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Introduction. Glioblastoma is the most malignant brain tumor with different therapeutic protocols, including surgery, radio-
therapy, and chemotherapy. Substance P (SP), a peptide released by sensory nerves, increases cellular excitability by activating the
neurokinin-1 receptor (NK1R) in several human tumor cells. Aprepitant is a potent and long-lasting NK1R antagonist, considered
a new agent for inhibiting proliferation and induction of apoptosis in malignant cells. *is study aimed to evaluate the effects of
the SP/NK1R system on the expression and activity of catalase and superoxide dismutase (SOD) in the glioblastoma U87 cancer
cell line. Methods. Cytotoxicity was measured by the resazurin test, 24 hours after treatment, with increasing aprepitant con-
centrations. *e production of reactive oxygen species (ROS) was also measured 24 hours after treatment with SP and aprepitant.
Enzymes activity of catalase and SOD was measured using the corresponding assay kits. Real-time PCR also measured their
expression. Results. Aprepitant significantly reduced the viability of U87 cells in a concentration-dependent manner. ROS
production was significantly reduced, and the activity of catalase and SOD increased after treatment with aprepitant. *e
expression of catalase and SOD enzymes also increased significantly in the presence of aprepitant. Conclusion. *e present study
showed that aprepitant inhibited SP’s oxidizing effects via inducing the antioxidant effects of catalase and SOD in the U87 cell line.
*erefore, this drug might be introduced as a potential candidate for controlling glioblastoma cancer in animal models and
clinical trials.

1. Introduction

Glioblastoma multiforme (GBM) is the most common and
aggressive primary brain tumor worldwide, and its occur-
rence is increasing [1, 2]. It is the third leading cause of death
from cancer and overall in individuals aged 15–39 years [3].
In recent years, much evidence has emerged that several
factors and mechanisms are involved in the initiation and
progression of glioblastoma cell carcinoma, including the
tachykinin family and their receptors [4, 5].

Tachykinins (TKs) include an evolutionarily conserved
family of neuropeptides, widely distributed in the peripheral
and central nervous systems [6]. *ree receptors perform

TKsG-protein coupled receptors’ biological actions, named
neurokinin-1 receptor (NK1R), NK2R, and NK3R [7, 8].

Substance P (SP) is the most important member of the
mammalian TK peptides, and its biological effects are mainly
mediated through NK1R [9, 10]. Several studies have re-
cently demonstrated that SP induces a series of signaling
pathways through NK1R that mediate cellular excitability in
several human tumor cells. It has important roles in forming
and spreading various tumor cells via migration, angio-
genesis, and metastasis [11–16]. *is is important since the
prevention of metastasis is a major goal in treating tumors.
Over 90% of cancer deaths are derived not only from the
primary tumor but also metastasis [17, 18].
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Moreover, it has recently been reported that an SP-
mediated process may be the extravasation of tumor cells
into the brain to form cerebral metastases [19, 20]. It is
established that malignant tissues express more NK1 re-
ceptors than benign tissues and that tumor cells expressing
the most malignant phenotypes display an increased per-
centage of NK1 receptor expression [21–26]. Moreover, the
expression of SP’s precursor increases in GBM cancer
compared to normal cells [27]. *us, it appears that tumor
cells depend strongly on the potent mitotic signal mediated
by SP and the overexpression of the NK1 receptor, leading to
the death of cells [28–30]. *is means the NK1 receptor
might be a specific molecular target for cancer treatment
since tumor cells overexpress NK1 receptors. Hence, NK1R
antagonists might be considered promising therapeutic
drugs to inhibit the proliferation and development of tumor
cells and angiogenesis [21, 28].

On the other hand, reactive oxygen species (ROS) are an
integral part of the cell oxygen metabolism, which plays a
vital role in several cellular processes at physiological con-
centrations by activating signaling pathways necessary for
cell growth and proliferation [31, 32]. Since the ROS’s high
levels cause destructive effects on the body, the body pro-
duces defenders that extinguish ROS shortly after their ef-
fects [33]. Collectively, these defenders or molecules are
known as antioxidants. *e antioxidant system consists of
the enzymatic defenses, such as superoxide dismutase
(SOD), which catalyzes the conversion of superoxide to
H2O2 and catalase (CAT) which promotes the reduction of
H2O2 to H2O and O2 [34, 35].

