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Population Coding of Natural Electrosensory Stimuli by
Midbrain Neurons

Michael G. Metzen and ““Maurice J. Chacron
Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada

Natural stimuli display spatiotemporal characteristics that typically vary over orders of magnitude, and their encoding by sen-
sory neurons remains poorly understood. We investigated population coding of highly heterogeneous natural electrocommu-
nication stimuli in Apteronotus leptorhynchus of either sex. Neuronal activities were positively correlated with one another in
the absence of stimulation, and correlation magnitude decayed with increasing distance between recording sites. Under stimu-
lation, we found that correlations between trial-averaged neuronal responses (i.e., signal correlations) were positive and
higher in magnitude for neurons located close to another, but that correlations between the trial-to-trial variability (i.e., noise
correlations) were independent of physical distance. Overall, signal and noise correlations were independent of stimulus wave-
form as well as of one another. To investigate how neuronal populations encoded natural electrocommunication stimuli, we
considered a nonlinear decoder for which the activities were combined. Decoding performance was best for a timescale of
6 ms, indicating that midbrain neurons transmit information via precise spike timing. A simple summation of neuronal activ-
ities (equally weighted sum) revealed that noise correlations limited decoding performance by introducing redundancy. Using
an evolution algorithm to optimize performance when considering instead unequally weighted sums of neuronal activities
revealed much greater performance values, indicating that midbrain neuron populations transmit information that reliably
enable discrimination between different stimulus waveforms. Interestingly, we found that different weight combinations gave
rise to similar discriminability, suggesting robustness. Our results have important implications for understanding how natural
stimuli are integrated by downstream brain areas to give rise to behavioral responses.
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We show that midbrain electrosensory neurons display correlations between their activities and that these can significantly
impact performance of decoders. While noise correlations limited discrimination performance by introducing redundancy,
considering unequally weighted sums of neuronal activities gave rise to much improved performance and mitigated the dele-
terious effects of noise correlations. Further analysis revealed that increased discriminability was achieved by making trial-
averaged responses more separable, as well as by reducing trial-to-trial variability by eliminating noise correlations. We
further found that multiple combinations of weights could give rise to similar discrimination performances, which suggests
that such combinatorial codes could be achieved in the brain. We conclude that the activities of midbrain neuronal popula-
tions can be used to reliably discriminate between highly heterogeneous stimulus waveforms. j
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Introduction

Understanding how neural populations process incoming sen-
sory information remains a central problem in systems neuro-
science. Indeed, population coding has been studied extensively
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both theoretically and experimentally (Georgopoulos et al., 1986;
Abbott and Dayan, 1999; Averbeck et al., 2006; Ecker et al., 2010;
Kohn et al., 2016; Mendels and Shamir, 2018). Of particular in-
terest are the effects of correlations between the trial-to-trial vari-
abilities of neural responses to repeated presentations of a given
stimulus (i.e., “noise correlations”). On the one hand, noise cor-
relations are thought to introduce redundancy between neural
activities and thus should be eliminated or, at the very least,
reduced in magnitude (Averbeck and Lee, 2006; Ecker et al,
2010). However, noise correlations can vary depending on stim-
ulus attributes, which can introduce synergy to benefit coding
(Moreno-Bote et al.,, 2014; Lin et al.,, 2015; Franke et al., 2016;
Zylberberg et al., 2016). However, most studies of population
coding to date have considered artificial stimuli because of their
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relative simplicity. As such, population coding of natural stimuli
that are often complex because of their rich spatiotemporal struc-
ture (Attias and Schreiner, 1997; Simoncelli and Olshausen,
2001; Mante et al., 2005; Fotowat et al., 2013; Henninger et al.,
2018) has been much less investigated to date (Mizrahi et al,
2014; Yoshida and Ohki, 2020). In particular, because single-
neuron responses to natural stimuli cannot be predicted from
their responses to artificial stimuli in general (Mizrahi et al,
2014), there is reason to believe that the strategies used by neural
populations to encode natural stimuli will differ from those used
to encode artificial stimuli.

Gymnotiform wave-type weakly electric fish generate an
electric field around their body through an electric organ dis-
charge (EOD) and can sense perturbations of this field through
an array of electroreceptors distributed on their skin.
Electroreceptors make synaptic contact onto pyramidal cells
within the electrosensory lateral line lobe (ELL), which in turn
project to downstream brain areas such as the torus semicircu-
laris (TS; Bell and Maler, 2005). There are ~50 different neuron
types within TS described in the literature that contribute to
electrosensory processing (Carr et al., 1981; Carr and Maler,
1985), which translates to large heterogeneities in responses to
sensory input (Vonderschen and Chacron, 2011). Natural elec-
trosensory stimuli comprise those caused by objects such as
prey (Nelson and Maclver, 1999) as well as those caused by
conspecifics (Zakon et al., 2002; for review, see Metzen, 2019).
In the latter case, natural electrocommunication stimuli (i.e.,
“chirps”) consist of transient increases in EOD frequency that
occur on top of the underlying sinusoidal background beat
(Zupanc and Maler, 1993; Engler et al., 2000; Bastian et al.,
2001; for review, see Zupanc, 2002; Kolodziejski et al., 2005).
Chirp attributes (e.g., amplitude, duration) vary over a wide
range for a given species (Zupanc and Maler, 1993; Zakon et al.,
2002), which gives rise to a rich repertoire of different stimulus
waveforms (for review, see Metzen, 2019). The coding of chip
stimuli by electrosensory neurons has been the focus of previ-
ous studies (Benda et al., 2005, 2006; Marsat et al., 2009; Marsat
and Maler, 2010; Vonderschen and Chacron, 2011; Walz et al.,
2013, 2014; Metzen et al.,, 2016, 2020; Metzen and Chacron,
2017 for review, see Metzen, 2019). However, these have either
considered single neurons or used nonsimultaneous recordings
to study population coding, such that the effects of noise corre-
lations were ignored.

Materials and Methods

Ethics statement. All animal procedures were approved by the
MCcGill University animal care committee (#5285) and were performed
in accordance with the guidelines of the Canadian Council on Animal
Care. All fish were immobilized by an intramuscular injection of 0.1-
0.5 mg of tubocurarine before experiments.

Animals. The wave-type weakly electric fish Apteronotus leptorhyn-
chus (N=3) of either sex was used exclusively in this study. Animals of
either sex were purchased from tropical fish suppliers and were housed
in groups (2-10) at controlled water temperatures (26-29°C) and con-
ductivities (300-800 pS/cm) according to published guidelines
(Hitschfeld et al., 2009).

Surgery. Surgical procedures have been described in detail previously
(Chacron et al,, 2003; Toporikova and Chacron, 2009; Metzen et al.,
2015). Briefly, 0.1-0.5 mg of tubocurarine (Sigma-Aldrich) was injected
intramuscularly to immobilize the animals for electrophysiology experi-
ments. The animals were then transferred to an experimental tank (30 x
30 x 10 cm) containing water from the animal’s home tank and respired
by a constant flow of oxygenated water through their mouth at a flow
rate of 10 ml/min. Subsequently, the head of the animal was locally
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anesthetized with lidocaine ointment (5%; AstraZeneca), the skull was
partly exposed, and a small window (~5 mm?) was opened over the
midbrain.

Stimulation. The electric organ discharge of A. leptorhynchus is neu-
rogenic, and therefore is not affected by the injection of curare. All stim-
uli consisted of amplitude modulations (AMs; or beats) of the EOD of
the animal and were produced by triggering a function generator to emit
one cycle of a sine wave for each zero crossing of the EOD, as done pre-
viously (Bastian et al., 2002). The frequency of the emitted sine wave was
set slightly higher (30 Hz) than that of the EOD, which allowed the out-
put of the function generator to be synchronized to the discharge of the
animal. The emitted sine wave was subsequently multiplied with the
desired AM waveform (MT3 Multiplier, Tucker-Davis Technologies),
and the resulting signal was isolated from the ground (A395 Linear
Stimulus Isolator, World Precision Instruments). The isolated signal was
then delivered through a pair of chloridized silver wire electrodes placed
15 cm away from the animal on either side of the recording tank perpen-
dicular to the rostrocaudal axis of the fish.

To elicit neuronal responses, we generated chirps with different
attributes by systematically varying the chirp duration (8, 11, 14, 17, 20,
53, 141, 376, and 1000 ms), the amplitude (10, 35, 60, 85, and 110 Hz),
and the phase (0°, 45°, 90°, 135°, 180°, 225°, 270°, and 315°) of the under-
lying beat cycle at which the chirp occurs (Fig. 1b). Importantly, when
varying chirp duration or amplitude, we considered chirps occurring at
either phase 90° or 270° of the beat cycle, on top of a sinusoidal beat with
frequency foear = 4Hz, as done previously (Vonderschen and Chacron,
2011; Metzen et al,, 2016). As such, we used a total of 36 different chirp
waveforms (18 for chirp duration, 10 for chirp amplitude, 8 for chirp
phase). Parameter ranges were chosen to contain those observed in pre-
vious studies (Zupanc and Maler, 1993; Engler and Zupanc, 2001;
Zupanc et al., 2006; Metzen et al., 2020), including durations that cover
those of other electrocommunication signals such as long frequency rises
(Kolodziejski et al., 2005) or long chirps (Henninger et al., 2018). It is
important to note that the chirp amplitude is not equivalent to the actual
spectral frequency content of the resulting AM stimulus, which is 50-
100 Hz (Zupanc and Maler, 1993). We chose a 4 Hz beat because, as
mentioned above, this was the frequency used in previous studies
(Metzen et al., 2016, 2020). We note that the chirp stimuli considered
here were consistently most frequently produced when the frequency
difference between both animals was lowest for various conditions
(Zupanc and Maler, 1993; Bastian et al., 2001; Engler and Zupanc, 2001;
Hupé and Lewis, 2008). Previous studies have furthermore demon-
strated a sex dimorphism in EOD frequency for A. leptorhynchus in that
males have significantly higher EOD frequencies than females (Meyer et
al., 1987; Zupanc et al., 2014). As such, same-sex encounters will on av-
erage lead to lower beat frequencies than opposite-sex encounters
(Benda et al., 2006). To measure the stimulus intensity, a small dipole
was placed close to the skin of the animal. Stimulus intensity was
adjusted to produce changes in EOD amplitude that were ~20% of the
baseline level, as done previously (Metzen et al., 2016, 2020; Metzen and
Chacron, 2017). Finally, each chirp stimulus waveform (i.e., a chirp with
given duration, amplitude, or phase) was presented 60 times (i.e., 60 tri-
als) with ~1.5 s between subsequent presentations, followed by another
waveform. We note that midbrain neurons do not display adaptation to
repeated presentations of a given chirp stimulus (Vonderschen and
Chacron, 2011; Metzen et al., 2016; see also Fig. 4).

