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Abstract

A host of learning, memory, and decision-making processes form the individual’s response to 

threat, and may be disrupted in anxiety and post-trauma psychopathology. Here we review the 

neural computations of threat, from the first encounter with a dangerous situation, through 

learning, storing, and updating cues that predict it, to making decisions about the optimal course of 

action. The overview highlights the interconnected nature of these processes, and their reliance on 

shared neural and computational mechanisms. We propose an integrative approach to the study of 

threat-related processes, in which specific computations are studied across the various stages of 

threat experience, rather than in isolation. This approach can generate new insights about the 

evolution, diagnosis and treatment of threat-related psychopathology.
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NEURAL COMPUTATIONS OF THREAT: LEARNING, MEMORY AND 

DECISION MAKING

How does the brain compute threat? When facing danger, an organism is tasked with 

learning precursors of threat, remembering those precursors for extended periods and across 

contexts, and making optimal decisions under stress. Anxiety and trauma can impact each of 

these cognitive processes. Here we define threat as an organism, a thing, or a situation that is 

likely to inflict damage on an organism’s physical or mental wellbeing. We review the neural 

computations underlying adaptive and maladaptive threat learning, memory and decision 

making. Beginning with an encounter with a threatening situation, we follow the 

associations born out of this event, the elaboration of these associations, the formation and 

reformation of threat memories, and how threat experience shapes decision making (Figure 

1). For each phase, we describe the neural computations performed on incoming, retrieved 
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or projected information, and their manifestation in post-traumatic stress disorder (PTSD) 

and anxiety disorders.

The juxtaposition of the various stages of threat experience highlights the interconnected 

nature of these processes, with common computations and overlapping neural regions 

(Figure 2; Box 1). At the heart of this process are computations during ambiguous situations, 

where uncertainty could be reduced through information gathering, proactively anticipating 

consequences, and the retrieval and updating of relevant memories, for the purpose of 

making predictions and choices more accurate. We use the term ‘computation’ in accordance 

with Marr’s three levels [1], whereby the term refers to the goal of the computation and the 

logic by which it can be carried out. We argue that the different stages of threat experience 

share computational goals, and therefore the algorithmic and implementation levels could 

also overlap (Box 2). This set of computations ought to consist of the values of predictive 

cues, actions and outcomes, prediction error that drives learning, dynamically adjusted 

learning rates, and the uncertainty surrounding these estimations. These values could be 

learned through different policies such as trial and error or by learning about the structure of 

the environment.

Although these computations are deployed throughout the threat experience, the information 

they process differs depending on the phase, be it the initial encounter, subsequent learning, 

memory retrieval, or decision making. This approach generates interesting predictions about 

how clusters of symptoms may organize, and proposes considerations for diagnosis and 

treatment, as the following sections elaborate. This overview suggests that rather than 

treating anxiety and PTSD as disorders of multiple distinct processes – heightened 

emotional reactivity, aberrant learning, impaired inhibition, over-generalization, hyper-

avoidance, maladaptive memories, or biased decision-making – a unifying approach may 

prove more efficient. From a computational standpoint, anxiety and PTSD are disorders of 

neural prediction – the estimation of future threats.

THE STAGES OF THREAT EXPERIENCE

The experience of imminent threat

Encountering a life-threatening situation engages neural computations that consider 

information about the environment and the source or threat. These computations design 

defensive policies and select adaptive responses for execution. The threat imminence 
continuum model [2], which maps defensive behaviors onto levels of threat imminence 

(how far a predator is in time and space), provides a platform of prey-predator relations for 

assessing the neural circuits and computations for survival [3, 4]. In the first ‘safe’ stage, 

there is no threat, an encounter with a predator may occur in the distant future. Individuals 

may experience occasional anxiety, and flash forward toward possible future threats. 

Cognitive control and emotion regulation could keep this process in check. Next is the ‘pre-

encounter threat’– the predator is not present, but may surface at any moment. Individuals 

may experience anticipatory anxiety and exhibit vigilance and preparatory behaviors. In the 

more dangerous ‘post-encounter threat’ the prey, not yet detected, observes the predator. 

This step generates encounter anxiety, involving close inspection and anticipation of the 

predator’s moves, strategic freezing to avoid detection and gather information, and 
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avoidance estimation. Finally, the prey is under most extreme danger during the ‘circa-

strike’ phase, when the predator is attacking. Within that attack mode, the predator could be 

distant enough to allow a feeling of fear and rapid thoughts examining the situation and 

assessing escape routes. Fight or flight ensues as the predator gets closer yet without contact. 

The final point of contact provokes hard-wired, fast, often poorly-executed reactions of 

freezing and panic [5].

A hierarchical neuroanatomical organization traces the threat imminence continuum. As the 

predator approaches, brain activity shifts from the prefrontal cortex (PFC) to midbrain. Two 

parallel paths support defensive approach and avoidance, originating from PFC areas 

through cingulate cortex areas, to hippocampus, amygdala, and hypothalamus, terminating 

on midbrain periaqueductal gray (PAG) and dorsal raphe nucleus [3]. Converging 

neuroanatomical and functional evidence across species, including rodents, non-human 

primates and humans, supports this organizational scheme, attributing feelings of anxiety 

and fear and cognitive regulation to higher order cortical areas, and freezing, escaping and 

panic to amygdala, hypothalamus and PAG, respectively [3, 6–8].

A proximal threat engages rapid, reflexive and narrowly targeted actions, and therefore has 

limited computational resources. Decisions during this phase likely rely on model-free 
computations, sustaining the repetition of previously reinforced actions. The more distal 

points of encounter allow time to assess the environment and consider alternative courses of 

action. It is plausible that, in addition to model-free responses, such threats also initiate 

model-based computations – the prospective anticipation of action consequences using a 

constructed map or a model. This computational policy favors accuracy and strategic 

planning [9, 10], and allows “offline” testing of potential courses of action using mental 

simulations. Computational methods such as Dyna [11] aim to identify the optimal policy 

for a particular situation, by simulating actions and their consequences within an internal 

model of the environment. The mental simulations provide data for training the model and 

improving predictions in the absence of actual threat experiences.

People that experienced a traumatic event and went on to develop post-traumatic stress, and 

people suffering from anxiety disorders (Box 2), often exhibit some of the same behaviors 

along the threat imminence continuum, albeit in an excessive manner and inappropriate 

contexts. For example, according to the DSM-5 [12], among the criteria for a PTSD 

diagnosis are hypervigilance and avoidance as in the anticipatory anxiety phase. Anxiety 

disorders are accompanied by frequent intermittent anxiety, involving rumination, worry and 

over-strategizing. This suggests that PTSD and anxiety disorders may involve deficient 

computations of spatiotemporal threat, particularly influencing the reliance on model-based 

planning during anticipatory and encounter anxiety. Consistent with this idea, high-trait 

anxiety affects escape decisions from a virtual predator, but only when the threat is distal, 

rather than imminent [13]. Other studies, in the domain of reward learning, demonstrate the 

vulnerability of model-based computations to stress [14], particularly in depression [15], and 

to lifetime stress [16], as well as to self-reported intrusive thought [17], a symptom of 

generalized anxiety and PTSD. Additional research is required to examine how greater 

reliance on one system versus another relates to vulnerability or resilience to traumatic 

stress, and which clusters of symptoms correspond to these underlying behavioral policies.
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Beyond direct experience, individuals can also be impacted by second-hand, vicarious 

experience, by witnessing the experience of others or through verbal instructions (Box 2). 

This form of social behavior capitalizes on existing neural mechanisms of direct learning, in 

addition to processing of social information, and is evident across species [18–20]. Socially-

formed associations can also shape subsequent decision making the same way direct 

learning does [21].