However, the antioxidant system’s inability to regulate
the ROS level results in oxidative stress involved in many
diseases’ pathogenesis, including cancers [36–39]. More-
over, several studies indicate crosstalk between the SP/NK1R
system and the redox system. For example, Wang et al. have
shown that the ROS level significantly increased in MES23.5
neuroblastoma cells after treatment with SP [40]. Consis-
tently, Baek et al. observed that human retinal pigment
epithelial (ARPE-19) cells can survive under oxidative stress
by activating survival signaling pathways, including Akt.
*erefore, the inhibition of Akt signaling can promote
H2O2-induced cell death. In contrast, SP treatment caused
Akt signaling activation; therefore, SP-activated Akt sig-
naling might contribute to RPE cells’ accelerated recovery
under oxidative stress. Besides, SP’s effects on the activation
of signaling molecules and cell survival were mediated via
NK1R [41].

Also, an in vivo study showed that the administration of
an NK1R antagonist could lead to a decrease in intra-
abdominal adhesion by reducing the level of ROS [42].

Hence, this study aimed to explore the possible effect of
the SP/NK1R system and aprepitant, a potent NK1R an-
tagonist, on the expression and activity of catalase and
superoxide dismutase enzymes, two of the most well-known
antioxidant enzymes, in U87 glioblastoma cancer cells.

2. Materials and Methods

2.1. Cell Culture andReagents. U87 glioblastoma cancer cells
were purchased from Pasteur Institute, Iran. Cells were
maintained in RPMI-1640 medium (Gibco, Grand Island,
NY) supplemented with 10% fetal bovine serum (FBS)
(Gibco, Grand Island, NY) and 1mL of penicillin and
streptomycin (Sigma 10,000 units penicillin and 10mg of
streptomycin/mL), incubated at 37°C with 5% CO2. SP and
aprepitant were purchased from Sigma-Aldrich Company,
St. Louis, MO, USA.

2.2. Resazurin Cell Viability Assay. *e resazurin cell via-
bility assay technique was used to evaluate the survival rate
of U87 cells in the vicinity of the striatum as described before
[43]. Resazurin is a weak blue fluorescence compound which
reduced to a high-fluorescence, pink product (resorufin) by
reducing enzymes present only in metabolically active cells.
*e rate of resorption of resazurin during this process is
directly proportional to the number of living cells in this
technique.

For this purpose, U87 cells were treated with varying
concentrations (0 (control), 5, 10, 25, 35, and 50 μM) of
aprepitant for 24 hours. After that, the fluorescence intensity
in each well was measured by a plate reader at 530 nm
excitation wavelength and 590 nm emission wavelength.

2.3. RNA Extraction and Quantitative Real-Time PCR (qRT-
PCR). According to the manufacturer’s instructions, total
RNA was extracted using TRIzol reagent (Invitrogen,
Carlsbad, CA) from cultured U87 cells. Complementary
DNA (cDNA) was synthesized by reverse transcription with
total RNA, using a reverse transcriptase cDNA synthesis kit
(Takara, China). PCR products were separated by electro-
phoresis on agarose containing ethidium bromide. For
quantitative real-time PCR (QRT-PCR) analysis, cDNA was
amplified using an SYBRGreen PCRKit (Takara, China) and
the Stratagene real-time PCR system (Agilent, USA). *e
differential expression was calculated by the 2−ΔΔCTmethod
and assessed statistically.

2.4. Assessment of Superoxide Dismutase (SOD) and Catalase
(CAT) Activity. To measure these enzymes’ activity in the
U87 cell line, commercial kits from Teb Pazhouhan Razi
(TPR), Tehran, Iran, were utilized. *e protocol was exe-
cuted following the protocol from the manufacturer. *e
enzyme activity was computed as enzyme/mg protein (U/mg
protein).

2.5. Statistical Analysis. All results are presented as the
mean± standard deviation of three independent experi-
ments. Statistical analyses were determined using ANOVA
followed by Bonferroni’s t-test for multigroup comparisons.
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*e p value <0.05 was considered statistically significant for
all tests. *e GraphPad Prism® 6.0 software (San Diego, CA,
USA) for Windows was used for all statistical analyses.

3. Results

*e data that support the findings of this study are available
from the corresponding author upon reasonable request.