Recordings. Simultaneous extracellular recordings from TS neurons
were made using Neuropixel probes (Imec). Recordings were digitized at
30kHz using spikeGLX (Janelia Research Campus, Howard Hughes
Medical Institute) and stored on a hard drive for further analysis. Spikes
were sorted using Spike2 (Cambridge Electronic Design), because we
did not observe any drifting of spiking activity across channels or record
more than a maximum of three neurons on any single channel. In fact,
most channels contained a single well isolated neuron (Fig. 24, right).
Overall, we recorded from a total of N=158 neurons (40 for session 1,
28 chirp stimuli; 77 for session 2, 36 chirp stimuli; and 41 for session 3,
36 chirp stimuli). However, not all neurons were stable over the entire
stimulus protocol such that only a subpopulation could be extracted that
received a common set of stimuli (28 for session 1; 27 for session 2; 2 for
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Chirp-induced AM waveforms are highly heterogeneous. a, During a chirp event, the EOD frequency (middle, blue trace) of the emitter fish (top, blue) is transiently increased by

the maximum of amplitude for a brief duration (light blue, shaded box) while the EOD frequency (middle, red trace) of the receiver fish (top, red) remains constant. This can be characterized
by the duration and amplitude of the frequency excursion. The chirp results in a phase advance of the beat (i.e., the beat will reach its maximum value earlier than if no chirp occurred; com-
pare solid black with dashed gray). The chirp is shown in light blue. &, AM waveforms obtained by varying different parameters (black curves; left top, fixed chirp duration and phase, varying
chirp amplitude; left bottom, fixed chirp duration and amplitude, varying chirp phase; right, fixed chirp phase and amplitude, varying chirp duration). Also shown are unperturbed beat wave-
forms (dashed gray). Note that different chirps give rise to different phase advances of the beat. The red dashed horizontal lines indicate chirp onset.

session 3). The average baseline firing rate for our dataset was 14.0 =
16.8 spikes (spk)/s, which is slightly higher than those obtained in previ-
ous studies (Vonderschen and Chacron, 2011; McGillivray et al,, 2012;
Metzen et al., 2016), which is in part because of the fact that we did not
exclude neurons that did not respond to the stimuli presented. Overall,
similar results were seen for all three recording sessions. Distances
between neurons were computed as the distance between probe sites on
which the action potentials of recorded neurons were highest. We note
that the geometry of the recording channels on the Neuropixel probes
could introduce “gaps” when calculating neuronal distances, as not all
channels may contain sortable spikes. Based on the fact that the
Neuropixel probe consists of 384 parallel recording channels (checker-
board, two columns) on a 10-mm-long shank with distances of 16 um
(column) and 20 pum (row; Jun et al.,, 2017), distances primarily reflect
vertical distances along the probe shaft. The probe was angled at ~15°
with respect to vertical in order for the shaft to be approximately perpen-
dicular to the layers of TS and advanced between 1500 and 2000 pim into
TS with reference to the probe tip. As such, the reported distances pri-
marily reflect distances across rather than within TS layers. Neurons
were recorded at depths between 300 and 1900 pm from the brain sur-
face. Of all neurons recorded from, ~60% were located within the first
1000 im and were thus mostly located within the first five layers of TS.

Data analysis. Sorted and curated spike times for each neuron were
converted into “binary” sequences sampled at 2kHz. The content of a
given bin was set to 2000 if a spike occurred within it and 0 otherwise.
We note that, as the bin width was smaller than the refractory period of
TS neurons, there can be at most one spike occurring during any given
bin. The time-dependent firing rate of neuron i, X;(t), was obtained by
filtering the binary sequence using a box-car filter with 6 ms. Latencies
for single-neuron responses were estimated from the first spike after
stimulus onset.

Determining neuron response type. To quantify the response to the
chirp, we used the chirp selectivity index (CSI) to determine whether a
given neuron responded to the chirp as done previously (Vonderschen
and Chacron, 2011), as follows:

Rchirp - Rbeat

CSI = )
Rchirp + Rbeat

M

where Ry, is the maximum firing rate obtained in a peristimulus time
histogram (PSTH) during a time window of 100 ms starting with chirp
onset, and Ry is the maximum firing rate obtained during the ongoing

beat in a time window of 2 s ending on chirp onset. The CSI ranges
between —1 and 1, representing perfect selectivity for the beat at —1 and
the chirp at 1. To measure the selectivity of a neuron to multiple chirp
stimuli, the average CSI was used, as follows:

Sl = Z CSI, (2)

where N is the number of chirp stimuli tested and CSI; is the CSI to chirp
stimulus i.

We also quantified neuronal gain to the 4 Hz background beat, which
was measured as the ratio between the amplitude of the sinusoidal beat
stimulus as extracted from the dipole recording by performing a Hilbert
transform and low-pass filtering and the amplitude of the neuronal fir-
ing rate modulation.

CSI and gain were used to capture the response types of all neurons
recorded. Because a negative CSI value only indicates the preference of a
neuron response to the beat but not to the chirp, it is thus not able to
correctly differentiate between nonresponding and beat-responding neu-
rons. We thus used the gain to the beat to further distinguish between
these two response types. As such, neurons that had an average CSI of
>0.1 for all chirp stimuli presented where regarded as responding to the
chirp, as done previously (Vonderschen and Chacron, 2011). Neurons
with gain to the 4Hz background beat >2 spk/s (mV/cm) where
regarded as responding to the beat. Based on their response characteris-
tics to the beat and the chirp, neurons were classified as follows: (1) beat
responders [“br”; neurons that exclusively responded to the beat, but not
to the chirp (i.e,, CSI<0.1 and gain > 2 spk/s (mV/cm); 16 (57%) for
session 1; 8 for session 2 (30%); 2 for session 3 (100%)]; (2) beat and
chirp responders [“ber”; neurons that responded to the beat as well as to
the chirp (i.e., CSI>0.1 and gain >2 spk/s (mV/cm); 5 for session 1
(18%); 6 for session 2 (22%); 0 for session 3 (0%)]; (3) chirp responders
[“cr”; neurons that responded exclusively to the chirp (i.e., CSI> 0.1 and
gain < 2 spk/s (mV/cm); 4 for session 1 (14%); 2 for session 2 (7%); 0 for
session 3 (0%)]; and (4) nonresponders (“nr’; neurons that neither
responded to the beat nor the chirp (i.e., CSI<0.1 and gain <2 spk/s
(mV/cm); 3 for session 1 (11%); 11 for session 2 (41%); 0 for session 3
(0%)].

Computing signal and noise correlations. We quantified correlations
between neuron activities from all neurons (N=158) recorded during
all three recording sessions using spike count sequences that were
obtained from each binary spike train (i.e., unfiltered) by counting the
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Figure 2.  Methodologies used in this study. a, Schematic showing the experimental setup. A fish is placed in an otherwise empty tank and is stimulated (middle left) while neuronal ac-

tivity (top left and right) is recorded. b, Left, Simultaneously recorded neurons display differential levels of baseline correlations as shown by the spike trains of three example neurons.
Right, Autocorrelation and cross-correlation functions among these three different neurons. ¢, A set of electrocommunication stimuli with varying parameters (N, left) elicits differential
responses in neurons within the midbrain torus semicircularis (TS, M, middle, left). These responses have to be decoded by downstream areas (middle, right) so as to optimally discrimi-

nate among the individual stimuli (right).

number of spikes occurring during successive and nonoverlapping
20 ms time windows that were always aligned with respect to the onset
of the chirp stimulus during a 100 ms evaluation time window. This
value was chosen because it comprises the neural response for most of

the stimuli considered. In the case of larger durations, this time win-
dow comprises the initial portion of the response. We then computed
the correlation coefficient between the two spike count sequences using
Pearson’s correlation coefficient between spike counts, as follows:
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To compute signal correlations, the 60 stimulus trials were first
randomly permuted, and the spike count sequences were then
recomputed (i.e., the timing of spikes within each trial is fixed).
Signal correlations were then computed using Equation 3 on the
shuffled spike counts and were averaged over 60 independent real-
izations of the shuffling procedure. Finally, noise correlations were
computed as the correlation coefficient between the spike count re-
sidual sequences. The spike count sequences were first averaged
over trials, and the mean spike count sequence (i.e., that because of
the stimulus) was then subtracted from the spike counts for each
trial to obtain the residual spike count sequences. As such, the resid-
ual spike count sequences represent the component of the neural
response that cannot be explained by a given chirp stimulus wave-
form (i.e., “noise”) because, unlike the stimulus waveform itself,
these are not constant across trials.

Ascertaining statistical significance for obtained correlation coeffi-
cient values. The significance of correlations for each pair was deter-
mined in the following way. For each spike train, the sequence of
interspike intervals (i.e., the times between consecutive action poten-
tials) was obtained and then randomly shuffled using a permutation of
the integers (i.e., the function “randperm” in MATLAB), and the spike
times were then obtained by performing a cumulative sum (ie., the
function “cumsum” in MATLAB). Correlations were computed from
the shuffled spike trains in otherwise the same manner as for the raw
data as described above. The procedure was repeated 100 times to
obtain the distributions of correlation coefficients. Correlation coeffi-
cients obtained from the raw (i.e., unshuffled) data were deemed to
be significant if their probability of occurrence was <0.05 based on
the distributions obtained from shuffled data. The mean shuffled
signal and noise correlations for each possible pair for all distribu-
tions were not significantly different from zero (one-sample t test,
1=3572, paignal = 0.05 Proise > 0.05).