Experiencing imminent threat may result in a cascade of (i) formation of threat associations; 

(ii) post-association learning; (iii) storing and updating of these associations; and (iv) 

decision-making under threat (Figure 1). It is possible that the particular processes occurring 

in the first stage would impact the four following processes. For example, a less imminent 

threat encounter might result in a weaker memory that is easier to extinguish; a highly 

stressful encounter with more imminent threat could produce a memory that is 

reconsolidation resistant; the degree of uncertainty during initial encounters might shape the 

flexible update of initial learning etc. The next sections examine the cascade of processes 

following initial threat learning.

Backpropagation of threat

The computational processes during imminent threat focus on the immediate needs and 

current environment of prey. But they also rely on prior learning, such as previously 

acquired associations, reinforced actions and learned models, called upon in the service of 

the moment. The merging of past and present experience yields new associations and 

updated models. In the simplest form, predation becomes associated with neutral stimuli in 

the environment. The threat of the predator backpropagates to the stimuli that predict it, a 

process known as Pavlovian conditioning [22, 23].

Various learning models are used in this research, aiming to capture various types of 

information. Theories of associative learning, such as the Rescorla-Wagner (RW) and 

reinforcement learning models, envision that learning is driven by surprise, formalized as 

prediction error – the difference between the outcome expected and the outcome received. 

The predictive value of the stimulus - the level of threat that it predicts - changes 

proportionally to the magnitude of the error at a rate that is not in itself influenced by the 

learning [9, 24]. Overgeneralization of the learning to cues that were not associated with 

threat [25] may be a hallmark of anxiety disorders [26].

The temporal difference model extends the RW model, allowing predictions of accumulated 

discounted future outcomes, rather than the immediate only [9]. Other theories, such as the 

Pearce-Hall model, focus on the predictive efficiency of the cue. Here, to learn cue-

reinforcer associations, individuals track a quantity termed associability, which reflects the 

degree to which a cue has previously been accompanied by surprise (positive or negative 

prediction error). The associability of a cue gates the amount of future learning about that 

cue, depending on whether it has previously been a poor or a reliable predictor of an 

outcome. In this way, associability accelerates learning to cues whose predictions are poor 

and decelerates it when predictions become reliable [27].
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Several brain regions play a role in associative learning (Figure 2; Box 1). There is evidence 

for encoding of aversive prediction errors in activation patterns in the amygdala [28–31] and 

the striatum [32–34]. The striatal activation likely results from dopaminergic inputs from 

ventral tegmental area (VTA) [35, 36], although the evidence for striatal role in aversive 

prediction error may not be as strong as the evidence for its role in reward prediction error 

[37]. Both regions have also been implicated in tracking of associability [33, 34, 38, 39].

An augmented ‘hybrid’ Rescorla-Wagner model controls learning rates dynamically based 

on the Pearce-Hall learning rule. In humans undergoing threat conditioning, measured by 

skin conductance response (SCR; a measure of autonomic nervous system activity), the 

hybrid model better captured cue-specific associabilities, over and above value expectations 

[39–41]. A study in combat veterans used the hybrid model to estimate the influence of 

prediction errors on cue-specific associabilities in each learning trial [34]. These subject-

specific parameters positively corresponded to PTSD symptoms (measured by CAPS, the 

Clinician Administered PTSD Scale). Thus, by assigning more weight to prediction errors, 

the more trauma-affected individuals exaggerated their adjustment to cues that did not 

predict what they had expected [34, 42]. Amygdala and striatal tracking of cue value 

throughout learning negatively corresponded to CAPS (less faithful neural representation of 

value related to worse diagnosis). Striatum tracking of associability negatively correlated 

with CPAS and partially mediated the positive relationship between prediction error weight 

and CAPS [34].

In parallel to the passive formation of cue-outcome Pavlovian associations, individuals can 

readily associate their actions with outcomes, a process termed instrumental (or operant) 

conditioning [43–45]. A classic example of instrumental conditioning in the context of 

threat is avoidance learning (Box 1), where an animal learns to prevent or minimize contact 

with an aversive outcome (such as electric shocks) or the stimuli that predict it [46]. Animal 

studies identify at least two opposing pathways subserving active avoidance learning: a 

lateral amygdala – basal amygdala – nucleus accumbens pathway required for active 

avoidance; and a competing lateral amygdala – central amygdala – PAG pathway mediating 

freezing to conditioned stimuli. The infralimbic and prelimbic PFC subregions serve as the 

arbitrators, mediating the transition from reaction to action by suppressing freezing and 

facilitating avoidance [47, 48] (Box 1). Human studies are consistent with these findings, 

demonstrating the involvement of amygdala and striatum and their interactions with medial 

PFC [49–51].

Avoidance by itself is an adaptive response to danger, but unwarranted and excessive 

avoidance is a hallmark of PTSD and anxiety disorders [47, 52]. Avoidance symptoms can 

be subdivided into passive and active. Passive avoidance is the lack of action (such as 

strategic freezing) whereas active avoidance involves emitting an action that circumvents the 

aversive outcome. The fact that active avoidance is a form of learning driven by the absence 

of the aversive reinforcer poses a challenge for learning theories. The psychologists O.H. 

Mowrer and Neal Miller provided a conceptual framework for active avoidance as a two-

factor learning process, where threat is first acquired through Pavlovian conditioning, and 

then actions that reduce the conditioned threat are reinforced through instrumental 

conditioning [46, 53, 54]. Reinforcers of avoidance behavior include negative reinforcement 
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by removing threat-associated cues or positive reinforcement by cues associated with safety 

[47, 48, 55].

In the context of both Pavlovian and instrumental conditioning, the models we have 

surveyed explain predictions of expected threat, but ignore uncertainty about these 

predictions (Box 3). Instead of point estimates, Bayesian learning models include estimates 

of prediction uncertainty that rule a dynamic learning rate [41, 56–58]. In stable 

environments, experiences from the distant past are informative for predicting the future, and 

transient changes should be largely ignored. Natural environments, however, are seldom 

stable; rather, unexpected uncertainty (Box 2) may arise, when the probabilistic structure 

of the environment changes abruptly [59–61]. When action-outcome contingencies change 

(for example, the outcome probability substantially drops), only recent experiences should 

inform learning, to allow quick adaptation to the changing conditions. Indeed, human 

participants are able to incorporate estimates of unexpected uncertainty in their learning [62–

64]. Individuals adjust their learning rate in response to variations in volatility – the 

frequency of changes in action-outcome contingencies (or the mean level of unexpected 

uncertainty; [65]), separately for potential rewards and punishments [66]. Pupil dilation and 

BOLD signals in Locus Coeruleus, which are indicators of arousal, reflect subjective 

estimates of unexpected uncertainty [63, 67]. Activity in the anterior cingulate cortex tracks 

subjective estimates of volatility, and reflects individual differences in learning rate [65]. 

Using a hierarchical Bayesian learning model, estimates of subjective uncertainty during a 

probabilistic choice task predicted subjective stress and arousal, exemplifying a tight link 

between stress responses and environmental uncertainty [68]. These studies suggest that 

conditioned threat responses do not simply correspond to the outcome prediction, but rather 

to the degree of uncertainty surrounding that prediction.

Individuals with trait anxiety learn more from recent punishments, compared to healthy 

controls [69], but are slow to adapt their learning rates in response to changes in threat 

volatility, and show reduced pupil response to volatility [70]. Social contexts may exacerbate 

such reduced adaptability [71]. Inappropriate adjustment to changes in probability structure 

may also lead to poor decision making, and contribute to increased symptoms if aversive 

outcomes are perceived as less predictable and less avoidable [70].