3.1. 5e Effect of Aprepitant on the Survival Rate of U87 Cells.
In this study, the resazurin cell viability assay was used to
evaluate the cytotoxic effects of aprepitant on glioblastoma
cancer cells. *e cell viability results with different aprepi-
tant concentrations (0 (control), 5, 10, 25, 35, and 50 μM) are
shown in Figure 1. Aprepitant reduced cell viability of the
U87 cell line in a dose-dependent manner. *e estimated
IC50 value for aprepitant in U87 cells was 34.69 µM, a
concentration that half of the malignant cells lost their
metabolic activity in response to this NK1R antagonist.
*ese findings were suggestive of the possible antitumor
activity of aprepitant in glioblastoma-derived cells.

3.2. 5e Effect of Aprepitant on the Production of ROS in U87
Cells. To elucidate whether aprepitant may contribute to
intracellular ROS production, we investigated the ROS
production in U87 cells. As shown in Figure 2, the treatment
of cells with SP (concentrations of 400 and 800 nm after 24 h)
significantly increased ROS’s intracellular level. Interest-
ingly, aprepitant, with or without the pretreatment with SP,
reduced intracellular ROS production. Collectively, our
results suggested that aprepitant administration significantly
suppressed the ROS production through inhibition of the
SP/NK1R system in U87 cells.

3.3. 5e Effect of Aprepitant on Superoxide Dismutase (SOD)
Gene Expression. Accumulating evidence implicates that
increased ROS induced by SP stimulation is associated with
decreased SOD gene expression, which plays a major role in
tumor pathology [44, 45]. Accordingly, we performed qRT-
PCR analysis following the administration of 20 µm apre-
pitant in the presence or absence of different SP (400 nm and
800 nm) concentrations to measure SOD gene expression.
As indicated in Figure 3, we found that SP could decrease the
gene expression of SOD in the U87 cell line at the con-
centration of 800 nm.Moreover, to confirm that the decrease
in the SOD gene expression is due to the SP/NK1R axis’s
stimulation, we treated the cells with aprepitant, the potent
inhibitor of NK1R. We observed that the gene expression of
SOD significantly increased after treatment with aprepitant
20 µm, as compared to the control group and the SP 800 nm
group (∗P< 0.05).

3.4. 5e Effect of Aprepitant on Catalase Enzyme Gene
Expression. Several lines of studies suggest that SP decreased
ROS production through induced catalase gene expression,
resulting in enhanced proliferation of tumor cells and de-
creased apoptosis [46, 47]. Accordingly, we performed qRT-

PCR analysis following the administration of a 20 µm
aprepitant in the presence or absence of different concen-
trations of SP (400 nm and 800 nm) to measure CAT gene
expression. As shown in Figure 4, we found that SP at the
concentration of 800 nm could decrease CAT gene expres-
sion in the U87 cell line. Moreover, we observed that the
gene expression of SOD significantly increased after treat-
ment with aprepitant 20 µm, as compared to the control
group and the SP800 nm group (∗∗P< 0.01).

3.5. 5e Effect of Aprepitant on Superoxide Dismutase (SOD)
Activity. Superoxide dismutase is a well-known enzyme of
the antioxidant system that compensates for ROS’s harmful
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Figure 1: Aprepitant-induced growth inhibition and decreased
viability of U87 cells. Aprepitant exerted inhibitory effects on cell
viability in a concentration-dependent manner and was evaluated
using resazurin assay after 24 h incubation with increasing apre-
pitant doses. *e IC50 value for aprepitant was about 34.69 µM. All
results were shown as mean± SD of three independent
experiments.
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Figure 2: *e inhibition of ROS production by aprepitant resulted
in enhanced caspase-mediated apoptosis in U87 cells. Values are
the mean± SD of two independent experiments (∗P< 0.05 vs.
control; ∗∗P< 0.01 vs. control; ∗∗∗∗P< 0.001 vs. control; ∗P< 0.05;
###P< 0.001).
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effects caused by SP [48, 49]. As evident in Figure 5, we
found that culturing the cells with SP at the concentration of
800 nm caused a significant decrease in the activity of SOD.
Moreover, to confirm that the decrease of SOD activity is
due to the stimulation of the SP/NK1R axis in the U87 cells,
we treated the cells with the antagonist of NK1R. Of note,
our results showed that aprepitant (20 µm), as a single agent,
could increase the SOD activity in U87 cells.

3.6. 5e Effect of Aprepitant on Catalase Activity. Several
studies indicated that catalase activity significantly decreased
in many cancers through SP stimulation and increased ROS

production [47, 48]. We found that SP (800 nm) could
significantly reduce the CAT activity in U87 cells, and the
ablation of NK1R using aprepitant (20 µm) was coupled with
the remarkable increase in CAT activity (Figure 6).