Classifier. We used a classifier to quantify the performance of TS
neuronal populations at stimulus discrimination. We combined TS
neurons using either equally or unequally weighted sums for each
chirp stimulus. For each individual chirp stimulus, the combined
response (i.e., either an equally or unequally weighted sum of neural
responses) to a random trial was taken as the template for a given
chirp stimulus waveform. Next, each combined response was
assigned as being generated by the stimulus that gave rise to a given
template based on whether the distance between the combined
response and the template was the minimum. We thus constructed a
“confusion matrix” whose element (i,j) gives the probability that a
response was assigned as being generated by stimulus j given that it
was actually generated by stimulus i (Jamali et al., 2016, 2019). The
diagonal elements of this matrix are the probabilities that a stimulus
was correctly assigned, whereas nonzero off-diagonal elements indi-
cate misclassification. For each confusion matrix obtained from the
metric-space analysis, we computed the discrimination performance
by averaging over the diagonal elements. The discrimination per-
formance can thus vary between 0 (no discrimination) and 1 (per-
fect discrimination). Note that the chance level for discrimination
performance was 0.0278 (i.e., 1 of 36) because we used a total of 36
different chirp stimuli. The distance between combined neuron
activities was computed using the metric of van Rossum (2001).
First, the combined neuronal activities were convolved with a decay-
ing exponential kernel with time constant 7, as follows:

fO =3 H—t)e (4)

where t; is the ith spike time, M is the total number of spikes, and H
(1) is the Heaviside step function [H(10) =0 if x <0 and H(10) =1 if
x > 0]. Next, the distance was then computed as the euclidian dis-
tance between convolved combined neuronal activities fR; and fRy,
as follows:
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D(ﬁ‘ﬂka)r = %/[fRJ _fkk}zdt. (5)

We varied 7 between 1 and 100 ms to evaluate the effects of precise
spike timing on classification. When the value of 7 is small, the metric
takes into account spike timing, whereas, when the value of 7 is larger,
the metric takes into account slower changes in firing rate. We also var-
ied the chirp evaluation window between 20 and 1000 ms to evaluate the
effects of the ongoing beat on discrimination performance (see Fig. 9).
Performances reported in this article were averaged over templates, and
error bars were generated over the total number of simulations for dif-
ferent 7 and chirp evaluation windows (see Figs. 7e, 8¢, middle, bottom,
9) or by bootstrapping for different population sizes (i.e., 100 random
chosen neuron responses per population size k for n; < n; see Figs. 7d,
8b, middle, bottom).

Differential evolution algorithm. To determine whether performing
an unequally weighted sum of neuronal response gave rise to better clas-
sification than an equally weighted sum, we trained a differential evolu-
tion algorithm (EA) using the population responses on a randomly
selected 60% of trials for each chirp stimulus as a training dataset. We
then measured the classification accuracy of the trained classifier on the
remaining 40% of trials (the test dataset). We chose recording session 2
for this analysis since it contained the greatest number of neurons
recorded simultaneously that received all 36 stimuli (n =27).

Specifically, each neuron was assigned a “weight,” which could vary
between —2 and 2, and the goal was to choose a set of weights that maxi-
mizes the performance of the classification algorithm described above.
The EA was described in detail in a previous study by our group
(Aumentado-Armstrong et al., 2015). Specifically, a set of weight vectors
(ie., “agents”) is allowed to evolve by minimizing a fitness function Fi,
over a series of iterations (i.e., “generations”). In keeping with the nota-
tion used in previous studies (Aumentado-Armstrong et al., 2015), we
denote X} (i) as parameter i for agent r of generation k. First, the popula-
tion of k individuals is randomly initialized with weight values that are
uniformly distributed with zero mean and restrained between —2 and 2.
For each individual at every generation, a new individual is constructed
by two operations consisting of “differentiation” and “recombination.”
In differentiation, the 7 new parameter vector X}, 1ria 18 built by combin-
ing three other individuals X}', X}?, and X,?, where r, # 1, # 3, as
follows:

X = X + (X7 — X7)FVr=1,...,N, (6)

where the differential weight F= 0.5, and the three individuals are chosen
based on a probability distribution that is preferentially weighted for
more fit (i.e., lower fitness score) individuals, as follows:

—Fu (X))

——————|Vrn=1,..,N, (7)
maxy;(1 — Fp (Xi))

P = Aexp

where A is a normalization constant such that the sum of probability val-
ues is equal to 1. Recombination is then performed as follows:

Vr=1,..,N;ji=1,...,D, (8)

X (i) = {Ximl(il ifu< CR

mut X; (i), otherwise

where u is a random variable generated from a uniform distribution U
(0,1) and with crossover probability CR=0.9. Selection is finally per-
formed to produce the next generation via:

o X T (X) < Fae(X0)
X = { X;, otherwise Vr=1,..,N. ©)

In this study, the fitness function for a given individual was defined
as follows:
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Fri(X;) = 1— DPy, (10)

where DPy: is the discrimination performance estimated by comput-
ing the precision of events (i.e., spikes) of our neuronal population in
response to our set of 36 chirp stimulus waveforms. The EA was termi-
nated if the change in population discrimination performance for the pre-
vious 10 iterations was on average below a threshold value of 0.00001.

We repeated the EA 20 times over different initial conditions to test
whether different sets of weights would give rise to similar discrimina-
tion performance values. Based on the above, it is clear that if a given
weight vector gives rise to a given performance, then the set of weight
vectors obtained by multiplying the initial one by any nonzero constant
will also give rise to the same performance. Thus, there is degeneracy
because there exists an infinite number of weight vectors that will give
rise to the same performance. Such “trivial” degeneracies were elimi-
nated by normalizing weight vectors by their SDs and, if necessary, fur-
ther multiplied by —1 when testing whether different weight vectors
gave rise to a given performance (see Fig. 11).

Principal component analysis. Weight matrices obtained from the 20
EA simulations for a neuronal population with and without noise correla-
tions were compared using principal component analysis (pca). Therefore,
the sorted weight matrices were diagonalized using the singular value
decomposition function in MATLAB. Trajectories were computed using
the pca space of the first three principal components, explaining >60% of
the variance of the 20 sorted EA simulations. It is important to note that
we used the same decomposition (i.e., linear combination of weights) to
visualize weight vectors obtained with and without noise correlations.
Therefore, any difference between the principal components has to be
because of existing differences between the weight vectors. We compared
the difference of the principal components with and without noise correla-
tions with the difference of either with or without noise correlations
obtained by bootstrapping (15 bootstraps with each randomly taking 75%
of the total weight vectors) using the euclidian distance, as follows:

d(p.9) = /(1 — @) + (o2 — @)+ (b — ) ()

where (p,q) are the Cartesian coordinates of the trajectories with and
without noise correlations in three dimensions.

Response trial-to-trial variability. To quantify the response trial-to-
trial variability of the summed (i.e., either equally or unequally weighted)
population activity to a given chirp stimulus waveform with and without
noise correlations (equally weighted and weighted), we used the distribu-
tion within the interquartile range in responses averaged over the 20 EA
simulations, as follows:

; ; Dg; o (k)
variability = = (12)
m

where D is the distribution within the interquartile range (Q, = 0.25; Qs
=0.75), o is the SD of the response (k; trial-to-trial variability) to each
stimulus (m) and each EA simulation (n). All responses were normalized
before computing the response variability.

Similarity index. To quantify the similarity between individual
responses (x,x,) to the set of stimulus waveforms used, we computed the
similarity index (SI), which is a distance metric to assess the similarity
between a response to a given stimulus to the responses to all stimulus
waveforms that was computed as follows (Aumentado-Armstrong et al.,
2015; Metzen et al., 2016, 2020; Metzen and Chacron, 2017):

V(G = (x) =+ (0))
max(x;) — min(x;) max(x;) — min(x;)

V2 ’ V2

; (13)

Slx,y =

max |:

where <..> denotes an average over an evaluation window of 100 ms
after chirp onset that is shown as a blue band in the figures. All responses
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were normalized before computing SI. The ST measure was used to assess
how different the neural responses to a given stimulus waveform are to
the responses to all other stimulus waveforms (see Fig. 10), which relates
to the discriminability between neural responses to different stimulus
waveforms.

Statistics. Values are reported as the mean * SD. Statistical tests
were performed using a one-way ANOVA with Bonferroni correction,
unless otherwise stated.

Results

Here we investigated for the first time how TS neuronal popula-
tions encode natural electrocommunication stimuli with highly
heterogeneous attributes. Under natural conditions, chirps occur
during social interactions in which the emitter fish sends the sig-
nal to the receiver fish (Fig. 1a, top). This signal consists of a
transient increase in the EOD frequency of the emitter fish with
a given time duration and amplitude (i.e., the amount by which
the EOD frequency increases; Fig. 1a, middle). Interactions
between the EOD frequencies of the two fish give rise to a back-
ground beat that consists of a sinusoidal AM of the EOD (Fig.
la, bottom, dashed gray). When considering the stimulus sensed
by the receiver fish, the chirp signal not only transiently perturbs
the beat at a given phase (Fig. 1a, bottom, blue) but also causes a
phase advance of the beat (Fig. 1a, bottom, compare solid black
curves, dashed gray curves). As such, chirps with different attrib-
utes give rise to very different AM stimulus waveforms (Fig. 1b).
We systematically varied multiple chirp attributes such as the
amplitude (i.e, the amount by which the EOD frequency
increases; Fig. 1b, top left), the beat phase at which the chirp
occurs (Fig. 1b, bottom left), and the duration of the frequency
increase (Fig. 1b, right). We recorded the simultaneous activities
of TS neurons in response to chirp stimuli that were delivered
via a pair of electrodes located on either side (Fig. 2a). The use of
a high-density array allowed us to record the activities of up to
46 TS neurons simultaneously (Fig. 24, right), and we found that
TS neuronal activities were correlated in the absence of stimula-
tion (Fig. 2b). We thus used chirps with different waveforms
occurring on top of a sinusoidal waveform to understand how
the activities of a neuronal population are integrated to distin-
guish between different stimuli (Fig. 2¢).

Midbrain neuronal activities are correlated in the absence of

stimulation

We first characterized correlations between the activities of mid-
brain neurons in the absence of stimulation since these are indic-
ative of the presence of noise correlations during stimulation
(Hofmann and Chacron, 2017). Overall, pairs of neurons that
were recorded on probe sites that were located close to one
another (Fig. 3a) tended to display higher baseline correlations
in magnitude than pairs of neurons that were recorded on probe
sites that were located farther apart (Fig. 3b). Indeed, baseline
correlation magnitude decreased as a function of increasing
physical distance when considering pairs with significant base-
line correlations (Fig. 3¢, green dots and light green dashed line;
Pearson correlation coefficient: r = —0.18, p=1.73 * 10" °). In
contrast, for pairs with nonsignificant baseline correlations, its
magnitude did not decrease significantly as a function of distance
(Fig. 3c, gray dots and black dashed line; Pearson correlation
coefficient: r=0.002, p=0.95). However, when considering all
possible pairs (i.e., with significant and nonsignificant baseline
correlation magnitudes), the decrease in baseline correlation
magnitude remains significant (Pearson correlation coefficient: r
= —0.14, p=3.40 * 10~®). As mentioned above, the presence of
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baseline correlations is important as these
can be seen as the limit toward which
noise correlations tend as stimulus inten-
sity goes to zero (Hofmann and Chacron,
2017). As such, we expected that TS neu-
rons will display noise correlations under
stimulation, which will impact population
coding, as described above.