Overall, extant evidence suggests that aberrant neural computations of value, prediction 

error, associability and estimations of uncertainty, are related to anxiety and PTSD. The 

models described above capture two important facets of associative learning: reinforcement 

learning formalizes predictions of long-term accumulated outcomes; and Bayesian models, 

track uncertainty around learned associations. Models that merge the two computations have 

also been proposed [57].

AMG, amygdala; BNST, bed nucleus of stria terminalis; dACC. dorsal anterior cingulate 

cortex; Hip, hippocampus; Hyp, hypothalamus, Ins, insula; PAG, periaqueductal gray; PFC, 

prefrontal cortex;; dmPFC, dorsomedial PFC; dlPFC, dorsolateral PFC; vlPFC, ventrolateral 

PFC; OFC, orbitofrontal cortex; PCC, posterior cingulate cortex; PPC, posterior parietal 

cortex; SN, substantia nigra; VS, ventral striatum; VTA, ventral tegmental area.
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Flexible threat associations

Following the encounter with danger, an individual will emit defensive responses triggered 

by the conditioned stimuli, but not for long. Eventually, for adaptive energy maintenance, 

those defensive responses will dissipate and new learning will take their place. The 

inappropriate lingering of learned defensive responses is part of a major PTSD symptom 

cluster in the DSM-V [72], defined as alteration in arousal and reactivity (e.g., 

hypervigilance), that began or worsened after the trauma. A prime mechanism that 

counteracts threat conditioning is extinction learning – the decline in responding to a 

stimulus that previously signaled danger, following repeated nonconsequential exposures 

[73]. Extinction can also be learned vicariously [74] or through imagination of the 

conditioned cues [75] by capitalizing on neural mechanisms of direct learning.

Formalizing an associative learning model to describe extinction has been challenging. The 

Rescorla-Wagner model, for example, views extinction as unlearning of associative 

contingencies due to the omission of outcome; but this fails to account for the return of 

extinguished responses under various circumstances (e.g., spontaneous recovery, renewal, 

reinstatement). The Pearce-Hall model, alternatively, classifies extinction as new learning 

where omission of the outcome in the presence of the conditioned stimulus creates a second 

association, such that threat and extinction associations compete for expression. However, it 

is possible that a mixed model, assuming cooperation between unlearning and new learning, 

best describes an individual’s internal representation [76]. The latent cause model [77] 

captures that cooperation: individuals update the associative weight between the stimulus 

and the outcome (i.e., unlearning) given small prediction errors, but infer that a second rule 

is likely in effect (i.e., new learning) given large prediction errors. In this way, an individual 

does not simply learn a single stimulus-outcome association, but rather parses experiences 

into latent causes, each with its own associative weight, thus constructing a structure of the 

environment. During extinction, unlearning would dominate over new learning by 

minimizing deviations from the individual’s expectations, such as transitioning from 

conditioning to extinction by gradually changing association strengths over time [78]. The 

model predicts that individuals who assume a single latent cause, and only update the initial 

threat memory, will show weaker recovery of the extinguished response. Individuals who 

form a new extinction memory, segmenting their experience into two latent causes, are more 

likely to show greater recovery from extinction [79].

How the brain implements structure learning is unclear. A possible circuit mechanism for 

structure learning might suggest that latent cause representations, possibly originating from 

the orbitofrontal cortex, activate hippocampal dentate gyrus cells, reflecting the likelihood of 

the active cause. The ventral tegmental area computes the discrepancy (i.e., prediction error) 

between the associative weights that the inferred cause predicts and the observed 

contingencies. The prediction error signal is then transmitted via dopaminergic projections 

to the amygdala and hippocampus, striatum and prefrontal cortex, thereby triggering 

memory updating or new learning – small prediction errors alter the associative weight of 

the inferred cause, whereas large prediction errors trigger neurogenesis of dentate gyrus 

granule cells to generate a new latent cause [80, 81].
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Beyond extinction, the power of the latent cause and other unifying models lies in their 

ability to explain a multitude of post-conditioning phenomena, such as generalization of the 

response to other stimuli, blocking learning to other stimuli, second-order conditioning, 

counterconditioning and more [57, 80, 82, 83] thereby generalizing the Rescorla-Wagner 

model and addressing its explanatory limitations. Further model development is required to 

capture the effect of multiple extinction sessions, which may diverge into a separate circuit 

mechanism [84], and capture clinical therapeutic processes more faithfully [85]. Another 

consideration is the lingering impact of PTSD, which can last years and even decades. The 

longevity of the disorder is difficult to explain using current learning models, each capturing 

a sliver of the symptoms. A synergistic model, describing how multiple learning phenomena 

work together may explain the persistence of defensive motivational states [86, 87].

Lifecyle of threat memory

Aversive events serve as teaching signals instructing synaptic plasticity in the amygdala, 

resulting in threat memory storage (Box 1). Interventions such as amnesic agents (e.g., 

protein synthesis inhibitors) or electroconvulsive shock stimulation, interrupt consolidation, 

the stabilization period following the acquisition of a new memory. Once a memory has 

formed, however, it goes into a lifecycle of oscillations between periods of neural stability 

and instability (Figure 3). Memory reactivation and destabilization trigger those periods of 

instability, providing opportunities for modification. The same interventions that disrupt 

consolidation also interrupt – and therefore support the existence of – a destabilization 

period following reactivation of old memories. This phenomenological similarity inspired 

the term reconsolidation, referring to the active process necessary to restabilize a memory 

after it has been reactivated and destabilized [88, 89].

The instability period, when old memories resurface, presumably serves the purpose of 

incorporating new relevant information into the memory, instead of forming a new separate 

memory of present events [90, 91]. Experimental evidence supporting this theory introduced 

extinction learning following the reactivation of a conditioned threat stimulus, leading to 

long-term reduction in conditioned threat responses [92–96]. Another form of intervention 

used counterconditioning, which was demonstrated in the context of appetitive 

conditioning. Here, a drug-related conditioned stimulus was repeatedly paired with an 

aversive outcome (e.g., a disgusting image) following reactivation [97, 98]. Other manners 

of non-invasive interferences could be effective, including those that deplete the neural 

resources needed for reconsolidation, such as extensive sensory motor tasks [99] (Figure 1).

How is new learning following reactivation different from a standard associative learning 

session? Why would reactivation-extinction, for example, lead to a more permanent 

reduction of threat responses while standard extinction allows their return? The latent cause 

model, described above, offers a theoretical solution by formalizing the dynamic interplay 

between learning and memory [80]. Applying the latent cause theory to the case of post-

retrieval memory modification stipulates that when a memory is retrieved, the brain assumes 

that the previously inferred cause (originally assigned to the remembered event) is once 

again active. This inference makes the memory eligible for updating because new 

information, now attributed to the original cause, merges and thus changes the original 
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memory. For example, the associative weights of a cue-outcome association will 

permanently decrease due to the merging of extinction learning; in other words, the memory 

has been updated and changed form. If the brain otherwise infers a new cause for the 

surprising event, a new memory will be formed.

One of the parameters that nudges latent cause assignment, as featured in the model, is the 

duration of the reminder cue. Reminder duration can be conceptualized as the length of 

exposure or multiple repeated exposures with short gaps [80]. A brief exposure to the 

reminder favors assignment of the reminder to the initial threat learning cause. With longer 

reminder durations, prediction errors accrue, facilitating the inference of a new latent cause 

[100]. The model explains many of the boundary conditions of reconsolidation updating that 

have been observed in laboratory experiments, and makes testable predictions as to when a 

memory will or will not maintain its original form [80].

