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Abstract

Mitochondria are the primary source of energy production in the brain thereby supporting most of 

its activity. However, mitochondria become inefficient and dysfunctional with age and to a greater 

extent in neurological disorders. Thus, mitochondria represent an emerging drug target for many 

age-associated neurological disorders. This review summarizes recent advances (covering from 

2010 to May 2020) in the use of natural products from plant, animal, and microbial sources as 

potential neuroprotective agents to restore mitochondrial function. Natural products from diverse 

classes of chemical structures are discussed and organized according to their mechanism of action 

on mitochondria in terms of modulation of biogenesis, dynamics, bioenergetics, calcium 

homeostasis, and membrane potential, as well as inhibition of the oxytosis/ferroptosis pathway. 

This analysis emphasizes the significant value of natural products for mitochondrial pharmacology 

as well as the opportunities and challenges for the discovery and development of future 

neurotherapeutics.
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1. Introduction

Neurological disorders affect nearly 50 million people worldwide (WHO, 2017). However, 

there are no drugs for any of these conditions that are disease modifying in the sense that 
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they slow down or revert the progression of the neuropathological process (Bellantuono, 

2018; Gauthier, et al., 2016). Aging leads to progressive and detrimental changes in the brain 

and old age is the greatest risk factor for many neurological disorders such as Alzheimer’s 

(AD), Parkinson’s (PD), and Huntington’s diseases (HD) as well as stroke. Therefore, the 

aging process must be taken into account in order to understand the molecular and cellular 

basis of neurological disorders (Hou, et al., 2019; López-Otín, Blasco, Partridge, Serrano, & 

Kroemer, 2013). Many have argued that deficits in cerebral bioenergetics and metabolism 

associated with aging are central to the development of cognitive decline (Butterfield & 

Halliwell, 2019; Currais, 2015; Kapogiannis & Mattson, 2011; Schubert, 2005). 

Mitochondria are the primary source of energy in the brain, and their impairment has been 

implicated in the aging process and to a greater extent in neurological disorders (Chan, 

2006; Nunnari & Suomalainen, 2012). However, relatively little progress has been made 

towards preventing mitochondrial dysfunction to promote cognition and brain health (Lin & 

Beal, 2006; Murphy & Hartley, 2018). It is therefore of crucial importance to investigate the 

detrimental changes that take place in mitochondria with aging as well as that are 

exacerbated by disease or injury and, based on this knowledge, to develop therapeutic 

interventions for neurological disorders.

Natural products, defined as small molecule compounds from natural sources such as plants, 

animals, and microorganisms, have been used for the treatment of human diseases for 

thousands of years and they have proven to be a valuable source of new drugs. According to 

the latest statistics of the US-FDA approved drugs, many prescription medicines in the clinic 

today are derived from natural products (Newman & Cragg, 2020). Over the past decade, the 

identification of natural products that target mitochondrial function has become an emerging 

field in drug discovery. An early review by Biasutto et al. drew attention to the 

mitochondrial effects of selected plant dietary compounds (Biasutto, Szabo’, & Zoratti, 

2011). These natural products include potential therapeutics to stimulate mitochondrial 

biogenesis, modulate mitochondrial dynamics, improve mitochondrial bioenergetics and 

metabolism, sustain mitochondrial membrane potential and calcium homeostasis, and 

resolve imbalances in the mitochondrial redox status with aging. In the present review, we 

cover up-to-date research articles published within the last ten years on neuroprotective 

natural products from plant, animal, and microbial sources, with a specific focus on their 

reported bioactivities on mitochondria. In addition, some examples from our own research 

focused on natural product-based drug discovery for AD therapies are highlighted.

The literature search was performed with the SciFinder (Chemical Abstracts Service) and 

PubMed (National Institutes of Health) databases from January 2010 to May 2020, resulting 

in a total of 127 natural products spanning over 240 references on relevant topics. For clarity, 

the neuroprotective natural products are categorized into groups based on their structural 

classes and modes of action on mitochondria. Anticancer natural products that induce 

mitochondrial toxicity and apoptosis, as well as natural products that have no published 

reports for their positive effects on the nervous system were excluded from this review. In 

addition, biochemical/pharmacological investigations on natural product extracts whose 

bioactive chemical identities were not described were also excluded. Finally, we discuss our 

views on the potential use of these natural products in mitochondrial pharmacology and 

future drug development for the treatment of age-associated neurological disorders.

Liang et al. Page 2

Pharmacol Ther. Author manuscript; available in PMC 2022 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1.1. A key role for mitochondria in brain health

The human brain is a unique organ in that it consumes about 20% of the total oxygen and up 

to 25% of the total energy required by the body, yet it represents only 2% of the body mass 

(Bélanger, Allaman, & Magistretti, 2011; Schubert, 2005). The brain comprises a 

heterogeneous mixture of cell types including neurons, the main cell type responsible for 

neurotransmission, and glial cells (i.e., astrocytes, oligodendrocytes, and microglia), mostly 

involved in supporting brain functions. To fulfill the high energy demand required for 

synaptic transmission and other vital neuronal activities in the brain, neurons and glia rely 

on mitochondria, the “powerhouse” of the cell (Bélanger, et al., 2011; Harris, Jolivet, & 

Attwell, 2012).

Mitochondria are the primary source of adenosine triphosphate (ATP) which fuels energy-

dependent biochemical reactions in the whole body, particularly in the brain. A majority of 

the ATP is produced by consuming glucose and oxygen via the Krebs cycle and oxidative 

phosphorylation (OXPHOS) within the brain mitochondria. Along with ATP biosynthesis, 

mitochondria play an essential role in numerous neuronal functions such as the maintenance 

of neuronal redox homeostasis, membrane potential and ion balance for synaptic signaling, 

exchange of neurotransmitters, as well as neuronal survival and death (Grimm & Eckert, 

2017).

Owing to the multiple and crucial tasks that mitochondria execute in the central nervous 

system (CNS) to keep the brain functioning properly, mitochondrial dysfunction has been 

associated with almost every neurological disorder as well as with the aging process 

(Cunnane, et al., 2020; Lin & Beal, 2006). Although the underlying mechanisms by which 

mitochondrial dysfunction participates in such a wide range of age-related neurological 

disorders remain elusive, energy deficits with aging may contribute to neurodegeneration 

(Hou, et al., 2019; Lin & Beal, 2006) and ischemic stroke (Yousufuddin & Young, 2019), 

along with other neuropathological conditions, by disrupting neuronal activities in affected 

areas of the brain. Therefore, developing therapies to treat mitochondrial disturbances in 

age-associated neurological disorders is an attractive pursuit.

1.2. Mitochondrial dysfunction in age-associated neurological disorders

A growing body of preclinical and clinical evidence indicates that damage and dysregulation 

of mitochondrial structure and function in brain cells appear to be relevant to the 

pathogenesis of age-associated neurological disorders including AD, PD, HD, 

frontotemporal dementia (FTD), Lewy body dementia (LBD), amyotrophic lateral sclerosis 

(ALS), Friedreich’s ataxia (FRDA), as well as brain ischemia (Cunnane, et al., 2020; Lin & 

Beal, 2006; Yang, Mukda, & Chen, 2018). The high energetic activity of postmitotic neurons 

in the brain inevitably results in the progressive accumulation of toxic byproducts such as 

mitochondrial DNA (mtDNA) mutations, oxidative stress, and neurotoxic metabolites in 

mitochondria over time with aging (Terman, Kurz, Navratil, Arriaga, & Brunk, 2010). 

Therefore, neurons are believed to be more prone to mitochondrial pathologies (Grimm & 

Eckert, 2017). Since the incidence of many neurological disorders rises exponentially in the 

population above the age of 65 (WHO, 2017), it has been postulated that mitochondrial 

dysfunction could be one of the driving factors that contribute to the onset and progression 
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of these disorders (Chan, 2006; Currais, 2015). Below, we discuss four common age-

associated neurological disorders (AD, PD, HD, and stroke) and their associated 

mitochondrial pathology.

1.2.1. Alzheimer’s disease—With respect to clinical and post-mortem information in 

AD, it has been shown that the mitochondrial electron transport chain (ETC) complexes as 

well as the mitochondrial translocase of the outer membrane (TOM) and the translocase of 

the inner membrane (TIM) complexes show a significant reduction in activity, causing 

dysregulation of OXPHOS, ATP depletion, and accumulation of reactive oxygen species 

(ROS) in the brain tissues of AD patients (Devi, Prabhu, Galati, Avadhani, & 

Anandatheerthavarada, 2006; Pérez-Gracia, Torrejón-Escribano, & Ferrer, 2008; 

Reichmann, Fhirke, Hebenstreit, Schrubar, & Riederer, 1993). In addition, studies using in 
vitro and in vivo disease models have demonstrated a causative association between 

mitochondrial dysfunction and the disease. For instance, it has been shown that the toxic β-

amyloid (Aβ) oligomers in neurons or amyloid deposits in transgenic AD mouse models can 

cause loss of the mitochondrial membrane potential (ΔΨm), increase ROS, trigger influx of 

mitochondrial Ca2+, lower ATP levels, and reduce the mitochondrial respiratory rate, which 

eventually results in memory loss and cognitive impairment (Behl, Davis, Lesley, & 

Schubert, 1994; Huang, et al., 2020; Perez Ortiz & Swerdlow, 2019).

1.2.2. Parkinson’s disease—Mitochondrial defects are well-known for their clinical 

relevance in PD and related parkinsonism (Langston, Ballard, Tetrud, & Irwin, 1983; 

Subramaniam & Chesselet, 2013). In cell and rodent models mimicking the pathological 

features of PD, neurotoxins like 6-hydroxydopamine (6-OHDA), 1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine (MPTP), paraquat, and rotenone interfere with the mitochondrial ETC 

complexes, reduce ATP production, induce ROS production, and eventually lead to 

mitochondrial dysfunction and the irreversible damage of dopaminergic neurons (Blandini & 

Armentero, 2012; Dauer & Przedborski, 2003; Pienaar & Chinnery, 2013). These toxins 

achieve their neurotoxicity by distinct mechanisms due to their chemical variance, biological 

affinity, and cellular uptake pathways. For example, MPTP is first metabolized to 1-

methyl-4-phenylpyridinium (MPP+) by monoamine oxidase B in astrocytes and then 

selectively transported by the dopamine transporter into dopaminergic neurons where MPP+ 

inhibits the mitochondrial complex I (Mizuno, Sone, & Saitoh, 1987). Rotenone targets 

mitochondria directly and is a systemic inhibitor of the mitochondrial complex I (Betarbet, 

et al., 2000). Paraquat enters the mitochondrial matrix driven by ΔΨm and is then reduced to 

monocation radicals by the mitochondrial complex I, where it subsequently triggers 

mitochondrial ROS production (Cochemé & Murphy, 2008). 6-OHDA is not a complex I 

inhibitor per se, and it primarily affects redox cycling and promotes ROS-induced 

neurotoxicity (Blum, et al., 2001). Regarding transgenic animal models of PD, the MitoPark 

mice were created by selective inactivation of mitochondrial transcription factor A (TFAM) 

in midbrain dopaminergic neurons (Ekstrand, et al., 2007). TFAM is a nuclear-encoded 

protein that translocates to mitochondria and controls vital parameters of mtDNA such as 

expression, copy number regulation or repair (Larsson, et al., 1998). The loss of TFAM in 

the MitoPark mice results in a dramatic disruption of the expression of genes encoded by 

mtDNA, such as cytochrome c oxidase, causing ETC deficiency. This model recapitulates 
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key features of a sporadic PD-like phenotype in humans, including the progressive, age-

dependent loss of dopaminergic neurons, particularly in the substantia nigra, and decline of 

motor function, along with the presence of intraneuronal inclusions such as mitochondrial 

protein and membrane components (Ekstrand & Galter, 2009; Ekstrand, et al., 2007). These 

inclusions in the mice do not contain α-synuclein and hence are different from the Lewy 

bodies observed in PD patients. However, recent findings on post-mortem PD brains have 

shown that Lewy bodies containing misfolded protein aggregates (i.e., α-synuclein) also 

include membranes from mitochondria (Shahmoradian, et al., 2019), suggesting a role for 

dysfunctional mitochondria in the formation of these inclusions and the progression of the 

disease in PD patients.