4. Discussion

In this study, we investigated the SP/NK1R system’s effect on
the expression and activity of catalase and superoxide dis-
mutase in glioblastoma cancer. *e results showed that
substance P induced the production of reactive oxygen
species (ROS) by binding to the NK1 receptor in these cells.
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Glioblastoma, known as one of the most malignant brain
cancers, is commonly identified and diagnosed in patients
with advanced steps and final stages. In addition to its
widespread invasion of the surrounding tissue and rapid
progression, this type of cancer has a usual recurrence after
treatment. Due to this invasive nature and lack of appro-
priate screening to diagnose at the early stages of the disease,
glioblastoma cancer prognosis is worse than other brain
cancers [50]. Considering the side effects of chemotherapy
and drug resistance, especially in advanced cases, it is im-
portant to find a suitable and more effective drug to treat
glioblastoma cancer [51, 52].

It is now known that the tachykinin (TK) system, which
plays a crucial role in the transmission of neural messages in
the central and peripheral nervous systems, may also be
involved in the progression of cancers. *e biological ac-
tivities of SP, the most basic member of the mammalian TK
peptides, are mediated through a G-protein coupled re-
ceptor (GPCR) named neurokinin-1 receptor, and it is
known that the SP/NK1R system is also involved in survival,
proliferation, progression, and metastasis of several human
tumor cells [21, 53].

Several pharmacological agents are under assessment to
block NK1R activation; among them, aprepitant is a spe-
cific, potent, and long-acting NK1R antagonist currently
utilized to prevent chemotherapy-induced nausea and
vomiting [54, 55]. Moreover, a remarkable number of
studies focused on the antitumor properties of this drug in
various cancer cell lines. In this regard, studies on glio-
blastoma cancer have shown that NK1R expression is in-
creased in the brain tissue of patients, and this increase in
expression is related to the size of the tumor and the extent
of its invasion and spread to surrounding tissues [56]. In a
study conducted by Zhu et al [44], SP’s effects on ROS levels
in microglial cells were evaluated. *e results of this study
suggested that substance P could increase ROS production

in microglia. *is study’s findings also showed that NK1R
mediated the increase in ROS production in microglial
cells. Silencing this receptor’s expression in these cells leads
to inhibition of ROS production induced by SP [44]. In a
similar vein, another recent study showed that SP increased
ROS production in esophageal cancer. *is increase causes
oxidative stress, and as a result, it leads to tumor cell
formation and cell death [45]. *us, the use of antioxidant
enzymes such as catalase and superoxide dismutase may
play a major role in inhibiting ROS formation, which can
prevent cancer progression by removing and inactivating
reactive oxygen species [57].

In this study, we also investigated the possible effect of
the SP/NK1R system on the expression of catalase and
superoxide dismutase enzymes in glioblastoma cancer cells.
In this regard, other studies have shown that the expression
of CAT and SOD enzymes in breast cancer cells is reduced.
*is study showed that the decrease of these two enzymes
leads to the formation of reactive oxygen species and the
development of tumor cells and apoptosis [48, 58]. In this
regard, in our present study, it was found that substance P
can significantly reduce the expression of catalase and su-
peroxide dismutase in U87 cells in some doses. Besides,
using aprepitant (20 μM) in the presence or absence of SP
caused a significant increase in these two enzymes’ ex-
pression in the U87 cell line.

Also, we evaluated the potential effects of the SP/NK1R
system on the activity of catalase and superoxide dismutase
in the U87 cell line. Negahdar et al. examined the activity of
SOD and CAT in the whole blood of 50 patients with breast
cancer. *e results showed that the SOD and CAT activities
in BC patients were significantly lower than the control
group [48]. In the study conducted by Srivastava et al., lower
SOD and CAT enzyme activities were reported in patients
with oral cancer from the second to the fourth stage
(according to TNM) [49](Figure 7).
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5. Conclusion

Our study results showed that SP agonists reduce catalase
and superoxide dismutase activity at some doses. On the
other hand, aprepitant (20 μM) in the presence or absence of
SP causes a significant increase in CAT and SOD enzyme
activity. Taken together, it can be concluded that the in-
hibitors of the SP/NK1R system, such as aprepitant, might be
considered as a part of therapeutic protocols in patients with
glioblastoma multiforme.

Data Availability
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