Midbrain neurons display signal and
noise correlations under stimulation
The responses of single TS neurons in
our dataset were highly heterogeneous
and were similar to those described previ-
ously (Vonderschen and Chacron, 2011;
Sproule et al., 2015). Overall, we found
that neuronal responses to chirp stimuli
were of four types, as shown in Figure 4a
(see Materials and Methods for details on
the classification). Some TS neurons
responded exclusively to the chirp and not
at all to the beat (Fig. 44, red), and were
termed cr; others instead responded to
both the chirp and the beat (Fig. 4a, pur-
ple) and were termed bcr; and yet other
neurons in a separate subset only
responded to the beat (Fig. 4a, blue) and
were termed br. Consistent with previous
results (Vonderschen and Chacron, 2011;
Sproule et al., 2015), some TS neurons did
not respond to either the chirp or the beat
(Fig. 4a, yellow) and were termed nr.
Previous studies have shown that such
neurons tend to respond to other behav-
iorally relevant stimuli such as moving
objects or envelopes (Vonderschen and
Chacron, 2011; Sproule et al, 2015).
Response latencies of the first spike occur-
ring after stimulus onset (Fig. 4b, left)
were highly heterogeneous and ranged
from a few milliseconds to 100 ms (Fig.
4b, right), with ber neurons having the
shortest latencies on average (Fig. 4b, right
inset; nr: 46.19 = 15.88ms; br: 34.02 =
16.67 ms; ber: 19.84 = 12.54 ms; cr: 38.12
* 1636ms; one-way ANOVA: df=3,
F=52.66; e = 1.98 % 1075 pper = 2.35
* 10726; Porer = 0.008; Porber = 375 *
10_11; Pbrer = 0.42; Poerer = 4.75 * 10_15;
Bonferroni corrected).

We next looked at the correlation
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Figure 3. Baseline correlations decrease with increasing distance. a, Left, Spiking activity for two example neurons (neu-

ron 1, black; neuron 2, red) recorded on probe sites that were located close to one another (26 pum). This pair displayed a
large baseline correlation coefficient, as evidenced from coincident spiking that occurred more often than expected by chance
(cyan bars). Right, Histogram of baseline correlation magnitude for all pairs (n = 120) for which the distance was <<100 pm.
Shown are values significantly different from zero (green) and those that are not (gray). The black arrow indicates the value
of correlation for the example shown in the left panel. b, Left, Spiking activity for two example neurons (neuron 1, black;
neuron 2, red) recorded on probe sites that were located far from one another (721 pum). This pair displayed a baseline corre-
lation coefficient near zero, as evidenced from coincident spiking that occurred as often as expected by chance (cyan bars).
Right, Histogram of baseline correlation magnitude for all pairs (n = 295) for which the distance was >700 pm. Shown are
values significantly different from zero (green) and those that are not (gray). The black arrow indicates the value of correla-
tion for the example shown in the left panel. ¢, Baseline correlation magnitude decrease as a function of distance (Pearson
correlation coefficient: r = —0.24, p=1.02 * 10~2%). Shown are values significantly different from zero (green) and those
that are not (gray). The labeled circles indicate the two examples shown in a and b. Throughout, correlations were computed
for a timescale of 20 ms.

noise correlations negative or vice versa, they will increase infor-
mation transmission.

structure of TS neurons under stimulation [i.e., the relationship
between signal correlation coefficient (rggnal) and noise correla-
tion coefficient (r,0is)]. As mentioned above, looking at the cor-
relation structure is important because the sign relationship (i.e.,
whether they have the same sign or have opposite signs) between
signal and noise correlations strongly influences whether correla-
tions are beneficial or detrimental to information transmission
(Averbeck et al.,, 2006). Specifically, if signal and noise correla-
tions are either both positive or negative, then this will reduce in-
formation. In contrast, if signal correlations are positive and

In general, signal correlations are correlations that are
induced by two neuron populations receiving a common signal
(Fig. 5a). We found that signal correlations across our datasets
ranged between —0.73 and 0.84, with mean magnitudes of 0.07
* 0.09. Interestingly, ggna magnitudes decreased with increas-
ing physical distance for pairs consisting of all response classes
except “ber-ber” and “cr—cr” pairs (Fig. 5b; Pearson correlation
coefficient between rggnq and distance: ber-ber pairs: —0.16,
p=0.17; cr—cr pairs: —0.51, p=0.07). A similar relationship was
seen when only considering neuron pairs whose correlation
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Materials and Methods), 7ggna significantly
decreases (0.05 = 0.06; one-way ANOVA;
df=3, F=27.74, p=8.12 * 10~ ", Bonferroni
corrected), while e significantly increases
(007 = 0.06; one-way ANOVA: df=3,
F=27.74, p=0.02, Bonferroni corrected) with
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Tsignal ad 7poise being significantly different from
each other (one-way ANOVA: df=3, F=27.74,
p=555 % 107", Bonferroni corrected).
Furthermore, we found no significant relation-
ship between 7,,0;s. and physical distance for all
but br-br pairs (Fig. 5f; Pearson correlation coef-
ficient between 7,4 and distance: “br-br”
pairs: —0.15, p=3.7 * 10~ °). A similar rela-
tionship was seen when only considering
neuron pairs that have correlation values sig-
nificantly different from zero (Pearson corre-
lation coefficient between rgign.1 and distance:
br-br pairs: —0.16, p=3.49 * 10°). In gen-
eral, 7,05 magnitude was on average similar
for pairs with small physical distances (Fig.
5f,¢ <100 pm; 0.07 = 0.06) and with large
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within and across TS layers (Carr et al., 1981;
Carr and Maler, 1985, 1986). To better illus-
trate this result, we computed the residuals of
<. neuronal responses to chirp stimuli, which
are the components of neuronal responses
that cannot be explained by the stimulus (see
Materials and Methods). Indeed, residuals for

0

~100 0
time (ms)

100

Figure 4.

5
1+t spike latency (ms)

TS single neuronal responses to chirp stimuli are highly heterogeneous. a, Raster plots and time-depend-

neuron pairs that are close to one another
(Fig. 5¢) or farther away from one another
(Fig. 5h) were similarly correlated.

Opverall, we found that signal and noise cor-

100

ent firing rate responses of four example midbrain neurons to different chirp waveforms (shaded box). The first neuron
(red) strongly responded to the chirp waveform in a more or less invariant manner but not at all to the beat. The second
(purple) responded to the chirp waveform but also phase locked to the beat. As such, the phase reset of the beat because
of the chirp waveform also altered the response of this neuron. The third neuron (blue) responded to the beat but not to
the chirp. The fourth neuron (yellow) did not respond to either the beat or the chirp. b, Left, Schematic of how response
latencies were estimated for the first spike (magenta) occurring after a chirp onset (green dotted vertical line). Right,
Probability distributions of the first spike latencies of the four neurons response classes (nr, yellow; br, blue; ber, purple;
a, red). Inset, Boxplots showing the spike latencies obtained from the four response classes. The first spike latencies for
ber neurons are significantly lower than those of all other response classes (right inset; one-way ANOVA: df =3,
F=52.66, oy = 2.35 % 10725, P = 3.75 % 107", Phese = 475 107, Bonferroni corrected).

relations were largely independent of chirp
attributes. Indeed, signal and noise correla-
tions were distributed in a similar manner for
all chirp stimuli considered in the current
study (ggnar: Kruskal-Wallis, p = 0.2784; 75!
Kruskal-Wallis, p=0.99). Figure 6a shows the
relationship between signal and noise correla-
tions when varying chirp amplitude. Overall,
signal and noise correlations were independ-

values were significantly different from zero (Pearson correlation
coefficient between rggna and distance: ber-ber pairs: —0.17,
p=0.16; cr—cr pairs: —0.51, p=0.070). In general, gnq magni-
tude was high on average for neurons that were in close proxim-
ity (Fig. 5b,c; <100pm, 0.09 = 0.13) and low for pairs of
neurons that were further apart (Fig. 5b,d; >700 pum, 0.04 *
0.04). Indeed, neurons that were located close to one another
tended to display more similar responses to chirp stimuli than
neurons that were located farther apart (Fig. 5, compare ¢, d).
When looking at noise correlations, which arise when two
neuronal populations receive common input from a neuronal
population that displays trial-to-trial variability to repeated stim-
ulus presentations (i.e., “noise”; Fig. 5e), we found that these
ranged between —0.50 and 0.74 with mean magnitudes of 0.06 =
0.05. The magnitudes of rggn. Were significantly higher than
those of rhoee (one-way ANOVA: df=3, F=774, p=0.04,
Bonferroni corrected). However, when only considering pairs that
have correlation values significantly different from zero (see

ent of one another (Pearson correlation coeffi-

cient between rggna and fyeieer —0.014;
p=0.15) with signal correlations (scy,;) being significantly higher
than noise correlations (nc,,) on average for all possible pairs
and significantly lower for neuron pairs that have correlation val-
ues significantly different from zero (scresp NCresp; See Materials
and Methods; Fig. 6b; one-way ANOVA: df=3, F=32.16, pio =
9.93 * 10 °, Presp = 9.68 10~ ™, Bonferroni corrected).
Qualitatively similar results were obtained when varying chirp
duration (Fig. 6¢: Pearson correlation coefficient between rggnal
and 7,0e: —0.014; p=0.06; Fig. 6d: one-way ANOVA: df=3,
F=30.70, piot = 0.005, presp = 1.57 * 10~ Bonferroni corrected)
and chirp phase (Fig. 6e: Pearson correlation coefficient between
Tsignal aNd Tyoise: —0.02; p=0.14; Fig. 6f: one-way ANOVA: df =3,
F=33.97, pror = 0.02, pregp = 3.55 * 10, Bonferroni corrected).

Decoding information from linear summation of midbrain
neuronal activities

We next quantified the performance of TS neuronal populations
at encoding chirps with different attributes and first considered
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Figure 5. Signal correlations decrease with physical distance while noise correlations are independent of physical
distance. @, Schematic showing a hypothetical scenario in which a common stimulus is received by two afferent hind-
brain neuron populations (gray circles). In this case, correlations between neuron populations “1” and “2” (black
circles) will be exclusively because of the common stimulus and are referred to as signal correlations. b, Signal correla-
tion magnitudes are on average higher in magnitude between pairs with small physical distance (<100 pm) than in
pairs with large physical distances (=700 pum). The colored dots indicate the relation of signal correlation magnitudes
and physical distance of same response type pairings (nr—nr, yellow; br—br, blue; bar—ber, purple; cr—cr, red) as well
as mixed pairings (black). The two labeled circles indicate the relation of signal correlation magnitudes and physical
distance of the example pairs shown in ¢ and d. Each datapoint corresponds to one pair for one stimulus waveform. c,
An example pair of br TS neurons with small physical distance (83 pum) displays a signal correlation of 0.53 in response
to a given chirp stimulus (top, black) because their PSTHs are similar to each other (middle, neuron 1; bottom, neuron
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that the activities of TS neurons are summed lin-
early (ie., equally weighted; Fig. 7a). Combined
responses to different stimuli were compared
using a distance metric (see Materials and
Methods). Next, to determine whether a given
response was correctly predicted as having been
elicited by a given stimulus, the discrimination
performance was computed from the confusion
matrix whose element ij gives the conditional
probability that a response generated by stimulus
i is classified as being generated by stimulus j.
The diagonal elements thus represent correct
assignments while off-diagonal elements instead
represent incorrect assignments. Thus, if our
classifier displayed 100% correct performance,
then the diagonal of the confusion matrix would
be unity with all off-diagonal elements zero. As
such, we quantified the performance by taking
the average value of the diagonal elements (see
Materials and Methods). To maximize perform-
ance, we would expect that the sets of responses
elicited by different chirp stimulus waveforms
would be as distant from one another as possible,
while making the size of each set (i.e., the trial-
to-trial variability in the response) as small as
possible (Fig. 7b).