1.2.3. Huntington’s disease—Mitochondrial dysfunction also plays a role in the 

pathology of HD (Costa & Scorrano, 2012; Intihar, Martinez, & Gomez-Pastor, 2019). For 

instance, mitochondrial biogenesis has been shown to be compromised in HD. 

Transcriptional and protein levels of the peroxisome proliferator-activated receptor- γ 
coactivator 1α (PGC-1α), a key activator of mitochondrial biogenesis and respiration, are 

decreased in post-mortem samples from HD patients (Cui, et al., 2006; Johri, Chandra, & 

Flint Beal, 2013). Moreover, mutant huntingtin protein has the ability to trigger 

mitochondrial fission and a number of proteins controlling mitochondrial dynamics are 

altered in patients as well as in different models of HD (Costa, et al., 2010; Guo, et al., 2013; 

Shirendeb, et al., 2011; Song, et al., 2011). Finally, several studies reported impairment of 

mitophagy with huntingtin-induced neurotoxicity in both in vitro and in vivo models of HD 

(Franco-Iborra, et al., 2020; Guo, et al., 2016).

1.2.4. Brain ischemic/hemorrhagic stroke—Mitochondrial damage is one of the 

hallmarks in acute neurological disorders such as ischemic or hemorrhagic strokes 

(Campbell, et al., 2019; Yang, et al., 2018), where age is a major risk factor for the disorders 

(Yousufuddin & Young, 2019). Ischemic stroke deprives parts of the brain from glucose and 

oxygen while disturbing mitochondrial energetic and redox homeostasis and consequently 

leading to neuronal death (Campbell, et al., 2019; Yang, et al., 2018). In intracerebral 

hemorrhage, blood emerging from ruptured vessels causes immediate neuronal tissue 

destruction and secondary damage due to an excessive inflammatory response and an 

increase in ROS production (Qu, Chen, Hu, & Feng, 2016). It has been shown that exposure 

of neurons to hemoglobin can induce lipid peroxidation, free radical formation, and release 

of free iron, while causing necrotic, apoptotic and ferroptotic neuronal death (Zille, et al., 

2017). In addition, defects in mitochondrial biogenesis and dynamics have been reported in 

rodent models of ischemic stroke associated with neuronal death (Ren, et al., 2019; Zhou, 

Wang, Li, Yu, & Zhao, 2018).

2. Natural product-based neurotherapeutics targeting mitochondrial 

dysfunction

As discussed above, extensive experimental and clinical investigations have revealed that 

aberrant brain alterations in mitochondria occur in neurological disorders. Thus, searching 

for neurotherapeutics that protect mitochondria in the CNS may be a promising approach for 
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developing effective treatments (Andreux, Houtkooper, & Auwerx, 2013; Murphy & 

Hartley, 2018; Schubert, et al., 2018). Herein, we summarize the available literature from the 

past ten years on natural products from plant, animal, and microbial origins that have shown 

promising results for their neuroprotective effects on diverse aspects of mitochondrial 

biology.

2.1. Modulation of mitochondrial biogenesis

Mitochondrial biogenesis is a complex process that results in the generation of new 

mitochondria and involves over 150 proteins including transcription factors, enzymes, and 

receptors. Among them, PGC-1α, AMP-activated protein kinase (AMPK), and sirtuin-1 

(SIRT1) are the three major cooperating players in mitochondrial biogenesis (Figure 1) 

(Cantó, et al., 2009; Herzig & Shaw, 2018; Lin, Handschin, & Spiegelman, 2005). PGC-1α 
is a positive regulator of mitochondrial biogenesis and metabolism. In mammalian cells, 

PGC-1α is activated sequentially by SIRT1 (deacetylation) and AMPK (phosphorylation). 

PGC-1α then binds to peroxisome proliferator-activated receptor- γ (PPARγ) and activates 

the nuclear respiratory factors (NRF-1 and NRF-2) to induce the expression of 

mitochondrial genes (e.g., proteins of the Krebs cycle and OXPHOS system). PGC-1α also 

up-regulates multiple nuclear-encoded proteins such as TFAM, DNA polymerase γ (POLG), 

Twinkle helicase, and the mitochondrial single stranded binding protein (mtSSB), which are 

responsible for the transcription, replication, and packaging of mtDNA in mitochondria 

(Scheibye-Knudsen, Fang, Croteau, Wilson, & Bohr, 2015) (Figure 1). Because 

mitochondrial biogenesis is impaired with aging and in associated neurological disorders 

(Whitaker, Corum, Beeson, & Schnellmann, 2016), identifying therapeutic compounds that 

induce mitochondrial biogenesis through modulation of the SIRT1-AMPK-PGC-1α 
pathway may be beneficial towards preventing pathology.

Many natural products have been reported to modulate mitochondrial biogenesis and have 

shown efficacy in multiple in vitro and in vivo models of neuropathology (Table 1). One 

widely studied compound that has shown neuroprotection through modulation of 

mitochondrial biogenesis signaling is the polyphenol resveratrol from the berries of 

Vaccinium species and other plants. Resveratrol has been shown to stimulate mitochondrial 

biogenesis by activating the SIRT1-AMPK-PGC1-α axis in cell and animal models of AD 

(Porquet, et al., 2014), PD (Ferretta, et al., 2014), and Down’s syndrome (Valenti, et al., 

2016). Resveratrol also prevented cerebral mtDNA deletion and cognitive impairment in the 

brains of senescence accelerated mice prone 8 (SAMP8), a model of age-associated 

dementia (Liu, Zhang, Yang, & He, 2012). The resveratrol dimer, ε-viniferin from Vitis 
vinifera, attenuated the neurotoxicity of the huntingtin protein and promoted mitochondrial 

biogenesis in cell models of HD (Fu, et al., 2012).

Curcumin, a diarylheptanoid found in turmeric (Curcuma longa), has also shown promise for 

inducing mitochondrial biogenesis in several disease models. Curcumin stimulated the 

expression of the mitochondrial biogenesis genes PGC1-α, NRF-1, NRF-2, and TFAM in 

Aβ-treated human SH-SY5Y neuroblastoma cells (Reddy, et al., 2016). Another study 

showed that curcumin attenuated neuronal death and prevented cerebral ischemia/
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reperfusion injury with concomitant increases in mitochondrial mass and expression of the 

mitochondrial biogenesis regulators NRF-1 and TFAM in rat brains (Liu, et al., 2014).

A number of flavonoids belonging to different structural classes are potential simulators of 

mitochondrial biogenesis. The flavonol quercetin, found in many fruits and vegetables, was 

able to increase mitochondrial mass and mtDNA content in mouse dopaminergic MN9D 

cells as well as in the MitoPark mouse model of PD, where it stimulated expression of 

PGC-1α, TFAM, and cytochrome B that are responsible for mitochondrial biogenesis (Ay, et 

al., 2017). The flavanonol dihydromyricetin from Ampelopsis grossedentata has been shown 

to protect against neurodegeneration and memory impairment in rats subjected to cerebral 

hypoxia-ischemia, where it increased PGC-1α and TFAM expression in hippocampal 

neurons (Liu, et al., 2016). The flavone baicalein from Scutellaria baicalensis was found to 

stimulate the expression of PGC-1α, NRF-1, and TFAM in the substantia nigra of rotenone-

treated PD rats and to improve their motor behavior (Zhang, et al., 2017). 

Epigallocatechin-3-gallate (EGCG), commonly found in green tea, is an ester of 

epigallocatechin and gallic acid. Research showed that EGCG promoted neuronal 

mitochondrial biogenesis by activating SIRT1/AMPK/PGC-1α signaling in hippocampal 

neural progenitor cells from the Ts65Dn mouse model of Down’s syndrome as well as in 

primary fibroblasts from Down’s syndrome patients (Valenti, et al., 2013).

Observations of induced mitochondrial biogenesis were also noted for plant-derived 

flavonoid glycosides. Isoorientin is a 6-C-glycosylflavone found in corn, passion flower, and 

Fenugreek seed. Isoorientin and its derivatives have been shown to protect from amyloid and 

tau toxicities in the SH-SY5Y neuronal cells and APP/PS1 mouse model of AD, where their 

neuroprotective mechanisms work in part due to the promotion of mitochondrial biogenesis 

(Liang, Zhang, Su, Williams, & Li, 2016; Ziqubu, et al., 2020). Icariin, a prenylated flavonol 

glucoside from Epimedium grandiflorum, protected against rotenone-induced loss of 

dopaminergic neurons in the rat substantia nigra through up-regulation of PGC-1α 
expression (Zeng, Wang, et al., 2019). Salidroside, a simple phenolic glucoside from 

Rhodiola rosea, has been shown to protect from hypoxia-induced neurodegeneration and 

memory impairment, where it was found to increase PGC-1α, AMPK and SIRT1 expression 

and mtDNA content in the rat hippocampus (Barhwal, Das, Kumar, Hota, & Srivastava, 

2015).

β-Lapachone is a naphthoquinone that was isolated from the bark of the lapacho tree 

Tabebuia avellanedae. This compound prevented behavioral and cognitive impairments in 

the R6/2 mouse model of HD and enhanced mitochondrial biogenesis through up-regulation 

of SIRT1 and deacetylation of PGC-1α in neuronal stem cells in the R6/2 HD brain (Lee, 

Ban, Chung, Im, & Kim, 2018). Embelin is a naturally occurring p-benzoquinone isolated 

from berries and other fruits. A recent study showed that embelin induced mitochondrial 

biogenesis via activation of SIRT1 and protected from MPTP-induced neurotoxicity in 

cellular and mouse models of PD (Rao, Sharma, & Kalivendi, 2020).