One of the most important goals of clinicians treating anxiety and PTSD is facilitating a 

change that is enduring in patients. Achieving enduring change that is not easily prone to 

relapse, conceivably requires three essential components: reactivating the problematic 

memories along with the emotions they elicit; altering those memories by having a 

corrective emotional experience during reconsolidation; and, building enduring semantic 

structures onto the updated memories, by implementing new behaviors and ways of 

engagement with the world [101, 102]. Indeed, some forms of therapy, such as coherence 

therapy, are built on the principles of memory reconsolidation and are designed to 

maximally optimize this process [103–105].

Decision making under threat

When a threat is detected or remembered, a rapid decision-making process ensues, resulting 

in an approach (e.g., attack) or avoid reaction. Long after the imminent threat has dissipated, 

decisions about cues that predict threat likely share some of the mechanisms with those 

initial choices. These decisions may be adaptive (e.g., approaching a threat that could be 

overcome; avoiding a real threat or a cue that predicts it) or maladaptive (e.g., avoiding a 

threat that could be overcome).

The decisions that individuals make depend on their available courses of action, the potential 

outcomes of each action, and the likelihood of each outcome. Common models of choice 

posit that decision makers integrate the various properties of each option to compute its 

idiosyncratic subjective value, and then choose the most valuable option [106]. Although 

this may seem straightforward, we do not fully understand how these computations are 

implemented in the brain. We do know that activation patterns in a network of multiple brain 

areas reflect subjective values that are inferred from behavior (Figure 2). Activity in two 

areas in particular, the ventromedial prefrontal cortex (vmPFC) and the ventral striatum, is 

consistent with encoding subjective values across different categories and under varying 

conditions [107, 108]. Other putative value regions include more dorsal regions of the 

medial prefrontal cortex [107, 109], the orbitofrontal cortex (OFC, [110, 111]), the posterior 

cingulate cortex (PCC, [112], and the posterior parietal cortex (PPC,[113]).
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While it is likely that activity in these areas encodes the value of potential rewards, the 

evidence for value encoding of punishments, or threats, is less robust. Some neuroimaging 

studies in humans report overlapping representations of positive and negative values [113–

115]. Other studies describe distinct representations of rewards and punishments in different 

brain areas, with more medial representations of reward value, and more lateral 

representations of the value of punishments [116–118]. Single-unit studies in animals also 

report both distinct [35, 119] and overlapping [120] representations of rewards and 

punishments in dopaminergic midbrain, habenula, and medial prefrontal cortex. In addition, 

some brain areas, including the vmPFC, OFC and PPC, encode aversive values in a 

monotonic manner (with decreasing activation for more aversive values), whereas other 

areas encode value in a u-shaped manner, with high activation for both high rewards and 

high punishments, consistent with salience representation. The salience network includes the 

ventral striatum, dorsal anterior cingulate cortex, anterior insula, temporoparietal junction 

[107, 110, 113, 121], and the amygdala [122, 123]. Thus, the ventral striatum is the only 

region exhibiting both monotonic and u-shaped representations of value, indicating a dual 

role for this structure in encoding value and salience [36, 107, 110, 121]. Whether the brain 

first signals the stimulus’ salience (how important it is), to orient attention, and then 

determines its valence (positive or negative), or whether value is computed first, with 

salience information (its absolute value) extracted later, or in parallel, is an open question.

The likelihoods for potential outcomes are an important factor affecting the subjective value 

of available options. For example, a 10% chance of sustaining an injury is not as bad as a 

50% chance of sustaining the same injury. Only seldom, however, are these likelihoods 

completely known – a type of uncertainty known as risk or “irreducible uncertainty”. In 

most cases, likelihoods cannot be precisely estimated; rather, there is some ambiguity or 

“estimation uncertainty” around those likelihoods (Box 3). Repeated sampling of the 

environment and experiencing various outcomes can reduce ambiguity. Subjective values are 

influenced not just by the objective levels of risk and ambiguity around potential outcomes, 

but also by an individual’s subjective perception of risk and ambiguity and their attitudes 

towards these sources of uncertainty. Since risk and ambiguity attitudes are only weakly 

correlated across individuals, they likely involve somewhat separate cognitive mechanisms 

(Box 4).

How potential outcomes and their likelihood estimates are integrated in the brain is not 

completely clear. The integrated subjective value, reflecting an individual’s uncertainty 

attitudes, is encoded, as expected, in the valuation network [109, 124, 125]. There is also 

ample evidence that uncertainty is reflected by neural activity in several brain areas, 

including ventral striatum [126–131], PPC [132–134], anterior insula [127, 131, 132, 135, 

136], the lateral OFC and ventrolateral PFC [127, 129, 133, 136, 137], and the ACC [138]. 

Some of these studies highlight potential differences between neural activation patterns 

encoding risk and ambiguity [130, 133, 137]. Activity in PPC [133, 134, 137] as well as 

PPC’s structure [139, 140] reflect individual risk attitudes. In some studies, activity in vlPFC 

reflects ambiguity attitudes and not risk attitudes [130, 133, 137], but other studies report 

correlation with risk attitudes [129, 138]; and a study in lesion patients also implicates 

vlPFC in processing both risk and ambiguity [141]. Finally, the structural and functional 
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connectivity of the amygdala is associated with individual risk attitudes [142]. Taken 

together, while there is abundant evidence for multiple representations of uncertainty in the 

brain, the underlying neural substrates of those representations, and whether different types 

of uncertainty are represented separately, is yet unclear.

In addition to the integration of outcomes with their likelihoods, the decision-maker also 

needs to integrate the values of potential rewards and punishments. For example, using the 

car (Figure 1) will be fast and convenient, but will also bring back memories of the aversive 

event. The weight given to potential gains, compared to potential losses (akin to threats) – or 

the degree of loss aversion [143] – varies substantially across individuals, and serves as 

another source for individual differences in decision making. In humans, subjective value 

representations in the vmPFC and ventral striatum integrate over potential appetitive and 

aversive outcomes of available options [114, 144], and reflect the individual’s degree of loss 

aversion, as estimated from their choice behavior [114]. Research in animals also implicates 

the amygdala in value integration. While activity of amygdala neurons reflects the value of 

both potential rewards and potential punishments [145], lesion studies in rats suggest that 

basolateral amygdala (BLA) has a specific role in integrating rewards with punishments. 

BLA lesion led to increased choices of large rewards accompanied by potential punishments, 

but did not impair sensitivity to the potential punishments [146]. Optogenetic inhibition of 

BLA during the simultaneous receipt of reward and punishment also increased risk taking, 

but inhibition during the deliberation phase had an opposite effect [147], suggesting a 

heterogeneous role for the amygdala in value integration, which may rely on the orchestrated 

activity of separate neuronal populations. Interestingly, unpredictable outcomes - even in the 

absence of interaction with motivational value - lead to sustained activity in the amygdala, in 

both humans and mice [148].

Thus, decision making as a whole, integrates outcomes and their likelihoods, expected 

rewards and punishment and their weights (loss aversion), various sources of uncertainty 

(irreducible or risk, and reducible or ambiguity), and the individual’s attitudes toward 

uncertainty (risk and ambiguity aversion). The decision maker then needs to compare the 

integrated values of different options in order to reach a choice – how this is done is a 

subject of ongoing research. It is possible that integrated values are compared downstream 

of value computations [149], or that the choice process is an inherent part of iterative value 

computations [150, 151].

