Skip to main content
. 2021 Apr 15;11:652063. doi: 10.3389/fonc.2021.652063

Table 5.

Best ROC AUC and AUPR (precision-recall AUC) values obtained for good versus poor responder classifiers built using different ML methods without/with FloWPS for different MM annotated expression datasets.

Dataset SVM RF RR BNB MLP
Current study full ROC AUC 0.80/0.82 0.76/0.82 0.86/0.87 0.79/0.84 0.81/0.83
Current study full AUPR 0.79/0.82 0.78/0.79 0.88/0.90 0.78/0.83 0.79/0.81
Current study VCD ROC AUC 0.82/0.86 0.74/0.83 0.86/0.87 0.78/0.88 0.84/0.89
Current study VCD AUPR 0.82/0.86 0.76/0.86 0.86/0.84 0.79/0.92 0.83/0.88
GSE9782 ROC AUC 0.68/0.72 0.68/0.80 0.77/0.77 0.73/0.76 0.72/0.76
GSE9782 AUPR 0.65/0.70 0.70/0.80 0.77/0.77 0.69/0.76 0.69/0.74
GSE68871 ROC AUC 0.68/0.77 0.73/0.83 0.78/0.77 0.74/0.84 0.70/0.80
GSE68871 AUPR 0.64/0.76 0.73/0.83 0.79/0.77 0.71/0.80 0.69/0.76
GSE55145 ROC AUC 0.78/0.82 0.77/0.90 0.87/0.84 0.82/0.87 0.80/0.85
GSE55145 AUPR 0.72/0.84 0.72/0.84 0.88/0.85 0.83/0.82 0.83/0.82
GSE19784_1 ROC AUC 0.65/0.82 0.74/0.77 0.84/0.84 0.74/0.84 0.72/0.81
GSE19784_1 AUPR 0.64/0.77 0.71/0.77 0.86/0.84 0.72/0.84 0.69/0.79
GSE19784_2 ROC AUC 0.83/0.87 0.75/0.82 0.92/0.94 0.88/0.94 0.86/0.87
GSE19784_2 AUPR 0.85/0.91 0.79/0.86 0.96/0.97 0.92/0.97 0.88/0.89
GSE19784_3 ROC AUC 0.84/0.94 0.84/0.86 0.95/0.95 0.86/0.96 0.91/0.94
GSE19784_3 AUPR 0.89/0.95 0.89/0.90 0.98/0.98 0.92/0.98 0.95/0.96
GSE2658 ROC AUC 0.72/0.77 0.67/0.79 0.79/0.79 0.76/0.78 0.63/0.72
GSE2658 AUPR 0.45/0.55 0.51/0.61 0.58/0.61 0.49/0.54 0.42/0.48