Studies also showed that phytocannabinoids such as ∆9-tetrahydrocannabinol (Δ9-THC) 

from Cannabis sativa L. prevented cell death induced by MPP+ toxicity in the SH-SY5Y cell 

model of PD by stimulating the expression of PGC-1α, NRF-1, and TFAM, and increasing 
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mtDNA content (Zeissler, et al., 2016). Δ9-Tetahydrocannabinolic acid (Δ9-THCA) was 

shown to rescue cell viability against mutant huntingtin protein induced toxicity in the 

STHdh and N2a neuronal cell models of HD, where it up-regulated the expression of 

PGC-1α and increased mitochondrial mass in cells (Nadal, et al., 2017).

In addition to phenolic compounds, plant-derived terpenoids were found to induce 

mitochondrial biogenesis. For example, the triterpenoid asiatic acid from Centella asiatica 
showed neuroprotective effects against glutamate, rotenone, and α-synuclein toxicities in 

SH-SY5Y cells, where it concomitantly stimulated the expression of PGC-1α and SIRT1 

(Ding, et al., 2018; Xu, et al., 2012). The triterpenoid saponins such as ginsenosides Rb1 and 

Rg1 from Panax ginseng increased mtDNA content and mitochondrial function to protect 

from oxygen–glucose-deprivation/reperfusion (OGD/R)-induced injury, a stroke model, in 

mouse primary astrocytes (Xu, et al., 2019).

Alkaloids and related hormones were found to be potential stimulators of mitochondrial 

biogenesis as well. For instance, berberine, an isoquinoline alkaloid found in the plant 

Berberis species, can modulate the SIRT1/AMPK/PGC-1α pathway and improve cognitive 

function in aging rats (Yu, et al., 2018). Melatonin, an indole-type hormone (derived from 

tryptophan) mainly found in animals, has been shown to prevent amyloid neurotoxicity and 

memory loss in a rat AD model, where it promoted the expression of SIRT1 and TFAM in 

conjunction with increased mtDNA content in the hippocampus (Ansari Dezfouli, 

Zahmatkesh, Farahmandfar, & Khodagholi, 2019).

In summary, a large amount of evidence shows that natural products are able to promote 

mitochondrial biogenesis in a variety of cellular and animal models of neurological disorders 

(a complete compound list is found in Table 1). Most of these compounds belong to the 

classes of plant polyphenols, terpenoids, and alkaloids, suggesting their therapeutic potential 

for modulating age-associated mitochondrial disorders.

2.2. Modulation of mitochondrial fusion and fission dynamics

Mitochondria form a dynamic network with the ability to constantly elongate (fusion) and 

fragment (fission) within eukaryotic cells. Mitochondrial fusion/fission dynamics are crucial 

for the maintenance of mitochondrial homeostasis and resilience against cellular stresses. 

While mitochondrial fusion accelerates the exchange of mitochondrial materials (e.g., 

mtDNA, proteins, lipids) and assists in the repair of defective mitochondria, mitochondrial 

fission is important for the removal of damaged mitochondria through mitophagy (Figure 2) 

(Youle & van der Bliek, 2012). In mammalian cells, mitochondrial fusion is mainly 

controlled by proteins such as optic atrophy protein 1 (OPA1) and mitofusins (MFN1 and 

MFN2). In contrast, fission depends mainly on proteins like dynamin-related protein 1 

(DRP1), mitochondrial fission 1 protein (FIS1), and mitochondrial fission factor (MFF). 

Defects in mitochondrial dynamics by disruption of either fusion or fission are known to 

occur with aging as well as in many neuropathological conditions. Specifically, decreased 

mitochondrial fusion and increased fission have been associated with the progression of 

neurodegenerative diseases (Itoh, Nakamura, Iijima, & Sesaki, 2013). Therefore, 

pharmacological interventions that maintain mitochondrial dynamics could be an approach 

for treating neurological disorders.
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Over the past few years, several natural products have been reported to modulate 

mitochondrial dynamics (Table 1). Resveratrol was shown to regulate mitochondrial fusion/

fission dynamics through increasing the expression of MFN2 and OPA1 while decreasing 

the expression of DRP1 and FIS1 in the PD model of rotenone-induced dopamine 

neurotoxicity in rat brains (Peng, Tao, et al., 2016). Resveratrol also increased OPA1 and 

MFN2 expression to promote mitochondrial fusion in the hippocampus of SAMP8 mice, a 

model of dementia (Palomera-Avalos, et al., 2017).

Curcumin and its derivatives can also modulate mitochondrial dynamics for neuroprotection. 

It was found that curcumin can reduce mitochondrial fission by decreasing the expression of 

DRP1 and FIS1, and enhance fusion by increasing the expression of OPA1, MFN1 and 

MFN2 in the brains of SAMP8 mice (Eckert, et al., 2013). Tetrahydrocurcumin, a natural 

derivative of curcumin, was shown to regulate mitochondrial fusion/fission dynamics in 

mouse brain endothelial cells while protecting against homocysteine-induced oxidative 

stress and cell death (Vacek, et al., 2018).

Regarding flavonoids, the flavonol quercetin was found to regulate mitochondrial dynamics 

by inhibiting the expression of DRP1 and FIS1 and at the same time increasing the 

expression of MFN1 and MFN2 in the rat hippocampus, thereby improving hypoxia-induced 

memory deficits (Liu, et al., 2015). The flavanone liquiritigenin from Glycyrrhiza uralensis 
promoted mitochondrial fusion and prevented Aβ-induced neurotoxicity in human SK-N-

MC nerve cells (Jo, et al., 2016). Xanthohumol is a prenylated chalconoid from the hop 

Humulus lupulus and a common ingredient in beers. Studies showed that xanthohumol 

alleviated kainic acid-induced excitotoxicity in the rat brain, a model of HD, in part by up-

regulating MFN2 expression to promote mitochondrial fusion and prevent mitochondrial 

dysfunction (Wang, Ho, Hung, Kuo, & Wang, 2020). In a mouse model of subarachnoid 

hemorrhage, EGCG was found to protect mitochondrial function by down-regulating the 

expression of DRP1 and FIS1 in the brain (Chen, et al., 2018).

Ferulic acid, a hydroxycinnamic acid from Ferula foetida, was reported to reduce neuronal 

death in the striata of the 6-OHDA-lesioned rat model of PD, while inhibiting DRP1 and 

increasing MFN2 expression (Anis, et al., 2020). α-Tocopherol (vitamin E) is a terpenoid 

quinone rich in many vegetable oils that was found to preserve mitochondrial dynamics 

(increased mitochondrial OPA1) and protect against glutamate toxicity in the mouse HT22 

hippocampal nerve cells (Sanderson, Raghunayakula, & Kumar, 2015).

Regarding natural products from animals, ursodeoxycholic acid, a bioactive steroid in bear 

bile, has been reported to modulate DRP1 and improve mitochondrial dynamics in 

fibroblasts from patients with sporadic and familial AD (Bell, et al., 2018). 15-Deoxy- 

∆12,14-prostaglandin J2 is an endogenous fatty acid metabolite in humans that was found to 

stimulate mitochondrial remodeling against oxygen-glucose deprivation by regulation of 

DRP1 and OPA1 in primary neurons (Wappler, Institoris, Dutta, Katakam, & Busija, 2013). 

Melatonin was found to prevent DRP1-dependent mitochondrial fission induced by MPP+ in 

rat primary cortical neurons (Chuang, et al., 2016).
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As for microbial sources, santacruzamate A, a peptide-like metabolite from the marine 

cyanobacterium Symploca sp., attenuated Aβ toxicity in PC12 cells and rescued cognitive 

impairment in APP/PS1 mice. Its neuroprotective mechanisms were shown to be in part due 

to inhibition of mitochondrial fission (decreases in DRP1, FIS1, and MFF) (Chen, et al., 

2019).

Together, certain natural polyphenols, quinones, steroids, and peptidic metabolites have been 

shown to modulate mitochondrial fusion/fission dynamics while protecting brain cells in 

various models of neurological disorders (a complete compound list is found in Table 1).

2.3. Modulation of mitochondrial bioenergetics

Mitochondrial bioenergetics refers to the enzymatic and metabolic processes involved in the 

biochemical and molecular pathways of energy production and transformation within the 

mitochondrion. Bioenergetics and metabolic regulation are the primary functions of 

mitochondria. In mammalian cells, the metabolite pyruvate derived from glycolysis is 

oxidized to acetyl-coenzyme A (acetyl-CoA) that fuels the Krebs cycle in the mitochondrial 

matrix, powering up cellular respiration (Figure 1). NADH and FADH2 from the Krebs cycle 

are then oxidized to NAD and FAD, respectively, which are then used as substrates of the 

ETC to produce ATP via OXPHOS (Figure 3). The mitochondrial OXPHOS system 

comprises protein complexes I to IV and ATP synthase (complex V), where the electron 

movement is driven by the redox potential and the proton gradient across the mitochondrial 

inner membrane. The ATP molecules generated from mitochondrial respiration by ATP 

synthase are then exported to the cytosol to fuel a variety of vital cellular functions. During 

mitochondrial electron transfer, oxygen consumption yields inevitable byproducts such as 

the ROS superoxide radical (O2
−) that is generated predominantly at the mitochondrial 

complexes I and III (Sipos, Tretter, & Adam-Vizi, 2003). As such, disruptions of the finely 

tuned process of mitochondrial respiration can cause an abnormal production of ROS thus 

contributing to multiple neuropathologies (Morán, et al., 2012).

In recent years, many bioactive natural products have been reported to modulate 

mitochondrial bioenergetics and related pathways (Table 1). These effects were often 

associated with neuroprotection in multiple disease models. For example of flavonoids, 

fisetin, a flavonol rich in strawberries and other fruits, showed improvement of 

mitochondrial complex I activity in the brains of rotenone-treated rats, a model of PD 

(Alikatte, Palle, Rajendra Kumar, & Pathakala, 2020). The isoflavones genistein and 

daidzein, commonly found in soybeans, maintained mitochondrial respiration efficiency to 

prevent potassium deprivation-induced cell death in cerebellar granule cells (Atlante, Bobba, 

Paventi, Pizzuto, & Passarella, 2010). The flavone baicalein prevented rotenone-induced 

mitochondrial ATP deficiency in both PC12 cells and brain tissue (Li, et al., 2012). The 

citrus flavanone naringenin protected from H2O2-induced cell death in SH-SY5Y cells 

where it restored the activities of complexes I and V and increased ATP production (de 

Oliveira, Brasil, & Andrade, 2017). Silibinin, a flavonolignan from Silybum marianum L., 

modulated OXPHOS complex enzyme activity to maintain mitochondrial bioenergetics 

against MPP+ induced dopaminergic neurotoxicity in the rat brain (Geed, Garabadu, 

Ahmad, & Krishnamurthy, 2014).
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Flavonoids with glycosidic groups are also known to promote mitochondrial bioenergetics 

under stress. Naringin, a flavanone glycoside in Citrus plants, showed neuroprotective 

effects against rotenone-induced neurotoxicity in a rat model of PD where it increased the 

activity of mitochondrial ETC complexes in the rat substantia nigra (Garabadu & Agrawal, 

2020). The anthocyanidin glucoside chrysanthemin, from bilberry, was shown to restore the 

mitochondrial respiration rate in the presence of H2O2-induced oxidative stress in rat C6 

glial cells (Ereminas, et al., 2017). Gastrodin, a simple phenolic glycoside in Gastrodia elata 
Blume, showed neuroprotection against H2O2-induced oxidative stress in SH-SY5Y cells 

where it increased mitochondrial respiration and ATP generation (de Oliveira, Brasil, & 

Fürstenau, 2018).