Following a traumatic event, changes in any of the computations of valuation and decision-

making may be observed [128]. In rodents, there is some evidence for malleability of 

valence encoding. During acute stress, the presentation of rewards induces punishment-like 

responses in the lateral habenula (that is, a switch from the typical decreased firing rate into 

increased firing rate), consistent with a shift from value to salience encoding [152]. A 

different type of response shift occurs in the nucleus accumbens, where neurons switch their 

preference from rewards to punishments in a stressful environment [153].

In combat veterans suffering from PTSD, the ventral striatum appears to shift from value to 

salience encoding [154]. These individuals also exhibit enhanced aversion to ambiguity 

around potential losses in a simple monetary choice task, compared to combat veterans who 

Levy and Schiller Page 11

Trends Cogn Sci. Author manuscript; available in PMC 2021 April 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



did not develop PTSD [155]. And, in a trauma-exposed community sample, self-reported 

intolerance of uncertainty correlated with the severity of PTSD symptoms [156]. The 

evidence from animal research suggests causality, i.e., that at least some of the changes in 

computations of valuation and decision making in humans may result from the trauma. 

However, it is also possible that those observed differences reflect predisposition for 

developing PTSD, which preceded the traumatic events. Abnormally enhanced intolerance 

of uncertainty may constitute a transdiagnostic factor across anxiety disorders [157], given 

that anxiety-related pathologies, including obsessive compulsive disorder (OCD) [158], 

generalized anxiety disorder (GAD) [159], and social anxiety [160] also evince increased 

intolerance of uncertainty.

The intolerance of uncertainty observed when anxious individuals and those with trauma-

related psychopathology make choices, likely affects how they learn. An intriguing question 

is to what extent variations in uncertainty attitudes shape learning about threats. For 

example, in Pavlovian and instrumental conditioning, outcomes are used to reduce 

ambiguity about the probabilistic structure of the environment. Ambiguity aversion may 

hinder learning, because the individual will make effort to avoid the ambiguous situation; 

alternatively, it may strengthen acquisition, if the individual will be increasingly motivated 

to reduce the level of ambiguity. Similarly, extinction, generalization, relearning and other 

post-association processes all require the individual to cope with varying levels of 

uncertainty. Whether the individual’s approach to uncertainty in the context of decision 

making also underlies their handling of uncertainty in the course of learning is an open 

question.

CONCLUDING REMARKS

A common method of investigation segments threat experience into separate stages and 

processes, studying and diagnosing them independently. In reality, however, learning, 

memory and decision making never occur in isolation and are constantly intertwined. 

Formalizing first principles may capture the basic computational processes that are a 

common thread, while considering the stages of threat experience as the settings for these 

computations.

As described in the sections above, a fine-grained look at the initial encounter with imminent 

threat reveals a series of computations involving predictions about the outcomes of 

environmental cues and actions in an uncertain environment. New cue-outcome and action-

outcome associations – arising via accumulated trial and error or models of the environment 

– are stored in memory, guiding future behaviors. Newly formed associations will go on to 

compete with, or facilitate, other associations, which together will adjust the individual’s 

behavior to a changing environment. The post-association phase further involves additional 

computations that segment the stream of experience into distinct clusters, or hidden causes. 

This type of computation plays a major role upon retrieval of learned associations, as it 

determines whether a certain memory will be updated or remain unchanged, essentially 

arbitrating between new learning and unlearning. Finally, choices based on learned 

associations incorporate estimations of uncertainty to predict and optimize future outcomes.
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PTSD and anxiety disorders may be linked to aberrant computations at any stage of threat 

processing [161]. Improper computations may be specific to threat or extend to other 

domains, such as reward processing or social interactions. Improper computations may also 

be limited to a particular processing stage (e.g., learning) or shared by several stages (e.g., 

learning and decision making). For example, the increased adjustment to surprising cues in 

PTSD may be specific to threat learning, or reflect a general learning deficiency, which is 

also at play when learning about rewards. The intertwined nature of the various cognitive 

processes, the overlap in their neural circuits, and the likely contribution of interactions 

between these processes to mental disorders, also reinforce the significance of studying 

whole-brain computations and connectivity patterns [162].

To decipher the neural mechanisms of disorders such as PTSD, and to translate insights into 

the clinic (Box 5), comprehensive approaches across domains and processes should be 

employed. Throughout the stages of threat experience, an individual confronts two core 

computational problems: making predictions about long-term accumulated outcomes, and 

tracking uncertainty in the environment. These computations are first employed in the initial 

assessment of the threat; next, in the use of cues and actions to confront it, and to 

appropriately update memories in the aftermath, and finally in the decisions shaped by this 

experience. To mimic this in the laboratory, we could identify and track a specific set of 

computations (for example, computation of estimation uncertainty, or ambiguity), and 

examine it during tasks of learning, memory and decision making, under threat as well as 

reward experience. This approach could identify whether dysfunction lies within the 

computation itself and is domain general, or within a specific domain, possibly due to 

disruptions in incoming and processing of a specific type of information. Such approaches, 

in conjunction with longitudinal designs [163] are likely to generate new insights about 

threat computations in the healthy brain, and about disruptions in these computations in 

disease (see Outstanding Questions).
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GLOSSARY

Ambiguity
a type of uncertainty in which likelihoods for potential outcomes are not precisely known, 

equivalent to estimation uncertainty

Associability
the degree to which a cue has previously been accompanied by a surprising outcome. Can be 

used to gate the learning rate in models of reinforcement learning

Avoidance learning
learning a response to evade aversive outcomes or the stimuli that predict them

Consolidation
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a period in which a newly acquired memory is stabilized

Counterconditioning
pairing a threat-conditioned stimulus with a rewarding outcome to weaken a learned 

association

Destabilization
the shift of a reactivated memory into an unstable state, making it susceptible to change

Extinction learning
repeated presentations of a previously conditioned stimulus, in the absence of the associated 

outcome, result in temporary decline of memory expression

Instrumental conditioning
learning to associate actions with aversive or appetitive outcomes

Loss aversion
the relative weight that the decision maker assigns to losses compared to gains

Model-based computations
learning algorithms that rely on internal models of the environment, including action-state 

transition probabilities

Model-free computations
learning algorithms that learn the expected value of actions or stimuli based on sampling and 

direct experience of outcomes

Pavlovian conditioning
learning to associate stimuli with aversive or appetitive outcomes

Prediction error
the difference between the obtained and expected outcomes, used to drive learning in 

reinforcement-learning models

Predictive value
in the context of models of aversive learning, the degree of threat predicted by a cue

Reactivation
exposure to memory reminders, which may lead to destabilization of the neural 

representation of the memory

Reconsolidation
the process of restabilization a destabilized memory, updating it with new information. 

Disruption of the reconsolidation process may result in memory impairment

Risk
a type of uncertainty in which likelihoods for potential outcomes are fully known. In the 

context of learning, this is also known as expected or irreducible uncertainty
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Subjective value
the utility of an option to the decision maker, integrating over all of the option’s properties, 

including potential outcomes and their likelihoods, as subjectively perceived by the decision 

maker

Threat imminence continuum
mapping of defensive behaviors into stages of threat, ranging from a ‘safe’ stage (no threat) 

to the most extreme ‘circa-strike’ stage (an attack takes place)

Unexpected uncertainty
a surprising change in the probabilistic structure of the environment

Volatility
frequency of changes in probabilistic structure of the environment. Learning rate should be 

higher in volatile, compared to stable, environments
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Box 1.

The neural mechanisms of threat detection and modification

Innate and learned threats processes are distinguishable in the brain. The neural circuits 

of innate threats can be described by three main functional units: a detection unit 

subserved by sensory systems that gather sensory information signaling the presence of 

threat; an integration unit where sensory information converges, directing the recruitment 

of downstream structures that produce the adaptive response, with the integration 

occurring at the level of the amygdala and hypothalamus; and an output unit comprised of 

brain stem structures, including the periaqueductal gray, directly producing adaptive 

physiological and behavioral responses to the threatening stimuli [7, 164]. The 

experience of innate threat instructs a learning process that forms a memory of the 

threatening event.