To quantify the impact of noise correlations,
we compared the performances of the equally
weighted summed neuronal activities before

«—

2). The gray dots show the spiking activity of both neurons to
repeated presentations of the chirp stimulus (top, black). d, An
example pair of br TS neurons with large physical distance
(1005 pm) displays a signal correlation of 0.19 in response to a
chirp stimulus (top, black) because their PSTHs are more dissimilar
to each other (middle, neuron 1; bottom, neuron 2). The gray dots
show the spiking activity of both neurons to repeated presentations
of the same chirp stimulus (top, black). e, Schematic showing a hy-
pothetical scenario in which a stimulus is received by one afferent
neuron hindbrain population (gray circle) that also receives a noise
input, which then projects to two TS neuronal populations “1” and
2" (black circles). In this case, correlations between neuronal pop-
ulations “1” and “2” will not only be because of the stimulus (i.e.,
signal correlations), but will also be because of the noise received
by the afferent neuronal population (i.e., noise correlations). f,
Noise correlation magnitudes are on average independent of the
physical distance between neurons. The colored dots indicate the
relation of noise correlation magnitudes and physical distance of
same response type pairings (nr—nr, yellow; br-br, blue; bar—bar,
purple; cr—cr, red) as well as mixed pairings (black). The two la-
beled circles indicate the relation of noise correlation magnitudes
and physical distance of the example pairs shown in g and h. Each
datapoint corresponds to one pair for one stimulus waveform. g,
An example pair of br TS neurons with small physical distance
(77 um) displays a noise correlation of 0.28 because their residuals
covary within the chirp window of 100 ms (top right, neuron 1;
bottom right, neuron 2) as shown for five representative trials to a
given chirp stimulus. Also shown are the PSTHs for the same trials
(top and bottom left). h, An example pair of br TS neurons with
large physical distance (820 ptm) displays a noise correlation of
0.25 because their residuals covary within the chirp window of
100 ms (top right, neuron 1; bottom right, neuron 2) as shown for
five representative trials to the same chirp stimulus. Also shown
are the PSTHs for the same trials (top and bottom left).
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Figure 6. Noise and signal correlations are independent of the chirp and of one another. a, Signal correlations as a
function of noise correlations obtained when varying chirp duration. The color code indicates the individual stimulus IDs.
The summed probability distributions for signal (right, gray) and noise (top, gray) are also shown. The diamond shows the
mean signal and noise correlations. b, Boxplot showing the magnitudes of signal (filled) and noise (hollow) correlation
coefficients for all possible pairs (black) and for pairs that displayed correlation that have correlation values significantly dif-
ferent from zero. When considering all possible pairs, signal correlations were significantly higher than noise correlations
but lower when considering pairs with correlation values significantly different from zero (one-way ANOVA: df=3,
F=32.16, prot = 993 % 10>, presp = 9.68 * 10~ ", Bonferroni corrected). The orange dots indicate the mean values. ¢,
Same as a but for chirp duration. d, Boxplot showing the magnitudes of signal (filled) and noise (hollow) correlation coeffi-
cients for all possible pairs (black) and for pairs that have correlation values significantly different from zero. Signal correla-
tions were significantly lower than noise correlations when considering all pairs or just pairs for which correlation
coefficients were significantly different from zero (one-way ANOVA: df = 3; F=30.70, pyo; = 0.005, pesp = 1.57 * 107"
Bonferroni corrected). The orange dots indicate the mean values. e, Same as a but for chirp phase. f, Boxplot showing the
magpnitudes of signal (filled) and noise (hollow) correlation coefficients for all possible pairs (black) and for pairs that have
correlation values significantly different from zero. In each case, signal correlations were significantly lower than noise cor-
relations (one-way ANOVA: df =3; F=33.97, piot = 0.02, presp = 3.55 * 1076, Bonferroni corrected). The orange dots
indicate the mean values.
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and after randomly shuffling neuronal
responses with respect to stimulus trials,
which will eliminate noise correlations
(see Materials and Methods). Indeed, we
verified that the noise correlations com-
puted after shuffling were not signifi-
cantly different from zero (see Materials
and Methods). Our results show that
the variability in the equally weighted
summed neuronal responses were signifi-
cantly lower after shuffling (Fig. 7c: one-
way ANOVA: df=3, F=1.12 * 10%
p=1.57 % 10”7, Bonferroni corrected). This
indicates that the variability in the responses
can be better averaged away when noise cor-
relations are not present (Zohary et al., 1994)
and suggests that noise correlations have a
detrimental effect with respect to discrimina-
tion performance overall. The top panel of
Figure 7d compares the confusion matrices
obtained for different population sizes before
(top) and after (bottom) randomly shuffling
to eliminate noise correlations. Neuronal
populations were constructed in the follow-
ing way: first, cr neurons were considered,
then ber neurons were added, then br neu-
rons, and finally nr neurons were added. In
general, adding more neurons gave rise to
better performance as values on the main di-
agonal of the confusion matrices increased
overall (Fig. 7d, top) as quantified by
increased performance (Fig. 7d, middle).
Noise correlations had a detrimental effect
on performance (Fig. 7d, middle inset: one-
way ANOVA, df=3, F=721.3, p=2.38 *
107"  Bonferroni  corrected). Inter-
estingly, the greatest improvement in per-
formance was seen when bcr neurons and, to
a lesser extent, “br” neurons were added to the
population, while adding nonresponsive neu-
rons actually decreased performance slightly
(Fig. 7d, middle). This is further seen when
comparing same-size populations of the dif-
ferent cell categories (Fig. 7d, bottom). As
such, our results show that noise correlations,
although overall small in magnitude, can have
a significant effect on population coding by
large neural populations, which is expected
(Schneidman et al., 2006).

We also systematically varied the time-
scale used to compute the distance between
spike trains (see Materials and Methods).
Low values of timescale take precise spike
timing into account while larger values take
slower changes in firing rate (van Rossum,
2001; Jamali et al, 2016, 2019). Overall,
maximum performance was observed for a
timescale near 6 ms (Fig. 7e), indicating that
information is contained in the precise spike
timing of T'S neurons. Overall, performances
computed on the shuffled responses were
significantly greater than those obtained
before shuffling for all timescales tested (Fig.
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Figure 7.  Noise correlations have detrimental effects on discrimination performance when taking the equally weighted sum of neuronal activities. @, Schematic showing how the population
response to each stimulus (M, — M) was obtained by summing the responses (M) of each neuron to a given chirp stimulus for the equally weighted case. b, Theoretical assumption illustrating that
the population response variability to individual stimuli should be minimized while the response distances should be maximized to optimally discriminate among individual stimuli. ¢, Variability prob-
ability densities with (black) and without (gray) noise correlations. The response variability to our 36 different chirp stimuli is significantly lower when noise correlations have been removed from
our population by shuffling compared with the same population with noise correlations (one-way ANOVA: df =3 F=1.12 * 10°, p=1.57 107, Bonferroni corrected). d, Top, Confusion matrices
showing the conditional probability of assessing an equally weighted population response to be caused by stimulus / when it was actually caused by stimulus j computed from metric-space analysis
using the van Rossum measure with timescale 7 = 6 ms for population sizes of 2 (left), 8 (middle left), 16 (middle right), and 27 (right) neurons with (top) and without (bottom) noise correlations.
The white dashed lines indicate borders between blocks of stimuli for which a given attribute (e.g., amplitude, duration, phase) was varied. Middle, Discrimination performance as a function of pop-
ulation size with (black) and without (gray) noise correlation for the equally weighted case. The dashed line indicates chance level (1 of 36 stimuli). Note that the jumps in performance occur when
neurons with better discrimination performance are added. Inset, Performance with (black) and without (gray) noise correlations for population size of 27 were significantly different from one
another (with noise correlations vs without noise correlations; one-way ANOVA: df =3, F=71.69, p=2.38 10~ ", Bonferroni corrected). Bottom, Discrimination performance as a function of pop-
ulation size with (solid) and without (dashed) noise correlation for the equally weighted case when neuronal populations consisting only of neurons of a given type (i.e., nr, br, ber, and cr) are con-
sidered. e, Top, Same as ¢, but now for a population size of n =27 neurons with (top) and without (bottom) noise correlations but for timescales of 1 ms (left), 6 ms (middle), and 100 ms (right).
Middle, Discrimination performance of the equally weighted population as a function of timescale with (black) and without (gray) noise correlations. The dashed line indicates chance level (1 of 36
stimuli). Bottom, Discrimination performance as a function of timescale with (solid) and without (dashed) noise correlation for the equally weighted case when neuronal populations consisting only
of neurons of a given type (i.e., nr, br, ber, and cr) are considered.

7e, compare black curves, gray curves; t test, p<3.86 * 107°).
Interestingly, when computing performance, almost no cell category
displayed a significant difference in performance with and without
noise correlations, although the performance magnitude greatly var-
ied across the different cell categories (Fig. 7e, bottom).

Performing an unequally weighted sum of TS neuronal
activities gives rise to improved performance and eliminates
the detrimental effects of noise correlations

We next asked whether assigning individual weights to each neu-
ron would give rise to increased discrimination performance.