Some polyphenols like cannabidiol (CBD), derived from Cannabis sativa L., improved 

mitochondrial respiration and glucose metabolism thereby protecting against OGD/R 

damage in HT22 neural cells (Sun, Hu, Wu, & Zhang, 2017). 5-Heptadecylresorcinol, 

commonly found in cereals, was protective against H2O2-induced mitochondrial dysfunction 

in PC12 cells, where it enhanced mitochondrial respiration and ATP production (Liu, et al., 

2020). Auraptene, a prenyloxycoumarin from Citrus spp., increased the oxygen consumption 

rate in response to MPP+ treatment in substantia nigra-derived SN4741 dopaminergic 

neuronal cells (Jang, et al., 2019). Hydroxytyrosol, a simple catechol derivative abundant in 

olive oil, showed beneficial effects by increasing the activities of mitochondrial OXPHOS 

complexes and ATP production in the brains of APP/PS1 transgenic mice (Peng, Hou, et al., 

2016).

With respect to plant-derived terpenoids, the monoterpene linalool, commonly found in 

botanical essential oils, showed protective effects against glutamate toxicity, where it 

increased mitochondrial respiration in HT22 cells (Sabogal-Guáqueta, et al., 2019). 

Bicelaphanol A, a dimeric trinorditerpene from Celastrus orbiculatus, increased ATP 

production in mitochondria and protected from H2O2-induced mitochondrial stress in PC12 

cells (Wang, et al., 2013). The diterpene quinones, tanshinone I and tanshinone IIa from 

Salvia miltiorrhiza Bunge (Danshen), protected mitochondrial function from paraquat and 

glutamate toxicity in human SH-SY5Y neural cells, where they preserved the activity of 

ETC complexes and ATP production (de Oliveira, Schuck, & Bosco, 2017; Li, et al., 2017).

With respect to alkaloids, huperzine A is a sesquiterpene alkaloid from Huperzia serrata that 

has been approved as a potent acetylcholinesterase (AChE) inhibitor for the treatment of AD 

in China. A study has shown that huperzine A, independent of its AChE inhibitory effect, 

ameliorated Aβ-induced impairments in ATP production and ETC complex enzyme activity 

in isolated cortical mitochondria from APP/PS1 transgenic mice. (Yang, Ye, Huang, Tang, & 

Zhang, 2012). Neferine, a bisbenzylisoquinoline alkaloid from Nelumbo nucifera, increased 

mitochondrial respiration and protected brain mitochondria in a rat model of ischemic stroke 

(Wu, et al., 2019). The indole hormone melatonin was shown to protect brain mitochondria 

from aging in SAMP8 mice by increasing the activities of ETC complexes and ATP 

production (Carretero, et al., 2009).

In addition to phytochemicals, animal-derived natural products, particularly steroids, were 

noted for their abilities to maintain mitochondrial bioenergetics in neuronal cells. Several 
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human endogenous neurosteroids (i.e., progesterone, estradiol, allopregnanolone, estrone, 

testosterone, 3α-androstanediol, and dehydroepiandrosterone) have been shown to improve 

mitochondrial respiration and ATP production in SH-SY5Y cells as well as in primary 

cortical neurons (Grimm, Schmitt, Lang, Mensah-Nyagan, & Eckert, 2014), while restoring 

brain bioenergetic deficits in the 3xTg mouse model of AD (Wang, Yao, Chen, Mao, & 

Brinton, 2020). The bile acid steroids ursodeoxycholic acid and ursocholanic acid were 

found to improve mitochondrial respiration and ATP generation in fibroblasts from AD and 

PD patients (Bell, et al., 2018; Mortiboys, Aasly, & Bandmann, 2013). α-Lipoic acid, an 

organosulfur compound derived from fatty acids in animals and humans, was found to 

increase the activities of ETC complexes in the striatum of the 3-nitropropionic acid-induced 

HD rat model and ameliorate HD-like behavioral deficits (Mehrotra, Kanwal, Banerjee, & 

Sandhir, 2015).

Taken together, as summarized in Table 1, many plant-derived polyphenols, terpenoids and 

alkaloids appear to be promising modulators of mitochondrial respiration thereby 

contributing to neuroprotection. In addition, a subset of steroids from animal sources also 

have shown similar beneficial effects on mitochondria.

2.4. Modulation of mitochondrial calcium (Ca2+) homeostasis

Mitochondria, in coordination with the endoplasmic reticulum (ER), are crucial for the 

buffering and regulation of cellular calcium by sequestering and releasing the ions into the 

cytosol. Therefore, mitochondrial Ca2+ homeostasis is vital to a variety of cellular functions 

(Zündorf & Reiser, 2011). Driven by the mitochondrial membrane potential and transported 

by the mitochondrial ion channels (e.g., voltage-dependent anion channel, mitochondrial 

calcium uniporter, etc.) (Figure 3), Ca2+ ions enter the mitochondrial matrix, influencing 

processes such as respiration, ATP production, mitochondrial dynamics, and cell fate 

(Pathak & Trebak, 2018). Prolonged mitochondrial Ca2+ overload leads to increased ROS 

generation, ΔΨm dissipation, metabolic dysfunction, and induction of apoptosis/necrosis 

through the opening of the mitochondrial permeability transition pore (mPTP). It is evident 

that excessive mitochondrial Ca2+ influx is detrimental to the neuron and has been 

implicated in many pathophysiological processes such as those observed in 

neurodegeneration and ischemia (Maher, et al., 2018). As such, modulating mitochondrial 

Ca2+ uptake represents an emerging therapeutic strategy for several age-associated 

neurological disorders.

A handful of polyphenolic natural products have been reported to maintain mitochondrial 

Ca2+ homeostasis while conferring neuroprotection (Table 1). For instance, it was shown 

that resveratrol prevented Ca2+-induced mitochondrial swelling after hypoxic injury in rat 

brain neurons (Kesherwani, Atif, Yousuf, & Agrawal, 2013). Curcumin prevented okadaic 

acid-induced memory impairment in mice, where it reduced mitochondrial Ca2+ uptake in 

the hippocampus and cerebral cortex (Rajasekar, et al., 2013). Baicalein was shown to 

inhibit 6-OHDA/ascorbic acid induced mitochondrial Ca2+ accumulation and cell death in 

SH-SY5Y cells (Wang, et al., 2017). The hexamethoxyflavone nobiletin from the peel of 

Citrus sunki attenuated mitochondrial Ca2+ overload induced by glutamate in rat primary 

cortical neurons (Lee, Amarsanaa, et al., 2018). Fumarprotocetraric acid from the lichen 
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fungus Cetraria islandica protected against H2O2-induced toxic mitochondrial Ca2+ uptake 

in both human SH-SY5Y neuroblastoma and U373-MG astrocytoma cells (Fernández-

Moriano, Divakar, Crespo, & Gómez-Serranillos, 2017).

Terpenoids are also known to modulate mitochondrial Ca2+. The kaurane diterpenes linearol 

and sidol from Sideritis spp. prevented both mitochondrial and cytosolic Ca2+ overload 

induced by H2O2 in rat PC12 cells as well as human U373-MG cells (González-Burgos, 

Duarte, Carretero, Moreira, & Gómez-Serranillos, 2016). The triterpenoid ginsenosides Rb1 

and Rg1 protected against rotenone-induced mitochondrial Ca2+ influx in SH-SY5Y cells 

(Fernández-Moriano, González-Burgos, Iglesias, Lozano, & Gómez-Serranillos, 2017). 

Hyperforin and its derivative from Hypericum perforatum are polyketidic terpenoids and 

were reported to be neuroprotective in AD models. They prevented memory loss and Aβ 
neurotoxicity in APP/PS1 mice, and counteracted mitochondrial Ca2+ overload in rat 

hippocampal neurons exposed to Aβ (Zolezzi, et al., 2013).

Overall, a limited number of natural products (Table 1) have been reported to specifically 

ameliorate mitochondrial Ca2+ overload in neurons and/or astrocytes as well as in brain 

tissue of disease models. Noticeably, a majority of them are highly lipophilic compounds, 

which may help them penetrate the mitochondrion to buffer Ca2+ intake.

2.5. Modulation of mitochondrial membrane potential (∆Ψm)

The mitochondrial membrane potential (ΔΨm) is generated by the OXPHOS proton pumps 

(complexes I, III and IV) across the mitochondrial inner membrane, thereby powering ATP 

production and ion transport (i.e., Ca2+) (Figure 3). Under physiological conditions, the 

levels of ΔΨm are relatively stable and play a critical role in mitochondrial homeostasis. 

However, dramatic or prolonged changes of ΔΨm are deleterious and could trigger 

mitochondrial damage and eventually cell death (Ward, et al., 2007; Zorova, et al., 2018). It 

has been observed that the ΔΨm levels decrease in many cellular and animal models of age-

associated diseases (Nicholls, 2004), and researchers have identified neuroprotective natural 

products to counteract the loss of ΔΨm (Table 1).

Because of its mechanistic relevance, pharmacological modulation of ΔΨm usually affects 

other mitochondrial functions such as biogenesis, dynamics, bioenergetics, and Ca2+ flux, 

and vice versa (Figures 1–3). In many cases, changes in ΔΨm appear to be a 

pharmacological consequence of the compound actions and may or may not be necessarily 

responsible for their protective effects. Nonetheless, measurement of ΔΨm change is a 

useful mitochondrial parameter for characterizing the neuroprotective effects of a 

compound, particularly in phenotypic screening systems. To avoid redundancy in this 

section, we have chosen to focus on the natural products that have not been previously 

discussed and where the literature has shown that the restoration of ΔΨm is correlated to 

their protective effects. A complete summary of the natural products that were reported to 

modulate ΔΨm can be found in Table 1.