The neural mechanisms of threat acquisition, extinction, and other forms of threat 

modulation (Box Fig. 1), are centered around the routing of information to and from the 

amygdala and within amygdala nuclei [165]. During threat conditioning, sensory inputs 

arrive to the amygdala either through a thalamo-cortico-amygdala pathway, or a direct 

thalamo-amygdala pathway. Those sensory inputs, signaling the neutral (to-be-

conditioned) stimulus and the aversive outcome, converge onto neurons in the lateral 

amygdala (LA). The stimulus-outcome convergence induces long-term potentiation of 

stimulus input synapses, such that when the stimulus later appears alone, its input will 

sufficiently drive LA outputs, triggering the threat response. Within the amygdala, the LA 

relays information directly to the central nucleus (CeA) or via the basal nucleus. There is 

also evidence that the basal/lateral nuclei (BLA) and CeA process information in parallel 

and not only serially [155]. The CeA is the major output structure of the amygdala. CeA 

projections to the hypothalamus, periaqueductal gray (PAG) and other regions, mediate 

the behavioral and physiological threat response (freezing, change in heart rate and blood 

pressure, and release of stress hormones) [23, 166–169].

LA neurons’ aversive responses correspond to prediction error encoding, because these 

cells respond strongly to unexpected aversive outcomes, but reduce their firing when the 

outcomes are predicted by conditioned stimuli. The prediction error signal is created by 

an amygdala-PAG feedback circuit. A conditioned stimulus recruits the CeA to activate a 

specific population of PAG neurons, which in turn inhibits aversive signaling before it 

reaches the LA, thereby resetting threat learning levels and controlling conditioned threat 

behaviors [29, 170–172].

Along the borders of the BLA and CE lay islands of inhibitory (GABAergic) neurons. 

These are the intercalated cell masses (ITC) that exert inhibitory control over the 

amygdala, as part of an ‘off switch’ system. The major amygdala nuclei further divide 

into internal partitions. For example, the CeA divides into lateral and medial parcels. The 

lateral part of the CeA continuously inhibits the medial part, keeping amygdala’s output 

under control. BLA overturns this effect by projecting to the lateral CeA via ITC cells. 

The medial CeA, consequently, now free of inhibition, enables the threat response [173, 

174]. In addition to the threat responsive population of ‘on’ cells in the amygdala, there 
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are also ‘off’ cells that are responsive to stimuli that signal extinction, as well as BLA to 

nucleus accumbens projecting neurons that signal reward [123, 175, 176].

Amygdala threat responses are short-lived: they last only a few hundred milliseconds and 

therefore cannot be responsible for the stimulus-evoked sustained threat response, which 

typically lasts at least a few seconds. In rodents, the dorsal part of the medial PFC, the 

prelimbic PFC, is the region that maintains and prolongs threat responses. The adjacent 

infralimbic PFC mediates the diminution of the threat response seen following extinction 

[177–180]. The putative human homologues of these regions are dorsal anterior cingulate 

cortex (dACC) and ventromedial PFC (vmPFC), respectively [181]. Retrieval of 

extinction memory involves potentiated inhibitory circuits in BLA and increased medial 

PFC output to amygdala [173, 175, 182]. Inputs from the hippocampus, insula and the 

thalamus, among other regions, further modulate the amygdala’s threat response [177, 

178, 183].

Regions of the PFC arbitrate between freezing and avoidance responses. The prelimbic 

gates the impact of BLA inputs to ventral striatum during avoidance [48]. BLA 

projections to ventral striatum, and prelimbic PFC projections to BLA, both facilitate 

avoidance; whereas prelimbic PFC projections to ventral striatum diminish avoidance 

[184]. The infralimbic PFC suppresses freezing mediate by amygdala’s CE [185]. The 

retrieval of avoidance memory relies on prelimbic PFC projections to BLA [44], and 

avoidance extinction relies on projections from the infralimbic PFC to BLA and ventral 

striatum [186]. Consistent with these findings, research in humans showed that the degree 

to which amygdala and striatum were synchronized with regions in the medial PFC 

during avoidance learning predicted avoidance success [46]. Striatal activation 

differentiated between participants that exerted control over conditioned stimuli versus 

those that did not, and corresponded to diminished return of threat responses [50, 51, 

187]. Theoretical formulations suggest that individuals’ estimates of agency based on 

past experience with controllable and uncontrollable outcomes, adaptively calibrates their 

proactive or reactive behavioral strategies [188].
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Box Figure 1. The neurocircuitry of threat learning and modification.
A schematic representation of the inputs into the amygdala, information transfer within 

the amygdala, and amygdala outputs, and their putative functional role in threat learning 

and regulation. B, basal amygdala; LA, lateral amygdala; CE, central amygdala; dACC, 

dorsal anterior cingulate cortex; vmPFC, ventromedial prefrontal cortex; PL, prelimbic 

prefrontal cortex; IL, infralimbic prefrontal cortex; CS, conditioned stimulus; US, 

unconditioned stimulus.
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Box 2.

PTSD and anxiety

Post-traumatic stress disorder (PTSD) was first introduced as a diagnosis in 1980, in the 

third edition of the American Psychiatric Association’s (APA) Diagnostic and Statistical 
Manual of Mental Disorders (DSM-III). The initial definition attracted controversy and 

was revised over the years [189]. The most substantial conceptual change occurred in the 

latest DSM-5, with the removal of PTSD from the category of anxiety disorders [190]. 

Instead, the disorder was placed in a new diagnostic category named “Trauma and 

Stressor-related Disorders.” This new categorization is unique among psychiatric 

disorders: while all other DSM diagnostic categories are conceptually grouped by 

symptom characteristics, this is the only category that requires an exposure to a stressful 

event as a precondition.

Accordingly, most fundamental to the nosology of PTSD is criterion A -- exposure to a 

traumatic event. The definition of trauma includes actual or threatened death, serious 

injury, or sexual violence [72]. This specific definition indicates that not all stressful 

events (e.g., psychological stressors like losing a job or a divorce) qualify as trauma. 

Exposure to trauma, according to criterion A, consists of not only direct personal 

exposure, but also witnessing trauma to others, or indirectly experiencing trauma through 

a traumatic experience of a close individual. The assessment of PTSD symptoms is valid 

only if criterion A is met. The symptoms must begin or worsen following the traumatic 

event, without assuming any causal or etiological inference. The symptom groups are: 

intrusions, avoidance, negative alterations in cognition and mood, and alterations in 

arousal and reactivity. This new organization emphasizes avoidance, now making it a 

requirement in order to meet diagnostic criteria for PTSD.

One reason for the separation of PTSD from anxiety is the ample evidence that PTSD 

involves emotions outside the range of fear and anxiety (such as anger, guilt, or shame). 

To be diagnosed with an anxiety disorder, a person must experience fear or anxiety that 

are out of proportion and impair normal function. Fear refers to an emotional response to 

an immediate threat, often triggering a fight or flight reaction. Anxiety is more diffused, 

referring to the anticipation of a future threat, typically manifested in muscle tension and 

avoidance behaviors.

The neural correlates of PTSD and anxiety largely involve structural and functional 

aberrations in amygdala, prefrontal cortex and hippocampus. PTSD patients exhibit 

exaggerated amygdala reactions to negative and trauma-related stimuli, hypoactivation of 

the vmPFC, and impaired hippocampal-dependent context learning, as well as 

neuroendocrine dysregulation [191]. Animal models differentiate neural circuits 

underlying response to immediate present threat versus uncertain threats (i.e., anxiety). 