Weights were either positive or negative and could represent, for
instance, the synaptic weights of connections to a downstream
neuron. This question is particularly interesting here since signal
and noise correlations were independent of one another. As
such, theoretically, one should be able to combine neuronal
activities so as to eliminate redundancy without compromising
trial-averaged neuronal responses. Thus, we considered a de-
coder for which an unequally weighted sum of neuronal activities
was performed (i.e., each neuron was assigned its own weight
before summation; Fig. 8a). To find which combinations of
weights (i.e., “weight vectors”) gave rise to the best performance,
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Figure 8. Taking an unequally weighted sum of neuronal activities greatly improves performance and mitigates the deleterious effects of noise correlations. a, Schematic illustrating how
individual weights were obtained by an iterative EA. First, each neuronal response (M, left, dark red) to a given stimulus (left, pink) is weighted (middle, yellow) and its discrimination perform-
ance is compared with that of the previous iteration. If the discrimination performance is better, the respective weight value is kept; if not, a new weight value is generated by the EA (see
Materials and Methods). This procedure is performed for each agent (middle). Finally, a population response to each stimulus (M; — My, right, green) is generated by summing the unequally
weighted responses, and the discrimination performance of that population is assessed. b, Top, Confusion matrices showing the conditional probability of assessing an unequally weighted neu-
ronal population response as being caused by stimulus / when it was actually caused by stimulus j computed from metric-space analysis using the van Rossum measure with timescale 7 =
6ms for population sizes of 2 (left), 8 (middle left), 16 (middle right), and 27 (right) neurons with (top) and without (bottom) noise correlations. The white dashed lines indicate borders
between blocks of stimuli for which a given attribute (e.g., amplitude, duration, phase) was varied. Middle, Discrimination performance as a function of population size with (black) and without
(gray) noise correlation for the unequally weighted case. The dashed line indicates chance level (1 of 36 stimuli). Inset, Performance with (black) and without (gray) noise correlations for popu-
lation size of 27 were not significantly different from one another in the unequally weighted case (one-way ANOVA: df =3, F=721.3, p=0.64, Bonferroni corrected). Also shown are values
obtained for the equally weighted case for comparison. Bottom, Discrimination performance as a function of population size with (solid) and without (dashed) noise correlation for the
unequally weighted case when neural populations consisting only of neurons of a given type (i.e., nr, br, ber, and cr) are considered. ¢, Top, Same as ¢, but for the same population size
(n =27 neurons) with (top) and without (bottom) noise correlations and for timescales of 1 ms (left), 6 ms (middle), and 100 ms (right). Middle, Discrimination performance as a function of
timescale with (black) and without (gray) noise correlations. The dashed line indicates chance level (1 of 36 stimuli). Bottom, Discrimination performance as a function of timescale with (solid)
and without (dashed) noise correlation for the unequally weighted case when neural populations consisting only of neurons of a given type (i.e., nr, br, bcr, and cr) are considered.

we used an EA (see Materials and Methods) that allowed weight
vectors to “evolve” over “generations” (Fig. 8a; see Materials and
Methods). Figure 8b shows confusion matrices obtained with
(top) and without (second top) noise correlations averaged over
different realizations of the EA. It is important to note that the
EA simulations were performed independently on the raw and
shuffled datasets and that the best weight vectors obtained with
and without noise correlations differed from one another.
Overall, performances obtained using unequally weighted sums
were significantly improved over those obtained using equally
weighted sums (compare Figs. 8b, 7d; Fig. 8b, middle inset: one-
way ANOVA: df=3, F=721.3; with noise correlations equally

weighted vs unequally weighted, p=3.86 * 10> without noise
correlations equally vs unequally weighted, p=1.20 * 1077
Bonferroni corrected). Adding more neurons improved per-
formance overall but the greatest improvement was seen when
ber and br neurons were added to the pool (Fig. 8b, middle).
Adding nr neurons did not give rise to any improvement in per-
formance but did not degrade performance. Interestingly, similar
performances were obtained with and without noise correlations
(Fig. 8b, middle, compare black curves, gray curves; one-way
ANOVA: df=3, F=721.3, p=0.64, Bonferroni corrected), con-
firming our prediction that the deleterious effects of noise corre-
lations seen when considering linear sums could indeed by
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mitigated. This is further seen when compar-
ing same-size populations of the different
cell categories (Fig. 8b, bottom). Varying the
timescale in our distance metric gave rise to
qualitatively similar results as those seen
using linear sums as best performance was
still observed for a timescale of 6ms (Fig.
8¢). We also looked at the effects of increas-
ing chirp evaluation windows on perform-
ance (Fig. 9). We found that larger chirp
evaluation windows also led to higher per-
formances of our TS neuron population
(Fig. 9). This is not surprising because for
larger chirp evaluation windows, a larger
portion of the response to the chirp-induced
phase reset can be considered in the discrim-
ination procedure.

The greater performances obtained using
unequally weighted sums suggest that the de-
coder can effectively better separate responses
to different chirp waveforms as well as mini-
mize trial-to-trial variability, so as to improve
discriminability (Fig. 10a). To test this predic-
tion, we looked at the trial-averaged equally
and unequally weighted summed activities in
response to different chirp waveforms. We
found that, indeed, the trial-averaged
unequally weighted summed activities were
more discriminable from each other than the
trial-averaged equally weighted summed
activities as they displayed greater variation
(Fig. 10b, compare error bands). Fur-
thermore, variability was in general greater
early after stimulus onset compared with late
after stimulus onset (Fig. 10c). Moreover,
when computing trial-to-trial variability, we
found greater values for equally weighted
summed activities than for unequally
weighted summed activities (Fig. 10b,c).
These results are summarized in Figure 10, d
and e. Specifically, the similarity index
between the trial-averaged unequally weighted
summed activities were significantly greater
than those between the trial-averaged equally
weighted summed activities (Fig. 10d; one-
way ANOVA: df=3; F=71.69; with noise
correlations equally weighted vs un-
equally weighted, p=3.19 % 10~* without
noise correlations equally weighted vs
unequally weighted, p=4.55 * 10777
Bonferroni corrected). Moreover, trial-to-
trial variability was significantly lower in
the unequally weighted case with noise
correlations (Fig. 10e: one-way ANOVA:
df=3; F=1.12 * 10% p=0.0001; Bon-jer-
roni corrected) and without noise correla-
tions (Fig. 10e: one-way ANOVA: df=3;
F=1.12 * 10% p= 1.20 * 10°'"; Bonferroni
corrected). Interestingly, while the similarity
index in the unequally weighted case was sig-
nificantly higher for without than with noise
correlations (Fig. 10d: one-way ANOVA:
df=3; F=71.69; p=3.55 = 10~Y; Bonferroni
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Figure 9.  Performance increases for larger chirp evaluation windows. a, Top, Confusion matrices showing the condi-

tional probability of assessing an equally weighted neuronal population response as being caused by stimulus i when it
was actually caused by stimulus j computed from metric space analysis using the van Rossum measure with timescale
7 =6ms, and a population size of 27 neurons for chirp evaluation window sizes of 20 ms (left), 104 ms (middle), and
1000 ms (right) with (top) and without (middle) noise correlations. The white dashed lines indicate borders between
blocks of stimuli for which a given attribute (e.g., amplitude, duration, phase) was varied. Bottom, Discrimination per-
formance as a function of chirp evaluation window with (black) and without (gray) noise correlation for the unequally
weighted case. The dashed line indicates chance level (1 of 36 stimuli). Inset, Performance without noise correlations
plotted against performance with noise correlations for the equally weighted case with color-coded chirp evaluation win-
dow size. b, Top, Same as a, but for the unequally weighted case with (top) and without (middle) noise correlations.
Bottom, Discrimination performance as a function of chirp evaluation window with (black) and without (gray) noise cor-
relations. The dashed line indicates chance level (1 of 36 stimuli). Inset, Performance without noise correlations plotted
against performance with noise correlations for the unequally weighted case with color-coded chirp evaluation window
size.
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Figure 10. Increased performance is because of increased distance between trial-averaged responses as well as reduction in trial-to-trial variability. a, Schematic illustrating the response
space of the equally weighted (bottom, left) and unequally weighted (bottom, right) neuronal population to a given stimulus space (top). The EA optimized the response space such as to mini-
mize response variability while increasing their distances. b, Population PSTHs to three example chirp stimuli (top) with (middle) and without (bottom) noise correlations. Note that the PSTHs
obtained in the unequally weighted (middle, with noise correlations, gray; bottom, without noise correlations, gray) and equally weighted (middle, with noise correlations, black; bottom, with-
out noise correlations, black) cases both tended to follow the stimulus waveform. However, the former displayed greater variation compared with the latter and were thus more discriminable
from one another. ¢, Variability of the unequally weighted population as a function of variability of the equally weighted population with (middle) and without (bottom) noise correlations for
three different chirp stimuli (top). Datapoints are color coded according to their time of occurrence after stimulus onset. d, Boxplots showing the average SI of the population responses with
and without noise correlations for the equally weighted (left) and unequally weighted (right) cases. Sl significantly increased in both cases (with noise correlations, n = 630: equally weighted
(solid black) vs unequally weighted (hollow black); one-way ANOVA: df=3; F=71.69; p=3.19 = 10~* without noise correlations, n = 630: equally weighted (solid gray) vs unequally
weighted (hollow gray); one-way ANOVA: df =3; F=71.69; p=4.55 * 107, Bonferroni corrected). SI was also significantly higher for the unequally weighted population without noise cor-
relations (n = 630; one-way ANOVA: df =3; F=71.69; p=3.55 * 10~ ", Bonferroni corrected). e, Boxplots showing the normalized average response variability of the population responses
with and without noise correlations for the equally weighted (left) and unequally weighted (right) cases within the interquartile range (see Materials and Methods; n =100 data points).
Response variability across all chirp stimuli significantly decreased for equally weighted sums but actually increased for unequally weighted sums when removing noise correlations (equally
weighted: with noise correlations (solid black) vs without noise correlations (solid gray), one-way ANOVA; df = 3; F = 1.12 * 10% p = 1.57  10~7; unequally weighted: with (hollow black)
vs without noise correlations (hollow gray, one-way ANOVA; df = 3; F = 1.12 % 10% p = 6.56 * 10>, Bonferroni corrected). Note, that the response variability is significantly higher for with
and without noise correlations in the equally weighted case (left) compared to the unequally weighted case (right) (with noise correlations: equally (left, solid black) vs unequally weighted
(right, hollow black); one-way ANOVA; df = 3; F = 1.12 * 10% p = 0.0001, Bonferroni corrected; without noise correlations: equally (left, solid gray) vs unequally weighted (right, hollow
gray): one-way ANOVA; df = 3; F = 112 % 10% p = 1.20 * 10", Bonferroni corrected). *Indicates statistical significance at the p = 0.05 level using a one-way ANOVA with Bonferroni
correction.