Flavonoids have been reported to be able to maintain ΔΨm against a variety of neuronal 

stressors. For example, the flavonol myricetin from many fruits and vegetables attenuated 

ΔΨm loss and cell death induced by MPP+ in the MES23.5 dopaminergic cell model 
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(Zhang, Ma, Wang, Xie, & Xie, 2011). The flavanol theaflavic acid from black tea prevented 

ΔΨm loss and cell damage from OGD/R in PC12 cells (Li, Shi, et al., 2020). Rutin, a 

flavonol glycoside, ameliorated ΔΨm loss and amylin-induced neurotoxicity in SH-SY5Y 

cells, which is relevant to type 2 diabetes associated with AD (Yu, Li, et al., 2015). Orientin, 

an 8-C-glycosylflavone commonly found in the bamboo Phyllostachys nigra attenuated 

ΔΨm depolarization in the hippocampus of Aβ-induced mice while improving cognitive 

function (Yu, Wang, et al., 2015).

Other polyphenolic compounds such as rasidasin II, a lignan from red raspberry, attenuated 

H2O2-induced ΔΨm loss in SH-SY5Y cells (Zhou, Yao, et al., 2018). α-Arbutin, a phenolic 

glycoside from bearberry, was found to be protective against rotenone-induced ΔΨm 

impairment in SH-SY5Y cells as well as in a fruit fry model of PD (Ding, et al., 2020). 

Coniferyl ferulate from the root of Angelica sinensis inhibited ΔΨm depolarization during 

glutamate-induced toxicity in PC12 cells (Gong, Zhou, Gong, & Qin, 2020).

A number of terpenoids have been reported to be effective modulators of ΔΨm. For 

example, the sesquiterpene artemisinin, a well-known antimalarial drug isolated from the 

sweet wormwood Artemisia annua, prevented H2O2-induced ΔΨm loss in a cellular model 

of age-related neurodegeneration using RGC-5 cells (Yan, Wang, Gao, Xu, & Zheng, 2017). 

Geniposide, an iridoid monoterpene glycoside from Gardenia jasminoides, prevented ΔΨm 

loss in isolated brain mitochondria from APP/PS1 mice (Lv, Liu, Liu, Chen, & Zhang, 

2014). The triterpenoid celastrol from Tripterygium wilfordii was reported to alleviate ΔΨm 

depolarization caused by rotenone-induced mitochondrial dysfunction in SH-SY5Y cells 

(Deng, Shi, Liu, & Qu, 2013). Gracilin A is a unique norditerpenoid from the marine sponge 

Spongionella sp., and a study has shown that it could prevent H2O2-induced oxidative stress 

and restore ΔΨm in cortical neurons (Leirós, Sánchez, et al., 2014). Astaxanthin, a keto-

carotenoid (known as a tetraterpenoid) from the freshwater microalgae Haematococcus 
pluvialis, was able to prevent MPP+-induced ΔΨm loss and cytotoxicity in SH-SY5Y cells 

(Lee, Kim, & Lee, 2011).

Some natural quinones and alkaloids are also known to preserve ΔΨm in neurons. For 

instance, the diterpenoid quinone cryptotanshinone restored ΔΨm in human-induced 

neuronal progenitor cells derived from fibroblasts of familial PD patients (Lee, et al., 2020). 

A nitrogen-containing 3-alkyl-1,4-benzoquinone from the plant Embelia ribes maintained 

ΔΨm and mitochondrial function against severe oxidative stress in primary FRDA 

fibroblasts (Madathil, Khdour, Jaruvangsanti, & Hecht, 2012). The naphthoquinone 

anhydroexfoliamycin from Streptomyces spp. also protected against H2O2-induced ΔΨm 

loss in mouse primary cortical neurons (Leirós, Alonso, et al., 2014). The 

pyrroloiminoquinone alkaloid makaluvamine J from marine Zyzzya sponges showed 

protective effects against H2O2-induced ΔΨm loss in SH-SY5Y cells (Alonso, et al., 2016). 

3,3’-Diindolylmethane is an indole alkaloid found in many cruciferous vegetables and it has 

been shown to counteract the ΔΨm loss and neuronal death induced by MPP+ in SH-SY5Y 

cells (Ito, et al., 2017). The steroidal alkaloid tomatidine from the tomato plant Lycopersicon 
esculentum preserved ΔΨm against glutamate-induced toxicity in SH-SY5Y cells (Taveira, 

et al., 2014).
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In summary, flavonoids, terpenoids, quinones, and alkaloids from various sources are 

neuroprotective and have shown their potential to maintain ΔΨm in neuronal models of 

disease.

2.6. Neuroprotection against mitochondrial oxidative stress in oxytosis/ferroptosis

Given the postmitotic characteristic of neurons in the adult brain, neurodegeneration with 

aging leads to a progressive course of neuronal cell death in a way that can hardly be 

regenerated. Although brain atrophy is a hallmark of many CNS disorders, it is known that 

many forms of neuronal death are non-apoptotic as they do not involve DNA fragmentation 

and activation of the caspase cascade in neurons (Berghe, Linkermann, Jouan-Lanhouet, 

Walczak, & Vandenabeele, 2014). The molecular mechanisms executing regulated cell death 

that differ from apoptosis are still poorly defined (Fricker, Tolkovsky, Borutaite, Coleman, & 

Brown, 2018).

Over 20 years ago, our laboratory identified oxytosis, a non-apoptotic, regulated cell death 

pathway that is due to glutathione (GSH) depletion triggered by inhibition of the cystine/

glutamate antiporter, system Xc
−, and mediated by the dysregulated production of ROS from 

mitochondria that results in lethal lipid peroxidation and calcium influx (Figure 4) (Li, 

Maher, & Schubert, 1997; Tan, Sagara, Liu, Maher, & Schubert, 1998; Tan, Schubert, & 

Maher, 2001). Importantly, we have also shown that the oxytosis pathway is essentially 

identical to the more recently named ferroptosis pathway (Dixon, et al., 2012) that is 

triggered by inhibition of either system Xc
− or glutathione peroxidase 4 (GPX4) and is 

associated with accumulation of intracellular iron (Fe2+) (Figure 4) (Lewerenz, Ates, 

Methner, Conrad, & Maher, 2018; Stockwell, et al., 2017). GSH is the major endogenous 

antioxidant, and a reduction in GSH is observed in the aging brain and is accelerated in 

neurodegenerative diseases including AD and PD (Currais & Maher, 2013; Mandal, 

Saharan, Tripathi, & Murari, 2015; Smeyne & Smeyne, 2013). GSH dysregulation in 

mitochondria is also observed in many metabolic and neurological disorders (Gao, et al., 

2019; Ribas, García-Ruiz, & Fernández-Checa, 2014; Stockwell, et al., 2017). Therefore, 

oxytosis/ferroptosis is a unique regulated cell death pathway with characteristics of 

mitochondrial oxidative stress and dysfunction (Maher, Currais, & Schubert, 2020). In the 

past decade, our group has identified specific inhibitors that block the oxytosis/ferroptosis 

pathway, which is an evolving therapeutic strategy for age-associated neurological diseases 

(Maher, Currais, et al., 2020).

In early studies using glutamate-induced toxicity in mouse HT22 hippocampal neurons and 

primary cortical neurons as models of oxytosis/ferroptosis, we screened and identified 

several promising natural products including curcumin, resveratrol, α-tocopherol (vitamin 

E), and specific flavonoids (i.e., galangin, baicalein, kaempferol, luteolin, fisetin, quercetin, 

morin) that are highly neuroprotective (Ishige, Schubert, & Sagara, 2001; Schubert, Kimura, 

& Maher, 1992). As described above, curcumin from the curry spice turmeric is a 

multifunctional natural product that modulates various aspects of mitochondrial function 

(Table 1). Curcumin protected against glutamate-induced toxicity with an EC50 value of 6 

μM (Liu, Dargusch, Maher, & Schubert, 2008). Further optimization of curcumin through 

structure-activity relationship driven medicinal chemistry led to development of J147 (EC50 
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= 11 nM), a compound that enhances memory and is highly neuroprotective in cell and 

mouse models of AD (Chen, Prior, et al., 2011; Currais, et al., 2015; Prior, Dargusch, Ehren, 

Chiruta, & Schubert, 2013). Importantly, we have recently demonstrated that J147 targets 

the mitochondrial ATP synthase and modulates its activity (Goldberg, et al., 2018). J147 is 

currently in Phase 1 clinical trials for AD (NCT03838185). Another example is fisetin, 

which was identified in our screens as a protective flavonol against oxytosis/ferroptosis with 

an EC50 value of 3 μM (Ishige, et al., 2001; Maher, Akaishi, & Abe, 2006). Pharmacological 

studies of fisetin showed its therapeutic benefits in preclinical models of AD, PD, HD, 

traumatic brain injury, stroke, as well as aging (Maher, 2020). We later developed CMS121, 

a synthetic derivative of fisetin, with improved potency (EC50 = 200 nM) against oxytosis/

ferroptosis as well as other improved pharmacological properties for the treatment of AD 

(Ates, Goldberg, Currais, & Maher, 2020; Chiruta, Schubert, Dargusch, & Maher, 2012). 

CMS121 is currently in Investigational New Drug (IND) studies. Interestingly, both J147 

and CMS121 protect cultured nerve cells from oxytosis/ferroptosis induced by either 

glutamate (an inhibitor of system Xc
−) or RSL3 (an inhibitor of GPX4), and they both have 

an overlapping mechanism of action that is associated with strong anti-aging effects by 

increasing mitochondrial acetyl-CoA and activating AMPK in the brains of SAMP8 mice 

(Currais, et al., 2019).

More recently, additional anti-oxytotic/ferroptotic natural products have been identified by 

our group. The flavanone sterubin from the plant Yerba santa (Eriodictyon californicum) 

showed effective neuroprotection against oxytosis/ferroptosis (EC50 = 0.8 μM) (Fischer, 

Currais, Liang, Pinto, & Maher, 2019; Maher, Fischer, et al., 2020). The flavonol 

isoquercitrin showed neuroprotection against glutamate toxicity with an EC50 value of 25 

μM as well as anti-amyloidogenic effects (Carmona, Martín-Aragón, Goldberg, Schubert, & 

Bermejo-Bescós, 2020). The dimeric indole alkaloid voacamine from Voacanga africana 
protected HT22 cells against glutamate toxicity with an EC50 value of 0.7 μM (Currais, et 

al., 2014). Several phytocannabinoids such as tetrahydrocannabinol (THC), cannabidiol 

(CBD), cannabinol (CBN), and cannabichromene (CBC) from the Cannabis plant also 

showed promising protective effects against oxytosis, ATP depletion, and Aβ toxicity with 

potencies in the sub-micromolar range (EC50 < 1 μM) (Schubert, et al., 2019).