Uncertain threats (for example, unpredictable shocks) engage the bed nucleus of stria 

terminalis (BNST), which mediates the transfer of information between the amygdala and 

ventral striatum, and modulates defensive reactions [192].

The first line of defense against PTSD is prolonged exposure therapy [193, 194] – the 

repeated exposure to trauma-related cues – leading to desensitization (akin to laboratory 
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procedures of extinction). The treatment is ineffective in about 20–30% of patients, and 

approximately 20% fail to complete the full course of treatment. There is little empirical 

evidence to support pharmacological treatments for PTSD [195, 196], which are typically 

selective serotonin reuptake inhibitors. The development of novel effective treatments is 

desperately needed. Possible directions consider drug-assisted behavioral therapy [197], 

reconsolidation-based pharmacological and behavioral treatments [198–200], a 

synergistic approach combining multiple behavioral and neural processes [76, 87] and the 

temporal progression of treatment [84].
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Box 3.

Types of uncertainty

Learning and decisions about threats involve multiple forms of uncertainty. The learning 

literature distinguishes between expected and unexpected uncertainty [201].

Expected uncertainty – also known as irreducible uncertainty [60, 202] - arises from the 

probabilistic nature of outcomes in a familiar environment. In the laboratory, expected 

uncertainty occurs when outcome probabilities are fixed and well learned (for example 

when each cue presentation is associated with an 80% chance for an electric shock). 

While the outcomes themselves are uncertain (shock or no shock), their variance is 

expected, and, assuming a stable environment, these outcomes do not provide useful 

information, and should not drive learning.

Before learning is well established, the lack of experience gives rise to estimation 
uncertainty [60, 203] – uncertainty about the probabilistic structure of the environment. 

This type of uncertainty can be reduced with additional evidence, and signals how much 

learning is required. In the economics literature, irreducible uncertainty and estimation 

uncertainty are termed ‘risk’ and ‘ambiguity’ respectively (Box 4).

Unexpected uncertainty arises when expectations about the statistical structure of the 

environment are violated (for example, if the shock probability abruptly drops to 20%). 

Determining that the uncertainty is unexpected, rather than part of the stochastic nature of 

the stable environment, is challenging [59]. Expected uncertainty can provide a baseline 

for the level of uncertainty against which surprising events should be compared [61], 

considering the learner’s belief about the world [204]. Changes in the probabilistic 

structure of the environment, for example in a volatile environment, should lead to 

increased learning rate, such that predictions rely more on recent events. Normative 

statistical models, such as Bayesian models, and their approximations, provide accurate 

predictions for behavior [56, 60, 62, 65], but include complex computations, and it is not 

clear how these computations are implemented by the brain [61]. One model, synaptic 

metaplasticity (the ability to change synaptic states without measurable changes in 

synaptic efficacy), was proposed as a biologically plausible mechanism for adjusting 

learning rates based on unexpected uncertainty [205].
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Box 4.

Attitudes towards risk and ambiguity

Since most decisions are made under partly ambiguous conditions - where likelihood 

estimates exist, but are not precise – the individual’s behavior under uncertainty is 

modulated both by their risk attitude and by their ambiguity attitude [206]. To estimate 

these attitudes in the laboratory, researchers employ simple tasks in which participants 

are required to make a series of choices between various uncertain and certain options. To 

elicit risk preferences, the choices are between options whose outcomes and outcome 

probabilities are fully known (e.g. 50% chance to win $10), where one option is “riskier” 

and the other is “safer” [207]. A risky option is one that offers a small probability for a 

high reward; a safe option would offer a smaller reward, but at a higher probability. For 

example, a 50% chance to win $10 offers $5 on average, but at a higher risk compared to 

a sure bet of $5. A risk-averse individual would prefer options that offer smaller amounts 

at higher probabilities, over ones that offer higher amounts at lower probabilities, even if 

the expected value (the product of the probability and amount) of the latter is higher. A 

risk-seeking individual would show an opposite preference.

Most people tend to be risk averse when making choices between moderate potential 

monetary gains [208, 209]. There is high variability across individuals, however, in the 

degree of risk aversion, and a minority of people exhibit risk neutrality (i.e. they choose 

based on the expected value alone) or even risk seeking [210]. This is important, because 

it means that individual risk attitudes may be associated with particular personality traits 

or psychopathological symptoms. The picture is a bit more complex, however, because 

preferences change when the choice is between losses, rather than gains. Here too, there 

is wide variability in individual preferences, but most people tend to exhibit risk seeking, 

rather than risk aversion. For example, in a choice between losing $8 for sure and taking 

a 50% chance of losing $20, many are likely to take the risk [208]. Importantly, an 

individual’s attitude towards risk in the gain domain, does not predict their attitude to risk 

in the domain of losses (Box Fig. 1) [209, 210], suggesting that these are two separate 

characteristics, that may be differentially associated with personality traits and clinical 

symptoms.

To elicit ambiguity attitudes, participants are also asked to make choices when some (or 

all) of the information about outcome probabilities is withheld. Ambiguity aversion is 

commonly observed when the choice is between potential gains [211–213]. In the domain 

of losses, there is some evidence for reduced ambiguity aversion, or even no effect of 

ambiguity [210, 214]. Importantly, risk and ambiguity attitudes are only weakly, if at all, 

correlated across individuals (Box Fig. 1) [124, 133, 141, 210, 215, 216] suggesting that 

they rely on cognitive mechanisms that are at least partly separable. The individual’s 

behavior when making choices between potential gains also does not predict their choices 

between potential losses. This means that there is likely no single unified trait of 

“uncertainty attitude”. Rather, it seems that how the individual copes with uncertainty is a 

complex process, affected by several attitudes, which are largely independent.
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A question of ongoing research is to what extent risk and ambiguity attitudes elicited in 

the laboratory reflect behavior outside of the laboratory [217]. While there is some 

evidence for consistent risk attitudes across domains [125, 218], task specifics may affect 

estimates of these attitudes [219, 220] (although this may arise from changes in the 

perceived risk, rather than the attitude towards risk [221]). It is also not clear to what 

extent risk and ambiguity attitudes are stable across time (i.e. reflect a personality trait) 

and to what extent they reflect state variables, although it is possible that risk attitudes are 

more stable, and ambiguity attitudes more transient [216].

Box Figure 1. Risk and ambiguity attitudes in the gain and loss domain comprise four largely 
independent decision characteristics.
Data reanalyzed from [186]. N = 99 participants from the general population between the 

ages of 12 and 77.
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Box 5.

From algorithms to feelings

In this review, we have approached threat experience as a computational process 

involving sensory and internal inputs computed into a behavioral output. Where should 

we place the subjective feeling of fear within this framework? The felt quality of 

emotion, the feeling of threat, is a conscious mental state. This creates a gap that is 

difficult to fill, between what we can measure and the conscious experience [222]. A 

class of theories approaches consciousness by differentiating first order representations – 

mental representations of our situation or states in the world (e.g., visual perception, 

threat) – which could be either cortical or subcortical representations, versus higher-order 

representations, which are representations of other representations, often attributed to the 

function of cortical regions [223]. From this perceptive, our review of the evidence 

suggests that threat computations belong to the category of first-order representations, 

involving not only a subcortical defensive circuitry but also computations of value, state, 

uncertainty, volatility and more, occurring non-consciously and engaging multiple frontal 

and parietal cortical regions. By contract, the feeling of fear belongs to higher-order 

representations, engaging other circuits and integrating several processes, including non-

conscious memories, pre-existing schemas, and mental models [224, 225]. Considering 

fear as a representation or output of a more basic computational operation, inspired calls 

for revisiting our terminology to reflect the subject of investigation: using ‘threat’ to 

describe the inner working of defensive survival circuits, and ‘fear’ as a category of 

conscious experience [226].