corrected), the trial-to-trial variability was significantly higher after = 0.72, py; e = 0.35, pprcr = 0.05, pperor = 0.005; least significant
shuffling (Fig. 10e: one-way ANOVA: df=3, F=1.12 = 10*,  difference (LSD) corrected]. Figure 11b (left) shows the same
p=6.56 * 10 % Bonferroni corrected). This indicates that the  without noise correlations. The weights assigned to ber and br
EA identified solutions for each case (i.e., with and without  neurons were on average significantly higher than the weights
noise correlations), which are different from one another,  assigned to nr and cr neurons (Fig. 11b, right; one-way ANOVA:
as a poorer similarity index is compensated for by a more  df=3, F=3.9, pyrpr = 0.02, prrber = 0.02, prrer = 0.97, Porber =

beneficial trial-to-trial variability. 0.97, por-er = 0.02, pperer = 0.02, LSD corrected). Overall, weight
vectors displayed clear similarity with one another. Notably,
Different weight vectors can optimize performance some neurons contributed more to discrimination performance

Finally, we investigated variability in the best weight vectors  than others (e.g., one br neurons was almost always assigned a
identified by our EA algorithm (i.e., those for which performance  weight near unity). We note that this single neuron displayed a
is best for a given simulation). For this analysis, we eliminated  discrimination performance of 0.63 = 0.01. Not including this
“trivial” degeneracies in the data, such as those introduced by  particular neuron and using the evolution algorithm to optimize
multiplying a given weight vector by a nonzero constant, which  the weights gave rise to a population performance of 0.55 = 0.04
does not alter performance (see Materials and Methods). Figure  (with noise correlations) and 0.51 * 0.05 (without noise correla-
11a (left) shows a boxplot of the absolute weights obtained for 20 tions), respectively. Importantly, this did not affect the qualitative
different simulations for each neuron sorted for performance for ~ nature of our results, as the discrimination performance of
each response class with noise correlations. The weights assigned  the unequally weighted summed activities was still significantly
to ber and br neurons were on average significantly higher than  higher than that of the equally weighted activities (with noise
the weights assigned to nr and cr neurons [Fig. 114, right; one-  correlations: equal weights, 0.26 * 0.01; unequal weights, 0.55 *
way ANOVA: df =3, F=4.98, pur b = 0.02, prrver = 0.002, poror  0.04; without noise correlations: equal weights, 0.34 = 0.02;
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unequal weights, 0.51 * 0.05; one-way
ANOVA: df =3, F= 350.71, pyyjnc = 1.49 %
107, puso ne = 1.08 * 10, Bonferroni
corrected).

However, there were also some nota-
ble differences between the obtained
weight vectors. For example, one cr neu-
ron was assigned a greater range of
weights (Fig. 114, left). Qualitatively simi-
lar results were obtained without noise
correlations (Fig. 11b, left). This suggests
that there exist multiple weight vectors
that give rise to the same level of perform-
ance. To test this hypothesis, we took
advantage of the fact that similar a per-
formance was obtained with and without
noise correlations (Fig. 11¢, compare black
curves, gray curves). We thus used princi-
pal component analysis (see Materials and
Methods) to decompose weight vectors
into their first three components, which
explain most of the variance. It is important
to note that we used the same principal
components for weight vectors obtained
with and without noise correlations. As
such, any difference seen has to be because
of a difference that existed between both
datasets. We then plotted “trajectories” (i.e.,
how the first three principal components
change based on sorting according to
increasing performance). We found that
these differed from one another (Fig. 114,
inset; one-way ANOVA: df=2, F=14.15,
Pwiwlo, wishuffled = 1.26 * 1075’ Pwiwo, wio shuf-
fed = 2.74 * 107, Bonferroni corrected),
thereby suggesting that different weight
vectors can indeed give rise to the same
performance. The correlation coefficient
between weight vectors increased with
increasing performance (Fig. 11e), suggest-
ing that the number of different combina-
tions of weights that give rise to a given
performance decreases when higher levels
of performance are considered. The exis-
tence of nontrivial degeneracies is impor-
tant as it makes finding one such solution
easier, as discussed further below.

Discussion

Summary of results

We investigated how midbrain electro-
sensory neuronal populations encoded
natural electrocommunication stimuli (i.
e., chirps). These chirps consist of highly
heterogeneous transient waveforms and
furthermore give rise to different phase
advances of the underlying background

beat. To do so, we recorded the activities of multiple midbrain
neurons simultaneously in response to chirps whose attributes
were varied systematically. First, in the absence of stimulation,
we found that the activities of midbrain neurons were correlated,
and that such correlations decayed in magnitude with increasing
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different. a, Left, Boxplot of the normalized absolute weights obtained by the EA and sorted for increasing performance for
each response class (yellow, nr; blue, br; purple, bcr; red, cr) over 20 EA realizations (simulations) for a neuronal population
(n=27) with noise correlations. Right, Probability densities of weights obtained for each neuron type. Inset, Boxplots of
weights for each neuron type. *Indicates statistical significance at the p=0.05 level using a one-way ANOVA with
Bonferroni correction. b, Same as a but for the same neuronal population (n=27) without noise correlations. ¢,
Discrimination performance for the unequally weighted neuronal population obtained after 20 EA simulations with (black)
and without (gray) noise correlations sorted in ascending order. Note that both curves overlap. The dashed line indicates
chance level (1 of 36 stimuli). d, Vector space of the first three principal components representing >60% of the observed
variability computed from the unequally weighted neuronal populations with (black) and without (gray) noise correlations.
The size of the circles (with noise correlations) and diamonds (without noise correlations) represent the magnitude of dis-
crimination performance (small symbols, low discrimination values; big symbols, large discrimination values). The numbers
within the symbols indicate the first (1) and last (20) sorted simulation number. Inset, The euclidian distance between the
w/ and w/o trajectories in pc space is significantly higher than that between the shuffled w/ (one-way ANOVA; df=2;
F=14.15; p=1.26 * 10~°) and the shuffled w/o (one-way ANOVA: df = 2, F = 1415, p = 2.74 = 10). , Pearson correla-
tion coefficient of sorted weight vectors with and without noise correlations as a function of the geometric mean of the
sorted weight vectors with and without noise correlations. Note the positive relationship between the two quantities
(Pearson correlation coefficient: 0.74, p=2 % 10~%).

physical distance, suggesting that midbrain neurons will display
noise correlations under stimulation. Under stimulation, we
found that neural responses, while highly heterogeneous, could
be classified into four different groups. The cr neurons tended to
respond only to the transient chirp with excitation and
responded only weakly or not at all to the background beat, while
br neurons tended to respond only to the background beat and
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weakly or not at all to the transient chirp. We found that br neu-
rons responded to the different phase advances of the beat
caused by the chirp and could thus discriminate between chirps.
The bcr neurons responded to both beat and chirp, while nr neu-
rons did not respond to either the beat or chirp. We next investi-
gated the correlation structure displayed by midbrain neuronal
populations in response to chirp stimuli. Overall, we found that
signal correlations between midbrain neurons decreased with
increasing physical distance for all response classes except ber-
ber and cr-cr pairs when considering all possible pairs as well as
when only considering pairs with correlation values significantly
different from zero. As such, midbrain neurons located closer to
one another tended to display more similar responses to a given
chirp stimulus than midbrain neurons located farther apart.
However, noise correlations were not dependent on physical dis-
tance for most response classes except br-br pairs when consid-
ering all possible pairs as well as when only considering pairs
with correlation values significantly different from zero. Similar
results have been found in previous modeling and experimental
studies stating that neurons in close vicinity or of the same clus-
ter tend to display larger noise correlations than neurons that are
farther apart (for review, see Doiron et al., 2016). This is because
closer neurons presumably share more common presynaptic
neurons, as suggested by a modeling study (Kriener et al., 2009).
Interestingly, both signal and noise correlations did not depend
on the particular chirp stimulus presented and were furthermore
independent of one another. This lack of dependence on stimu-
lus waveform is unexpected since previous studies have shown
that noise correlations generally depend on stimulus attributes
(Snyder et al, 2014; Tan et al, 2014; Franke et al, 2016;
Zylberberg et al., 2016). We next investigated the performance of
a classifier at discriminating between different chirp waveforms
using the combined activities of midbrain neurons. When activ-
ities were combined using an equally weighted sum, we found
that discrimination performance was greatest when combining
the activities of ber neurons, followed by br neurons. Combining
the activities of cr and nr neurons gave rise to poor performance
overall. Noise correlations had a detrimental effect on perform-
ance both when varying population size as well as timescale.
Next, we used an EA to find whether assigning each neuron a
given weight before summation would improve performance.
Our results show that considering unequally weighted sums of
neuronal activities gave rise to significant improvement in per-
formance, which was achieved by making trial averages to differ-
ent chirp waveforms more discriminable from one another, as
well as reducing trial-to-trial variability, which was achieved in
part by strongly attenuating, if not eliminating, noise correla-
tions. Overall, the greatest discrimination performance was
achieved by br and bcr neurons, indicating that the algorithm
favored different responses because of the different phase advan-
ces of the beat caused by chirp stimuli with different attributes,
rather than the responses to the actual transient chirp stimulus
waveform itself. Indeed, combining the activities of cr neurons in
an equally or unequally weighted manner gave rise to poor dis-
crimination performance that was barely above chance or that
was obtained using only nr neurons. Interestingly, we found that
there exist nontrivial degeneracies in weight vectors that give rise
to a given performance. Specifically, while it is clear that multi-
plying all weights by the same nonzero constant will not affect
discrimination performance, which is a trivial degeneracy. As
such, our results show that there are different combinations of
weights that are nontrivially related that give rise to similar dis-
crimination performance. We thus conclude that heterogeneous
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midbrain neuronal populations transmit information to down-
stream brain areas that enable reliable discrimination of chirp
stimulus waveforms if these activities are combined so as to
include neurons that respond differentially to the different phase
advances of the beat caused by different chirp stimuli, rather
than to the chirp stimulus waveform itself. As such, our results
have important implications for understanding how downstream
brain areas decode information transmitted by heterogeneous
neural populations about complex natural stimuli.

Heterogeneities in midbrain neuronal populations and
implications for population coding

Our results are the first to investigate the effects of heterogene-
ities within TS neurons on population coding of natural electro-
communication stimuli. Specifically, they show that the neurons
that respond most selectively to chirp stimuli (i.e., cr neurons)
are actually among the least useful at being able to discriminate
between different chirps, with performance barely above that of
nonresponding neurons. Rather, it is the activities of neurons
that respond to the beat and perturbations of the beat (i.e., the
phase advance) by the chirp that make the greatest contribution
toward discriminability. Similar to cr neurons, nr neurons also
did not contribute to the discrimination performance. The exis-
tence of such nr neurons is, however, expected given that previ-
ous studies have shown that a significant subpopulation of TS
neurons respond selectively to a given stimulus category. For
example, some TS neurons respond selectively to moving objects,
or envelopes, or chirps (Chacron et al., 2009; Chacron and
Fortune, 2010; Khosravi-Hashemi et al., 2011; Vonderschen and
Chacron, 2011; McGillivray et al., 2012; Sproule et al., 2015). In
contrast, other TS neurons respond more broadly to different
stimulus categories in a manner that is reminiscent of that dis-
played by ELL neurons (Vonderschen and Chacron, 2011;
Sproule et al,, 2015). The identified br and bcr neurons in the
current study most likely correspond to “ELL-like” neurons, and
our results show that it is these neurons that make the greatest
contribution to discrimination performance. Importantly, neu-
rons that respond selectively and nonselectively to sensory input
were found throughout all layers of TS and can even coexist
within the same layer (Sproule et al, 2015). As such, it is
expected that heterogeneous neural responses similar to those
reported here will be observed not only when recording across
layers but also within a given layer. Further studies are needed to
test this prediction.