Other research laboratories have also reported on a number of natural products with diverse 

chemical structures that prevent neuronal death in cellular models using system Xc
− 

inhibitors (i.e., glutamate and erastin) as inducers of oxytosis/ferroptosis (Figure 4). For 

instance, flavonoids such as 7,8-dihydroxyflavone from Tridax procumbens (Chen, Chua, et 

al., 2011), cudraflavone B from Cudrania tricuspidata (Lee, Ko, Kim, Kim, & Jeong, 2014), 

liquiritigenin from Glycyrrhiza uralensis (Yang, Park, & Song, 2013), morachalcones from 

mulberry leaves (Wen, et al., 2020), EGCG from green tea (He, Xu, Yang, & Sun, 2019), 

and procyanidins from grape seeds (Song, Lee, & Kang, 2019), have all been shown to 

protect against glutamate/erastin-induced mitochondrial oxidative injury and nerve cell death 

in HT22 cells. In addition, puerarin, an 8-C-glycosylisoflavone from Pueraria lobate, 

protected against glutamate toxicity in SH-SY5Y cells (Zhu, et al., 2016).

Other plant-derived polyphenols with simple or complex structures have also been found to 

be protective against glutamate-induced oxytosis/ferroptosis in HT22 cells. These include 
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the stilbenoids pterostilbene (Wang, Liu, et al., 2016) and artoindonesianin O (Seo, et al., 

2014), the diarylheptanoids juglanin C (Yang, Sung, Kim, & Kim, 2011) and acerogenin A 

(Lee, Cha, Woo, Kim, & Jang, 2015), the lignans mulberrofuran K (Xia, et al., 2019) and 

pinoresinol (In, et al., 2015), the neolignans obovatol and honokiol (Yang, Lee, Park, Lee, & 

Song, 2013), the anthraquinones emodin (Ahn, et al., 2016) and chrysophanol (Chae, et al., 

2017), the prenylcinnamate artepillin C (Takashima, Ichihara, & Hirata, 2019), the xanthone 

γ-mangostin (Wang, Li, et al., 2016), the coumarin daphnetin (Du, et al., 2014), and the 

ellagitannin casuarinin (Song, Kang, & Choi, 2017).

Plant-derived terpenoids such as the monoterpenoid oleuropein (Kim, et al., 2018), the 

sesquiterpene artemisinin (Lin, Li, Winters, Liu, & Yang, 2018), and the diterpenoid 

andrographolide (Yang & Song, 2014) were reported to show neuroprotective effects against 

glutamate-induced oxytosis in HT22 cells. The triterpenoids protopanaxadiol (Bak, et al., 

2016) and asiatic acid (Xu, et al., 2012) protected against glutamate-induced cytotoxicity in 

PC12 and SH-SY5Y cells.

Moreover, several plant-derived alkaloids such as huperzine A (Mao, Zhou, Li, & Liu, 

2016), geissoschizine methyl ether (Sun, Ren, Qi, Yuan, & Simpkins, 2016), sanguinarine 

(Park, et al., 2014), and fangchinoline (Bao, Tao, & Zhang, 2019) also protected against 

glutamate-induced mitochondrial dysfunction in HT22 cells.

Besides, certain fungus-derived polyketidic metabolites were reported to be anti-oxytotic/

ferroptotic in HT22 cells. These include polyozellin from the mushroom Polyozellus 
multiplex (Yang & Song, 2015), evariquinone from Colletotrichum sp. (Song, et al., 2018), 

and fusarubin from Fusarium solani (Choi, et al., 2020). In addition, the phenazine alkaloid 

pontemazine B from the bacterium Streptomyces sp. also protected from glutamate toxicity 

in HT22 cells (Cha, et al., 2015).

As summarized in Table 1, in recent years a growing number of natural products have been 

reported to prevent nerve cell death caused by oxytosis/ferroptosis, a process that is 

associated with mitochondrial oxidative stress and dysfunction. Most of them belong to the 

polyphenols, terpenoids, alkaloids, and polyketidic quinones. Impressively, some of these 

anti-oxytotic/ferroptotic natural products are either the same or appear to share common 

structural characteristics with the aforementioned neuroprotective compounds that modulate 

mitochondrial biogenesis, fusion/fission dynamics, bioenergetics, calcium uptake, etc.

3. Conclusions and perspectives

Human neurological disorders arise from complex and multifaceted pathological 

mechanisms. Although the etiology of the individual disorders may differ, there is a 

consensus towards mitochondrial inefficiency or dysfunction in the brain with aging as being 

a key pathological process shared by these disorders (Currais, 2015; Grimm & Eckert, 

2017). In recent years, novel therapeutic approaches to the use of small molecule drugs to 

target mitochondria in the CNS have emerged (Andreux, et al., 2013; Cunnane, et al., 2020; 

Schubert, et al., 2018).
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Natural products are a valuable source of drug candidates (Newman & Cragg, 2020). As 

summarized in Table 1, a total of 127 natural products covering a diverse array of structural 

classes have been reported over the past ten years to be efficacious in mitigating 

mitochondrial dysfunction and promoting cell survival in different in vitro and in vivo 
models of neurological disorders. More importantly, a number of these compounds, as 

exemplified by the cases of resveratrol, curcumin, baicalein, quercetin, EGCG and 

melatonin, are able to modulate at least four out of five mitochondrial functions (biogenesis, 

fusion/fission dynamics, bioenergetics, calcium homeostasis, and membrane potential), as 

well as prevent mitochondrial oxidative stress-induced nerve cell death in the form of 

oxytosis/ferroptosis (Figure 5). Interestingly, if one looks at the biological sources of these 

compounds in Figure 6A, 104 out of 127 compounds (about 82%) are derived from plants, 

while only 14 (11%) and 9 (7%) compounds are derived from animals and microbes, 

respectively, suggesting an increased potential of natural phytochemicals to target 

mitochondria for CNS drug discovery.

Regarding the structural classification of these natural products, the breakdown shown in the 

pie chart in Figure 6B indicates that flavonoids (i.e., flavone, flavonol, flavanol, flavanone, 

flavanonol, anthocyanidin, isoflavone, isoflavane, and chalcone as flavonoid precursor) are a 

predominant group, accounting for 36 compounds (28%). The second largest group is 

terpenoids (i.e., monoterpene, sesquiterpene, diterpene, triterpene, trinorditerpenoid, steroid, 

and carotenoid) that account for 31 compounds (24%). It is likely that the inherent lipophilic 

nature of certain flavonoids and terpenoids makes them more able to cross the cell and 

mitochondrial membranes and subsequently modulate mitochondrial function to achieve 

neuroprotection. Polyketides and alkaloids are the third and fourth groups that account for 

14% and 10%, respectively. The remaining groups belong to stilbenoids (e.g., resveratrol) 

(3%), diarylheptanoids (e.g., curcumin) (3%), cinnamic acids (2%), lignans (5%), tannins 

(1%), coumarins (2%), simple phenols (3%), fatty acids (3%), and peptides (2%).

Noticeably, 90 out of the 127 natural products (71%) are polyphenolic and simple phenolic 

compounds (a sum of flavonoids, polyketides, stilbenoids, diarylheptanoids, cinnamic acids, 

lignans, tannins, coumarins, simple phenols, and certain terpenoids/alkaloids with phenolic 

groups). This is not surprising because phenolic natural products are well-known 

antioxidants for ROS scavenging and exert at least part of their function by blocking and 

alleviating the surge of cytotoxic byproducts from cellular respiration and ATP generation in 

the aging mitochondria. In addition, these natural antioxidants are effective and pleiotropic 

modulators of mitochondrial biogenesis and dynamics, calcium homeostasis and membrane 

potential, as well as inhibitors of oxytosis/ferroptosis (Table 1 and Figure 5). Notably, 

certain bioactivities of the phenolic compounds, such as mitochondrial biogenesis and 

dynamics, are not directly associated with antioxidant capacity. These modes of action could 

play critical roles in neuroprotection apart from antioxidant activity. Therefore, our analyses 

offer curated literature evidence to support the use of phenolic natural products to modulate 

mitochondrial pathology in age-associated neurological disorders. One point worthy of 

discussion is that most of the bioassays on mitochondrial function discussed in this review 

are based on cell culture and resulted in the identification of neuroprotective phenolic 

compounds. Thus, it underscores the merits of phenotypic screening that can offer an 
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opportunity to better realize the therapeutic value of phenolic natural products (Prior, et al., 

2014).

Our observations also provide input to the controversial debate of whether polyphenolic 

natural products should be regarded as worthwhile for drug discovery and development, 

given that they are considered as pan assay interference compounds (PAINS) in single 

protein-based assays (Baell, 2016). With respect to the view from medicinal chemists, the 

main criticisms of PAINS (e.g., curcumin, resveratrol, flavonoids, quinones, and other 

polyphenols) are due to their reactive and promiscuous binding properties against a wide 

variety of proteins during high-throughput screening, thereby generating artifacts and false 

positives (Baell & Walters, 2014). Because one of the objectives of such target-based 

approaches is to achieve high specificity/selectivity of drug action against a single target of 

relevance, the PAINS appear to mislead, waste research efforts and increase costs for lead 

optimization in downstream drug discovery. However, from the standpoint of biologists, this 

does not apply in phenotypic drug screening using cellular and animal models that primarily 

focus on drug efficacy in living biological systems and deal with “unknown/uncertain 

protein targets” (Prior, et al., 2014; Schubert & Maher, 2012). This is particularly true for 

CNS drug discovery for which our knowledge of basic biology in neurosciences is still very 

limited. In fact, to date, all AD drug candidates based on presumed protein targets relevant to 

the disease (i.e., amyloid, tau, etc.) have failed in human clinical trials (Cummings, Lee, 

Ritter, Sabbagh, & Zhong, 2020). Paradoxically, the targets and modes of action of some 

commonly used CNS drugs (e.g., lithium, modafinil, and valproate) remain poorly defined 

(Lewis, 2016). Owing to an urgent need for effective drugs to treat neurodegenerative and 

other neurological disorders, the priority in CNS drug discovery should be to identify drug 

candidates that show pharmacological efficacy in model organisms and later to test them 

rigorously in human patients in clinical settings. Therefore, the antagonism towards PAINS 

may be unjustified. In fact, the majority of the natural products discussed throughout this 

review show positive effects on mitochondria and are PAINS. Moreover, the three 

mitochondria-targeted agents, MitoQ (NCT03514875), S-equol (NCT02142777) and J147 

(NCT03838185) currently in clinical trials for mild cognitive impairment (MCI) and AD, 

are derivatives of a quinone, an isoflavonoid, and curcumin, respectively. The intrinsic 

biophysics and biochemistry of mitochondria such as their double membrane system, ion/

proton gradients, ETC, redox cycles, etc. might actually favor therapeutic interventions with 

polyphenolic natural products for the treatment of neurological disorders. In principle, a 

balanced approach to a CNS drug pipeline that incorporates both phenotypic- and target-

based strategies should be embraced (Schubert & Maher, 2012; Swinney & Anthony, 2011), 

and diverse chemotypes including PAINS that show neuroprotective effects in drug 

screening should be investigated (Rodrigues, Reker, Schneider, & Schneider, 2016).