Conscious, verbal, descriptions of emotions in terms of their valence and arousal resonate 

with non-conscious computations of utility and vigor [191, 227, 228], but there are no 

specific computations that map onto the conscious experience of fear. Nevertheless, 

conscious experience may influence decisions and shape the output of neural 

computations. For example, informing individuals about aversive contingencies 

influenced activation in the striatum and OFC to feedback-driven learning. Amygdala 

responses resisted verbal warnings and changed only when individuals had direct 

experience of the relationships between cues and outcomes [229]. Remembered feelings 

could influence the arbitration of choices by creating an anticipation about how one 

might feel upon incurring an outcome [230, 231]. Moods can bias the perceptions of 

outcomes and sway decisions. For example, a negative outcome would be perceived as 

worse when one is in a bad mood. Moods could be formalized as the cumulative impact 

of differences between actual and expected outcomes (i.e., a running average of recent 

prediction errors). By reflecting the momentum of an outcome in a particular 

environment, mood helps an individual to account for the statistics of the environment. 

This could be beneficial for steering away from an environment that induces bad mood, 

for example, since the magnitude and frequency of negative surprise increasingly grow 

[232].

Understanding the distinction between the feeling of fear and the neural computations of 

threat, can inform our approach to PTSD and anxiety disorders. Identifying from which 

level do symptoms arise can advise pharmacological and behavioral treatment. The 
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interactions between feelings and emotions could refine the assessment of aberrant 

behaviors as well as facilitate treatment [192].
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Outstanding questions

• What explains the lingering effects of PTSD? Current learning models cannot 

explain the longevity of the disorder. A comprehensive model encompassing 

multiple learning, memory and decision-making features may be needed.

• To what extent are model-based, versus model-free, computations involved in 

the development and maintenance of post-trauma and anxiety 

symptomatology?

• How are value computations in the brain used to generate choice? Subjective 

values of threats, as well as rewards, are encoded in a network of brain areas, 

but whether and how these values are compared to produce choice is not clear.

• What is the relationship between neural representations of value and salience? 

Are they computed in parallel, or is one estimated first and then used to 

calculate the other?

• Are the neural mechanisms that encode uncertainty shared across learning, 

memory and decision-making processes, as well as across both threats and 

rewards?

• To what extent do aberrant computations confer variability to traumatic stress 

and anxiety and to what extent do they result from stressful experiences?
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Highlights

• The response to threat consists of multiple learning, memory and decision-

making processes.

• These processes may be disrupted in anxiety and trauma-related disorders.

• We describe five stages of processing: experience of imminent threat; 

formation of threat associations; post-association learning; storing and 

updating of these associations; and decision-making under threat.

• These stages rely on overlapping computations and shared neural circuits.

• We propose that to reach a fundamental understanding of anxiety and trauma-

related disorders, these processes should be studied together, rather than in 

isolation.
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Figure 1. The stages of threat experience.
Experiencing a life-threatening event, in this case, an aversive emotional memory of a car 

explosion (panel A), may result in associative learning (panel B) where a neutral stimulus 

(the blue car) becomes threatening as it predicts danger (explosion). The learned association 

then competes with or influences new associations (panel C). For example, generalization of 

the association to other stimuli may occur (panel C top), or extinction learning (panel C 

bottom), where repeated exposure to blue cars diminishes the threat response. A more 

permanent way of diminishing the learned threat response is by modifying the original 

association through reconsolidation updating (panel D). A reminder cue may trigger the 

memory and destabilize it, requiring re-stabilization (reconsolidation) to return it to a stable 

state. In the course of destabilization, updates may occur in several ways, such as extinction 

(top), counterconditioning (middle, car associated with a positive outcome, such as a 

wedding), or sensorimotor interference (depicted here as a Tetris game). The new 

information these processes provide is incorporated into the memory (extinction, 

counterconditioning), or depletes neural resources of reconsolidation (sensorimotor 

interferences). Finally, threat learning interacts with processes of decision making and 

attitudes toward loss, risk and ambiguity (panel E). For example, when facing a choice 

between riding a car or a bicycle, threat-related processes may bias the choice toward the 

less threatening option. The depiction of the stages of threat experience (A-E) does not mean 

to indicate any sequential order or independence. The stages are intertwined throughout the 

threat experience.
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Figure 2. Neural basis of threat.
Brain schema depicting working hypotheses, based on extant evidence, for brain regions and 

neural circuits involved in threat reactivity, learning, and decision making. Rather than 

different regions uniquely engaged in separate processes, review of the evidence suggests 

that most regions are engaged in more than one function, and that the concepts of learning, 

memory and decision making are difficult to isolate behaviorally and computationally. For 

example, regions typically involved in physiological reactivity such as the PAG, also 

contribute to the formation of Pavlovian association by providing a teaching signal to the 

amygdala. Regions typically assigned to associative learning, such as the amygdala, 

hippocampus and ventral striatum, are also involved in decision making. Regions often 

assumed a role in decision making (valuation and choice), such as the OFC, vmPFC, and 

dACC, PPC and lateral PFC are also involved in learning. The insula has been implicated in 

decision making, learning and reactivity. Together, these regions converge into a global 

network that conducts a similar set of computations across various phases of experience. The 

separate investigation of specific types of learning, memory and decision-making processes 

is thus not conducive for a comprehensive understanding of a unified global network. A 

refined approach would first define the computational problem, for example, how the brain 

predicts outcomes under uncertainty in a volatile environment given certain stimuli or 

actions; and then examine how each region in this global network contributes to these 

computations (e.g., informing value, tracking associability, computing prediction error). This 

process should then be iterated across the various stages of threat experience (e.g., initial 

encounter, memory retrieval, decision making), as well as other domains such as reward.

Levy and Schiller Page 38

Trends Cogn Sci. Author manuscript; available in PMC 2021 April 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Lifecycle of threat memory.
Memory encoding is the strengthening of neural connections through long-term synaptic 

restructuring; a process occurring when different regions co-activate. A memory trace, or 

engram, is therefore not a physical entity like a stored object, but rather the disposition of 

neural circuits to fire upon triggering by a certain reminder. During reactivation, a memory 

becomes active when the engram ensemble fires. Reactivated memory is eligible for 

retrieval, behavioral expression, and/or destabilization. This means that memories that are 

retrieved and expressed are not necessarily destabilized, and that destabilization can even 

occur covertly without behavioral expression. Destabilization involves a cascade of cellular 

and molecular processes (such as protein degradation) that instigate the transition of the 

engram from a stable to an unstable state. At this point, the memory becomes susceptible to 

modification. Among the computational principles that govern destabilization is trace 

dominance: a memory will be more malleable to amnestic manipulations to the extent that it 

has control over behavior at the time of treatment. Prediction error is one of the parameters 

that influence trace dominance and facilitates destabilization. Memory restabilization 

(reconsolidation) requires protein synthesis among other cellular/molecular events. 

Successful reconsolidation restabilizes the ensemble and restores the memory into its 

inactive state. Manipulations that interrupt reconsolidation (pharmacological agents, 

behavioral interference, memory enhancers) will reroute the memory toward erasure, 

strengthening, weakening, or updating. A memory that has not been erased may cycle into 

another sequence of reactivation, destabilization and reconsolidation. LTM, long-term 

memory.
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