We note that our results showing that cr neurons are the least
useful to discriminate between different chirp waveforms in no
way implies that these neurons do not have a function. Rather,
because of their invariant responses to chirps, such neurons are
most reliable at reporting the occurrence of a chirp rather than
its detailed characteristics (i.e., feature detection; Vonderschen
and Chacron, 2011; Aumentado-Armstrong et al., 2015; Metzen
etal., 2016).

While the fact that we found that a few neurons contributed
the most toward improving discrimination performance is similar
to what has been seen in other systems when considering sparse
coding of natural stimuli (Mizrahi et al., 2014; Yoshida and Ohki,
2020), there are important differences. This is because studies in
other systems have shown that the best-performing neurons were
most often those that best responded to the stimuli (Mizrahi et al.,
2014; Yoshida and Ohki, 2020). In contrast, our results show that
the neurons that are most useful toward discrimination are not
those that best responded to the chirp stimuli.
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Optimized decoding by weighted summed activities

Our results have shown that taking an unequally weighted sum
of neuronal activities provided much better discriminability of
chirp waveforms than an equally weighted sum. Such “combina-
torial codes” can recover much more information about the
stimulus and are thus advantageous (Seung and Sompolinsky,
1993; Sanger, 1996; Abbott and Dayan, 1999; Reich et al., 2001;
Osborne et al., 2008; Liu et al., 2013; Pitkow et al., 2015). Because
of this, together with the fact that TS neurons display large heter-
ogeneities in their responses, it is not surprising that an
unequally weighted sum performs better than an equally
weighted sum. What was more surprising was how improved
performance was achieved. Indeed, we found large overlap
between the distribution of weights for all cell classes, indicating
that the optimized weights for combinatorial code are obtained
nontrivially.

On the one hand, combinatorial codes are physiologically re-
alistic as the weights assigned to each neuron could, for example,
represent the strength of synaptic connections to a downstream
neuron. On the other hand, as one must then keep track of the
identity of individual neurons, it is difficult to conceive how the
brain would implement them. One possibility is that the weights
should be proportional to the reliability of each individual neu-
ron, which then does not require explicit knowledge of neuron
identity and does not lead to information loss (Sharpee and
Berkowitz, 2019). Our results suggest that another possibility is
that, because there exist multiple solutions that give rise to a
given performance (i.e., a degeneracy of solutions), it should the-
oretically be easier to find one such solution. Degeneracy is also
expected to provide robustness to combinatorial codes, as seen
for homeostasis (Turrigiano, 2011). This has, to our knowledge,
not been explicitly demonstrated before.

Another important issue pertains to how a sensory system
would actually learn the weights that allow for the best discrimi-
nation between different waveforms. It is likely that such learn-
ing would occur during development as the animal is exposed to
various stimuli during interactions with conspecifics and hetero-
specifics. Studies performed in songbirds have shown that spe-
cific learning rules can optimize information transmission
(Jeanne et al,, 2013), and we hypothesize that similar learning
rules would lead to decoding that maximizes performance. It is
likely that learning requires the forebrain, which has recently
been the focus of much investigation (Giassi et al., 2012a,b,c;
Trinh et al.,, 2016; Wallach et al., 2018; Fotowat et al., 2019).

Independence of signal and noise correlations in TS neurons
Our results show that signal and noise correlations were inde-
pendent of one another in midbrain electrosensory neurons. It is
important to note that the correlation structure observed in TS
strongly differs from that seen for ELL neurons for which there
is a positive relationship between signal and noise correlations
(Hofmann and Chacron, 2018), which resembles that seen in
other systems (Averbeck and Lee, 2006; Liu et al., 2013). Since
correlation structures in both ELL and TS neurons were obtained
for stimuli that had similar contrasts, the observed differences
between the correlation structures in TS and ELL are unlikely to
be because of the fact that all the stimuli used in this study had
similar contrasts. Rather, it should be noted that the correlation
structures seen for ELL neurons and in other systems were
obtained for artificial stimuli. As such, it is conceivable that the
independence of signal and noise correlations seen for midbrain
neurons in response to natural electrocommunication stimuli is
a signature of optimized coding at the population level based on
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an adaptation to natural stimulus statistics. In particular, we
hypothesize that such a correlation structure enables a combina-
torial code for which any detrimental effects of noise correlations
can be eliminated by suitably choosing weights without compro-
mising signal quality. Further studies are needed to test these
predictions.

We further hypothesize that the independence of noise corre-
lations on recording distance is because of horizontal (i.e., within
layer) and vertical (i.e., across layers) connections within TS
(Carr et al.,, 1981; Carr and Maler, 1985) that are activated under
stimulation. This is because such long-range connections would
have a “normalizing” effect rather than making noise correla-
tions occur because of local connections between neurons.
Alternatively, such correlations could also be because of descend-
ing projections from the forebrain (Giassi et al., 2012a,b,c). It is
well known that noise correlations are strongly dependent on
inputs received by neural populations, such as the relative bal-
ance between excitation and inhibition (Doiron et al., 2016).
Further studies are needed to understand the origins of noise
correlations within the TS.

Discrimination of chirp waveforms: implications for
behavior

Our results provide an answer to the ongoing debate as to
whether different chirp stimulus waveforms can be discriminated
from another by ELL neurons. Indeed, on the one hand, it has
been argued that, based on the responses of ELL neurons, chirps
could not be discriminated from one another (Marsat et al,
2009; Allen and Marsat, 2018). However, this analysis relied on
simple summation of neuronal activities and was furthermore
based on nonsimultaneous recordings that were later combined,
which ignores the effects of noise correlations. We hypothesize
instead that considering an unequally weighted sum of ELL neu-
ron activities will reveal much better discrimination perform-
ance. This is because the data-processing inequality states that
information can only be retained or lost, but never recovered
(Cover and Thomas, 1991); our results imply that the activities
of ELL neuronal populations, which provide afferent input to TS
neurons, can be used to reliably discriminate between different
chirp stimulus waveforms. Further, we hypothesize that ELL py-
ramidal neurons will display noise correlations under chirp stim-
ulation. This is because noise correlations were seen in response
to other stimuli (Chacron and Bastian, 2008) and the fact that
ELL pyramidal cells display correlations between their activities
in the absence of stimulation (Hofmann and Chacron, 2017).

It is important to note here that, while our results demon-
strate that midbrain neuronal populations transmit information
that can reliably be used by downstream brain areas to discrimi-
nate between different stimulus waveforms, they do not demon-
strate that the organism actually takes advantage of this. This is
because information is only useful to an organism if it is actually
decoded. Previous studies have demonstrated that weakly electric
fish display echo responses to chirp stimuli (Hupé and Lewis,
2008; Gama Salgado and Zupanc, 2011). These consist of a fish
“responding” to the chirp of the other fish with a chirp of its
own, which consists of modulations of its own EOD. Previous
studies have shown that weakly electric fish displayed similar
echo responses when chirp attributes such as beat phase as well
as amplitude and duration were varied (Metzen et al., 2016,
2020). While this suggests that the activities of invariant TS neu-
rons are decoded downstream, these results do not demonstrate
that weakly electric fish cannot distinguish between different
chirp stimulus waveforms. Importantly, other behavioral assays,
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such as habituation with a given chirp waveform and a test with
a different chirp waveform (Allen and Marsat, 2018) or a two-al-
ternative forced-choice task (Graff et al., 2004), show that weakly
electric fish can distinguish between different stimuli but have
not been used to specifically test whether animals can distinguish
between chirp stimulus waveforms with different attributes (e.g.,
amplitude). Further studies investigating how the activities of TS
neurons are decoded in downstream brain areas as well as using
different behavioral assays are thus needed to test whether
weakly electric fish can indeed discriminate between different
chirp waveforms.

Implications for other systems

Our results provide several new insights that we expect will be
applicable to other systems. This is because of known anatomic
and physiological similarities between the electrosensory system
and sensory modalities in mammals (e.g., vision, audition, ves-
tibular; Clarke et al., 2015). Indeed, as mentioned above, our
results show that it is not necessarily the neurons that respond
most selectively to a given sensory input that are best at discrimi-
nating between different stimulus waveforms. This has impor-
tant implications for object-background segregation (Olveczky
et al., 2003), which must be performed by all modalities to some
extent.

While it is now widely agreed that the effects of correlations
on information transmission ultimately depend on how neuronal
activities are integrated by downstream brain areas (Cohen and
Kohn, 2011; Kohn et al.,, 2016). To this end, studies have used
various decoders to predict the effects of correlations. In particu-
lar, linear decoders have mostly been used because one can find
the best solution analytically (Seung and Sompolinsky, 1993;
Zohary et al., 1994; Sanger, 1996; Abbott and Dayan, 1999; Liu et
al., 2013; Pitkow et al,, 2015). It is, however, important to note
that nonlinear decoders can, in theory, extract much more infor-
mation than linear decoders (Shamir and Sompolinsky, 2004).
This is in part because nonlinear decoders can take into account
information that is carried by precise spike timing. Temporal
codes have been observed across systems and species (Bair and
Koch, 1996; Borst and Theunissen, 1999; Johansson and
Birznieks, 2004; Uzzell and Chichilnisky, 2004; Butts et al., 2007;
Mackevicius et al., 2012; Harvey et al., 2013; Zuo et al., 2015;
Jamali et al., 2016, 2019). In particular, our results showing that
some TS neurons perform much better at stimulus discrimina-
tion than others resemble recent results obtained in the visual
cortex where it was shown that a few neurons performed best at
image reconstruction (Yoshida and Ohki, 2020). We further note
that evolution algorithms have been used extensively in neural
networks. Indeed, such algorithms have been used to optimize
the architecture of artificial neural networks toward optimizing
performance (Angeline et al., 1994; Ding et al., 2013). Our meth-
odology of using an evolution algorithm to find the weights that
optimize discrimination performance can thus be used in other
systems where it is believed that spike timing carries important
information.
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