Although much progress has been made towards identifying novel agents/drug leads from 

natural sources to target mitochondria, there are still significant challenges towards 

developing effective neurotherapeutics. Lead compounds derived from natural products 

usually contain a greater number of stereogenic centers, steric effects, heteroatoms, and 

polycyclic systems compared to synthetic molecules, which are deemed as liabilities 

because they are hard to modify and usually contradict the Lipinski’s “rule-of-five” dogma 

describing druglikeness for small molecules (Lipinski, 2004). Other major concerns 
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regarding polyphenolic natural products for CNS therapeutic application include their poor 

oral bioavailability and lower extent of blood-brain barrier (BBB) permeability in vivo (Hu, 

Wu, & Liu, 2017). It hence raises a question about whether the concentrations of 

polyphenolic natural products eliciting their in vitro effects could be achievable in vivo. 

Indeed, pharmacokinetic studies have shown that polyphenolics are metabolized easily after 

oral administration and the concentrations of their intact form in serum and in brain (from 

nanomolar to low micromolar range) often do not meet the requisite for in vitro effects 

observed in cell culture (from sub-micromolar to micromolar range). However, an apparent 

in vivo efficacy of the compounds is still observed in animal models of CNS disorders (Ines, 

Regina, Diana, Ines, & Claudia Nunes dos, 2017). It is known that the first-pass metabolism 

involving phase II conjugation (i.e., glucuronidation and sulfation) of polyphenolics with 

concerted actions of efflux transporters (i.e., permeability glycoprotein) causes their poor 

oral bioavailability and BBB penetration, and facilitates metabolic clearance (Shuai, et al., 

2016; Wu, Kulkarni, Basu, Zhang, & Hu, 2011). Thus, it reduces the concentrations of 

polyphenolic compounds in the CNS for target engagement. However, glucuronidation and 

sulfation are known to be reversible in vivo, resulting in an equilibrium between the parent 

molecule and its conjugated metabolites distributed throughout the vascular and nervous 

systems (Andrade, Grosso, Valentao, & Bernardo, 2016). And the levels of individual 

conjugated metabolites (e.g., resveratrol metabolites) could be over ten times higher than 

those of the parent molecule in serum (Baur & Sinclair, 2006). In fact, increasing evidence 

indicates that metabolic conjugates along with the parent polyphenolics can be detected in 

the brain and that these conjugates are still bioactive (Ishisaka, Mukai, Terao, Shibata, & 

Kawai, 2014; Pogačnik, et al., 2016). Moreover, some glycosidic and glucuronidated 

phenolics bind to glucose transporters (GLUTs), sodium glucose co-transporters (SGLT1/2) 

and other carrier-mediated transporters, which enables their distribution across the intestinal 

barrier via transepithelial transport (Jesus, et al., 2017; Lies, Martens, Schmidt, Boll, & 

Wenzel, 2012), and across the BBB via secondary active transport (Andrade, et al., 2016; 

Patching, 2017). These data suggest that polyphenolic natural products in intact and/or 

metabolically modified forms may still be able to enter into the brain and exert therapeutic 

actions on mitochondria in the CNS.

Notwithstanding, future studies must emphasize lead optimization for potency/selectivity, 

physicochemical properties, ADME-Tox properties, bioavailability and BBB penetration of 

candidate neuroprotective natural compounds towards a better CNS druglikeness (Wager, 

Hou, Verhoest, & Villalobos, 2016). In addition, rational and strategic drug design by 

integrating chemical scaffolds and pharmacophores from polyphenols, terpenoids and 

alkaloids might add precision medicine to specifically target aspects of mitochondrial 

physiology in the CNS (Rodrigues, et al., 2016). This will require the collaboration of 

natural product/medicinal chemists, mitochondrial biologists, neuroscientists, and 

pharmacologists in drug discovery programs. Furthermore, a better understanding of the 

different molecular pathways underlying neurological disorders relevant to mitochondrial 

dysfunction will help scientists to develop novel classes of natural product-inspired 

therapeutics for healthy brain aging and other age-associated disorders.

In conclusion, over the past ten years there has been an increase in the development of new 

strategies based on natural products to target mitochondrial dysfunction in neurological 
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disorders. We hope that this review will lead readers to appreciate the importance of 

neuroprotective agents from Nature and offer new insights into mitochondrial pharmacology 

and CNS drug discovery towards the improvement of human health.
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MOA mode of action
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Figure 1. 
Schematic representation of mitochondrial biogenesis pathway.

Liang et al. Page 39

Pharmacol Ther. Author manuscript; available in PMC 2022 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Schematic representation of mitochondrial fusion and fission dynamics.
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Figure 3. Schematic representation of mitochondrial respiration, mitochondrial membrane 
potential, calcium uptake, ROS production, and related pathological pathways.
CoQ, coenzyme Q (ubiquinone); Cyt c, cytochrome c; NCLX, Na+/Ca2+ exchanger.
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Figure 4. Schematic representation of the oxytosis/ferroptosis pathway.
Cystine uptake by system Xc

−, associated with the counter-transport of glutamate (Glu), is 

inhibited by excess Glu or erastin. This leads to depletion of the endogenous antioxidant 

GSH and subsequent inhibition of the GSH-dependent enzyme GPX4. GPX4 can also be 

directly inhibited by RSL3. GPX4 inhibition leads to activation of lipoxygenase (LOX) to 

initiate ROS production and increase cGMP. cGMP then activates SOCE on the plasma 

membrane allowing Ca2+ influx into the cytosol and subsequent accumulation in 

mitochondria. The additive effect of mitochondrial ROS and Ca2+ overload exacerbates 

mitochondrial oxidative stress and dysfunction. GPX4 inhibition and LOX activation, in 

conjunction with intracellular Fe2+, also lead to lipid peroxidation (lipid ROS) in different 

cellular compartments such as mitochondria, ER, lysosome, and plasma membrane, thereby 

augmenting the overall ROS in the cell.

Liang et al. Page 42

Pharmacol Ther. Author manuscript; available in PMC 2022 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
The effects of natural products on multiple mitochondrial functions associated with 

neuroprotection.
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Figure 6. Natural products targeting mitochondrial dysfunction reported from January 2010 to 
May 2020, n = 127.
(A) Pie chart of natural products by biological source. (B) Pie chart of natural products by 

structural class.
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Table 1.

Neuroprotective natural products targeting mitochondrial dysfunction reported from January 2010 to May 

2020

a
 Mode of action (MOA) on mitochondria

Compound name Structural class Biogenesis Dynamics Bioenergetics ∆Ψm [Ca2+]m Oxytosis/
ferroptosis

References

PlantSource

Resveratrol Stilbenoid X X X X X X (Ferretta et 
al., 2014; 
Ishige et al., 
2001; 
Kesherwani et 
al., 2013; Liu 
et al., 2012; 
Narayanan, 
Dave, Saul, & 
Perez-Pinzon, 
2015; Peng, 
Tao, et al., 
2016; Porquet 
et al., 2014; 
Valenti et al., 
2016)

ε-Viniferin Stilbenoid X X (Fu et al., 
2012)

Artoindonesianin O Stilbenoid X (Seo et al., 
2014)

Pterostilbene Stilbenoid X (Wang, Liu et 
al., 2016)

Curcumin Diarylheptanoid X X X X X X (Eckert et al., 
2013; Liu et 
al., 2008; Liu 
et al., 2014; 
Rajasekar et 
al., 2013; 
Reddy et al., 
2016; Seo et 
al., 2010; van 
der Merwe et 
al., 2017)

Tetrahydrocurcumin Diarylheptanoid X (Vacek et al., 
2018)

Acerogenin A Diarylheptanoid X (Lee et al., 
2015)

Juglanin C Diarylheptanoid X (Yang et al., 
2011)

Genistein Isoflavone X X X (Atlante et al., 
2010; 
Rasbach & 
Schnellmann, 
2008)

Daidzein Isoflavone X X X (Atlante et al., 
2010; 
Rasbach & 
Schnellmann, 
2008)

Baicalein Flavone X X X X X (Ishige et al., 
2001; Li et 
al., 2012; 
Wang et al., 
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a
 Mode of action (MOA) on mitochondria

Compound name Structural class Biogenesis Dynamics Bioenergetics ∆Ψm [Ca2+]m Oxytosis/
ferroptosis

References

2017; Zhang 
et al., 2017)

Luteolin Flavone X X X (Ishige et al., 
2001; Zhao, 
Yao-Yue, Qin, 
& Guo, 2012)

Nobiletin Flavone X X (Lee, 
Amarsanaa, et 
al., 2018)

7,8-Dihydroxyflavone Flavone X (Chen, Chua, 
et al., 2011)

Cudraflavone B Flavone X (Lee et al., 
2014)

Quercetin Flavonol X X X X X (Ay et al., 
2017; Ishige 
et al., 2001; 
Liu et al., 
2015)

Fisetin Flavonol X X X (Alikatte, 
Palle, 
Rajendra 
Kumar, & 
Pathakala, 
2020; Ishige 
et al., 2001)

Galangin Flavonol X (Ishige et al., 
2001)

Morin Flavonol X (Ishige et al., 
2001)

Kaempferol Flavonol X (Ishige et al., 
2001)

Myricetin Flavonol X (Zhang et al., 
2011)

Epigallocatechin-3-
gallate (EGCG)

Flavanol X X X X X X (Chen et al., 
2017; Chen et 
al., 2018; He 
et al., 2019; 
Valenti et al., 
2013; Valenti 
et al., 2016)

Catechin/epicatechin Flavanol X X (Moreno-
Ulloa et al., 
2014)

Theaflavic acid Flavanol X (Li, Shi, et al., 
2020)

Procyanidin B2 3”-O-
gallate

Flavanol X (Song et al., 
2019)

Procyanidin C1 Flavanol X (Song, Lee, & 
Kang, 2019)

Naringenin Flavanone X X (de Oliveira, 
Brasil, & 
Andrade, 
2017)

Sterubin Flavanone X (Fischer et al., 
2019; Maher, 
Fischer, et al., 
2020)
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a
 Mode of action (MOA) on mitochondria

Compound name Structural class Biogenesis Dynamics Bioenergetics ∆Ψm [Ca2+]m Oxytosis/
ferroptosis

References

Liquiritigenin Flavanone X X (Jo et al., 
2016; Yang, 
Park, & Song, 
2013)

Dihydromyricetin Flavanonol X X (Liu et al., 
2016)

Xanthohumol Chalconoid 
(flavonoid)

X (Wang, Ho, et 
al., 2020)

