figure 3D).

(B) The neural responses in HG and STG can be predicted from the acoustic spectrogram 

(using a STRF) or from each other. Both areas can be predicted from the stimulus (left 

panel), with HG having significantly higher (p < 0.05) prediction accuracies. However, when 

mapping from HG to STG (and vice versa), HG can predict STG significantly better than 

STG can predict HG (p < 0.05). Error bars denote the mean SE. Data are from the 

singletalker condition.

(C) Mapping HG to STG in the multi-talker condition. Left panel: for an example electrode 

in STG (orange dot), under attention, the weights from each HG electrode (green dots) 

change to enhance (suppress) the attended (unattended) speaker. Blue (red) lines correspond 

to a larger weight when Spk1 (Spk2) is attended.

(D) The average weight change for each HG electrode (green dots) plotted against their 

corresponding SSI. The positive correlation (r = 0.85) confirms that larger weight changes 

are applied to the most speaker-selective sites in HG.
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Figure 8. Determining Speaker Selectivity in the Multi-talker Condition
Given only the representation of the mixture in HG, sites that are selective for either speaker 

can be determined by obtaining the correlation structure (temporal coherence) of the 

responses.

(A) The correlation between all HG sites sorted according to their SSI.

(B) Decomposing the correlation matrix in (A) using principal-component analysis (PCA) 

permits the acquisition of a single number for each site. The large correlation (r = 0.87) with 

the corresponding SSI for each electrode demonstrates that the SSI can be obtained from the 

multi-talker responses alone.

(C) Similarly, the weights from HG to STG (HGRF) in the multi-talker condition can be 

determined from the same PCA analysis (r = 0.81; cf. Figure 6D).
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