Isoliquiritigenin Chalconoid 
(flavonoid)

X X (Yang et al., 
2012)

Morachalcone A Chalconoid 
(flavonoid)

X (Wen et al., 
2020)

Morachalcone D Chalconoid 
(flavonoid)

X (Wen et al., 
2020)

Silibinin Flavonolignan X X X (Geed et al., 
2014; 
Schramm et 
al., 2018)

Isoorientin Flavone glycoside X X (Liang et al., 
2016; Liang 
& Li, 2018; 
Ziqubu et al., 
2020)

Orientin Flavone glycoside X (Yu, Wang, et 
al., 2015)

Palhinoside D Flavone glycoside X (Li et al., 
2020)

Puerarin Isoflavone 
glycoside

X X (Zhu et al., 
2016)

Rutin Flavonol glycoside X (Yu, Li, et al., 
2015)

Icariin Flavonol glycoside X X (Zeng et al., 
2019; Zeng, 
Wang, et al., 
2019)

Isoquercitrin Flavonol glycoside X (Carmona et 
al., 2020)

Naringin Flavanone 
glycoside

X X (Garabadu & 
Agrawal, 
2020)

Chrysanthemin Anthocyanidin 
glycoside

X (Ereminas et 
al., 2017)

Mulberrofuran K Lignan X (Xia et al., 
2019)

Pinoresinol Lignan X (In et al., 
2015)

Rasidasin II Neolignan X (Zhou, Yao, et 
al., 2018)

Obovatol Neolignan X X (Yang, Lee, et 
al., 2013)

Honokiol Neolignan X X (Yang, Lee, et 
al., 2013)

Syringaresinol-4-O-β-
D-glucopyranoside

Lignan glycoside X (Yang et al., 
2020)
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a
 Mode of action (MOA) on mitochondria

Compound name Structural class Biogenesis Dynamics Bioenergetics ∆Ψm [Ca2+]m Oxytosis/
ferroptosis

References

Casuarinin Ellagitannin X (Song et al., 
2017)

Coniferyl ferulate Hydroxycinnamic 
acid

X (Gong et al., 
2020)

Ferulic acid Hydroxycinnamic 
acid

X X X (Anis et al., 
2020; Zafeer, 
Firdaus, Anis, 
& Mobarak 
Hossain, 
2019)

Artepillin C Hydroxycinnamic 
acid

X (Takashima et 
al., 2019)

Daphnetin Coumarin X (Du et al., 
2014)

Auraptene Terpenoid 
coumarin

X (Jang et al., 
2019)

Hydroxytyrosol Simple phenol X X (Peng, Hou, 
et al., 2016; 
Zheng et al., 
2015)

Salidroside Phenolic glycoside X X (Barhwal et 
al., 2015)

Gastrodin Phenolic glycoside X X (de Oliveira et 
al., 2018)

α-Arbutin Phenolic glycoside X (Ding et al., 
2020)

Butylphthalide Polyketide X (Xiong et al., 
2012)

γ-Mangostin Xanthonoid 
(polyketide)

X (Wang, Li, et 
al., 2016)

β-Lapachone Naphthoquinone 
(polyketide)

X (Lee, Ban, et 
al., 2018)

Emodin Anthraquinone 
(polyketide)

X (Ahn et al., 
2016)

Chrysophanol Anthraquinone 
(polyketide)

X X (Chae et al., 
2017)

Hyperforin Polyketidic 
terpenoid

X (Zolezzi et 
al., 2013)

5-
Heptadecylresorcinol

Resorcinolic lipid 
(polyketide)

X X (Liu et al., 
2020)

∆9-
Tetahydrocannabinolic 
acid
(∆9-THCA)

Cannabinoid 
(polyketidic 
terpenoid)

X (Nadal et al., 
2017)

∆9-
Tetrahydrocannabinol 
(THC)

Cannabinoid 
(polyketidic 
terpenoid)

X X X (Schubert et 
al., 2019; 
Zeissler et al., 
2016)

Cannabidiol (CBD) Cannabinoid 
(polyketidic 
terpenoid)

X X (Schubert et 
al., 2019; Sun 
et al., 2017)

Cannabinol (CBN) Cannabinoid 
(polyketidic 
terpenoid)

X (Schubert et 
al., 2019)
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a
 Mode of action (MOA) on mitochondria

Compound name Structural class Biogenesis Dynamics Bioenergetics ∆Ψm [Ca2+]m Oxytosis/
ferroptosis

References

Cannabichromene 
(CBC)

Cannabinoid 
(polyketidic 
terpenoid)

X (Schubert et 
al., 2019)

Linalool Monoterpenoid X X X X (Sabogal-
Guáqueta et 
al., 2019)

Oleuropein Iridoid glycoside 
(monoterpenoid)

X X (Kim et al., 
2018; Park et 
al., 2017)

Geniposide Iridoid glycoside 
(monoterpenoid)

X (Lv et al., 
2014)

Artemisinin Sesquiterpenoid X X (Lin et al., 
2018; Yan et 
al., 2017)

Daphne D Sesquiterpenoid X (Wang, Liu et 
al., 2020)

Linearol Diterpenoid X X X (González-
Burgos et al., 
2016)

Sidol Diterpenoid X X X (González-
Burgos et al., 
2016)

Andrographolide Diterpenoid X (Yang & 
Song, 2014)

Tanshinone I Diterpenoid 
quinone

X X (de Oliveira, 
Schuck, & 
Bosco, 2017)

Tanshinone IIa Diterpenoid 
quinone

X X X (Li et al., 
2017)

Cryptotanshinone Diterpenoid 
quinone

X (Lee et al., 
2020)

Celastrol Triterpenoid X (Deng et al., 
2013)

Asiatic acid Triterpenoid X X X X (Ding et al., 
2018; Lee et 
al., 2012; Xu 
et al., 2012)

Tenuigenin Triterpenoid X (Liang et al., 
2011)

Protopanaxadiol Triterpenoid X X (Bak et al., 
2016)

Glycyrrhizic acid Triterpenoid 
saponin

X X (Rashedinia, 
Saberzadeh, 
Khosravi 
Bakhtiari, 
Hozhabri, & 
Arabsolghar, 
2019)

Ginsenoside Rb1 Triterpenoid 
saponin

X X X X (Fernández-
Moriano, 
González-
Burgos, et al., 
2017; Xu et 
al., 2019)

Ginsenoside Rg1 Triterpenoid 
saponin

X X X X (Fernández-
Moriano, 
González-
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a
 Mode of action (MOA) on mitochondria

Compound name Structural class Biogenesis Dynamics Bioenergetics ∆Ψm [Ca2+]m Oxytosis/
ferroptosis

References

Burgos, et al., 
2017; Xu et 
al., 2019)

Bicelaphanol A Trinorditerpenoid X (Wang et al., 
2013)

Astaxanthin Carotenoid 
(tetraterpenoid)

X (Lee et al., 
2011)

α-Tocopherol (vitamin 
E)

Terpenoid quinone X X X (Sanderson et 
al., 2015; 
Schubert, 
Kimura, & 
Maher, 1992)

Huperzine A Sesquiterpenoid 
alkaloid

X X (Mao et al., 
2016; Yang, 
Ye, et al., 
2012)

Tomatidine Steroidal alkaloid 
(triterpenoid)

X (Taveira et al., 
2014)

Berberine Benzylisoquinoline 
alkaloid

X X (Yu et al., 
2018)

Neferine Benzylisoquinoline 
alkaloid

X X (Wu et al., 
2019)

Fangchinoline Benzylisoquinoline 
alkaloid

X (Bao et al., 
2019)

Sanguinarine Benzophenanthridi
ne alkaloid

X X (Park et al., 
2014)

3,3’-Diindolylmethane Indole alkaloid X (Ito et al., 
2017)

Voacamine Indole alkaloid X (Currais et al., 
2014)

Geissoschizine methyl 
ether

Indole alkaloid X X (Sun et al., 
2016)

3-Alkyl-1,4-
benzoquinone

Fatty acid 
benzoquinone

X (Madathil et 
al., 2012)

Embelin Fatty acid 
benzoquinone

X X X (Rao et al., 
2020)

AnimalSource

Melatonin Indole hormone X X X X X X (Ansari 
Dezfouli et 
al., 2019; 
Carretero et 
al., 2009; 
Chuang et al., 
2016; Herrera 
et al., 2007; 
Jou et al., 
2010)

α-Lipoic acid Fatty acid X X X (Jiang, Yin, 
Yao, Brinton, 
& Cadenas, 
2013; 
Mehrotra et 
al., 2015)

15-Deoxy- ∆12,14-
prostaglandin J2

Fatty acid X (Wappler et 
al., 2013)
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a
 Mode of action (MOA) on mitochondria

Compound name Structural class Biogenesis Dynamics Bioenergetics ∆Ψm [Ca2+]m Oxytosis/
ferroptosis

References

Progesterone Steroid 
(triterpenoid)

X (Grimm et al., 
2014)

Estradiol Steroid 
(triterpenoid)

X (Grimm et al., 
2014)

Allopregnanolone Steroid 
(triterpenoid)

X (Grimm et al., 
2014; Wang, 
Yao, et al., 
2020)

Estrone Steroid 
(triterpenoid)

X (Grimm et al., 
2014)

Testosterone Steroid 
(triterpenoid)

X (Grimm et al., 
2014)

3α-Androstanediol Steroid 
(triterpenoid)

X (Grimm et al., 
2014)

Dehydroepiandrostero
ne

Steroid 
(triterpenoid)

X (Grimm et al., 
2014)

Ursodeoxycholic acid Steroid 
(triterpenoid)

X X X (Bell et al., 
2018)

Ursocholanic acid Steroid 
(triterpenoid)

X X (Mortiboys et 
al., 2013)

Gracilin A Norditerpenoid X (Leirós, 
Sánchez, et 
al., 2014)

Makaluvamine J Iminoquinone 
alkaloid

X (Alonso et al., 
2016)

MicrobialSource

Santacruzamate A Peptide X X (Chen, et al., 
2019)

Fumarprotocetraric 
acid

Depsidon 
(polyketide)

X X (Fernández-
Moriano, 
Divakar, et 
al., 2017)

Bikaverin Naphthoquinone 
(polyketide)

X (Nirmaladevi 
et al., 2014)

Anhydroexfoliamycin Naphthoquinone 
(polyketide)

X (Leirós, 
Alonso, et al., 
2014)

Fusarubin Naphthoquinone 
(polyketide)

X (Choi et al., 
2020)

Evariquinone Anthraquinone 
(polyketide)

X (Song et al., 
2018)

Polyozellin Terphenylquinone X (Yang & 
Song, 2015)

Fischerin Pyridone alkaloid X (Bang et al., 
2019)

Pontemazine B Phenazine alkaloid X (Cha et al., 
2015)

a
“X” denotes reported MOA on mitochondria.
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