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Abstract

Cancer treatment has been associated with accelerated aging that can lead to early-onset health 

complications typically experienced by older populations. In particular, cancer survivors have an 

increased risk of developing premature cardiovascular complications. In the last two decades, 

cellular senescence has been proposed as an important mechanism of premature cardiovascular 

diseases. Cancer treatments, specifically anthracyclines and radiation, have been shown to induce 

senescence in different types of cardiovascular cells. Additionally, clinical studies identified 

increased systemic markers of senescence in cancer survivors. Preclinical research has 

demonstrated the potential of several approaches to mitigate cancer therapy-induced senescence. 

However, strategies to prevent and/or treat therapy-induced cardiovascular senescence have not yet 

been translated to the clinic. In this review, we will discuss how therapy-induced senescence can 

contribute to cardiovascular complications. Thereafter, we will summarize the current in vitro, in 
vivo, and clinical evidence regarding cancer therapy-induced cardiovascular senescence. Then, we 

will discuss interventional strategies that have the potential to protect against therapy-induced 

cardiovascular senescence. To conclude, we will highlight challenges and future research 

directions to mitigate therapy-induced cardiovascular senescence in cancer survivors.
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1. Introduction

There are more than 15 million cancer survivors in the United States and this number is 

expected to increase due to the continued advance of diagnosis, therapy, and care models 

(“Study cancer survivors,” 2019). Nearly 85% of cancer survivors have a high risk of 

developing chronic adverse health conditions, age-related disorders, and frailty, mainly due 

to cancer and/or cancer treatment (Dowling, et al., 2013). Cancer treatment is associated 

with accelerated aging and declining body reserves in relatively young cancer survivors, 

which in turn lead to premature onset of frailty, chronic diseases, and geriatric syndromes 

(Cupit-Link, et al., 2017). Indeed, cancer survivors appear to be older than their stated age 

after the completion of chemotherapy by as much as 20 years, with the intensity of treatment 

correlated with the aging process (Hill, Sadda, LaBarge, & Hurria, 2020). In particular, 

cancer survivors have an increased risk of developing premature cardiovascular 

complications. A broad spectrum of anticancer agents has adverse effects on the 

cardiovascular system, including anthracyclines, trastuzumab, proteasome inhibitors (e.g., 

carfilzomib), tyrosine kinase inhibitors (e.g., sunitinib), and immune checkpoint inhibitors 

(e.g., nivolumab and ipilimumab) (Bansal, et al., 2020; Faber, et al., 2018; Foulkes, et al., 

2020). Cardio-oncology aims to identify the mechanisms of and mitigate cardiovascular 

complications in cancer patients, and also to optimize cardiac surveillance and treatment of 

cardiac complications (Coviello, 2018; Tajiri, Aonuma, & Sekine, 2017).

The exact mechanisms of cancer therapy-induced cardiovascular complications remain 

incompletely understood. However, multiple potential mechanisms have been proposed 

including oxidative stress, mitochondrial dysfunction, altered myocardial energy 

metabolism, apoptotic cell death, inflammation, and recently cellular senescence (A. 

Ferreira, et al., 2017; Nakamura, et al., 2000; Takemura & Fujiwara, 2007; Ueno, et al., 

2006). Cellular senescence, a state of permanent cell-cycle arrest, has been identified in the 

past two decades as an essential component of cell response to cancer treatment, including 

chemotherapy and radiation, as reviewed by several authors previously (T. Saleh, et al., 

2020; B. Wang, Kohli, & Demaria, 2020; Wyld, et al., 2020). Additionally, accumulating 

evidence implicates senescent cardiovascular cells in the onset and/or exacerbation of 

multiple cardiovascular diseases (CVDs) (P. Song, Zhao, & Zou, 2020; Tang, Li, & Chen, 

2020; C. M. Wu, Zheng, Wang, & Hu, 2020). The objective of this review is to summarize 

and critically evaluate the current knowledge about cancer therapy-induced cardiovascular 

senescence. We will first delineate the role of cardiovascular cellular senescence in CVDs. 

Thereafter, we will discuss the mechanisms by which cancer treatment, particularly 

anthracyclines and radiation, induces senescence in cardiovascular cells. Finally, we will 

discuss potential protective strategies that can mitigate senescence in cardiovascular cells 

and hence prevent premature cardiovascular complications in cancer survivors.
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2. Cellular senescence and cardiovascular diseases (CVDs)

Senescence is a signaling event that occurs in response to a myriad of cellular stressors 

resulting in irreversible cell cycle arrest, i.e. the cells lose their replicative potential. 

Senescence was first described in 1961 when Hayflick and his team observed that human 

fibroblasts cease division after a certain number of passages, which was named thereafter as 

“Hayflick Limit” (Hayflick & Moorhead, 1961). Later, it became clear that senescent cells 

accumulate with aging in many tissues of most vertebrates (Dimri, et al., 1995; Terzibasi, 

Valenzano, & Cellerino, 2007; Yousefzadeh, et al., 2020). Senescent cells also have 

characteristic changes in structure, morphology, gene expression, and metabolism (van 

Deursen, 2014). Senescent cells are metabolically active, have a more flattened and irregular 

shape, and have enlarged nuclei that are sometimes multinucleated (Rattan, 2008). Other 

features include increased activity of senescence-associated ß-galactosidase (SA-ß-gal), 

upregulation of cell cycle inhibitors, e.g., p16Ink4a and p21Cip1, and accumulation of DNA 

damage foci and senescence-associated heterochromatin foci (SAHF) (Campisi & d’Adda di 

Fagagna, 2007; Dimri, et al., 1995). Another hallmark feature is the expression of the 

senescence-associated secretory phenotype (SASP) (Coppe, et al., 2008). SASP 

encompasses multiple soluble and insoluble components, including inflammatory cytokine 

interleukins [IL-1α, IL1β, IL-6, IL-8, IL-18, CCL-2, tumor necrosis factor-alpha (TNF-α)], 

chemokines, growth factors, matrix metalloproteinases (MMP-1, -2, -3, -7, -8, -9, -10), 

serine proteases, and extracellular matrix components. Physiologically, SASP allows 

senescent cells to interact with the microenvironment to recruit immune cells, macrophages 

and lymphocytes, to clear senescent cells and restore normal tissue functions (Greten & 

Eggert, 2017). SASP components can vary depending on the cell type and causes of 

senescence (van Deursen, 2014). It is also critical to note that there is no single marker of 

senescence that is specific. Thus, multiple endpoints must be measured to identify senescent 

cells (Gorgoulis, et al., 2019).

Cellular senescence has an essential role in embryonic development (Muñoz-Espín, et al., 

2013) and wound healing (Telgenhoff & Shroot, 2005). Senescence also represents a 

primary tumor-suppression mechanism in response to oncogenic activation (Campisi, Kim, 

Lim, & Rubio, 2001), a process known as oncogene-induced senescence (OIS) (X. L. Liu, 

Ding, & Meng, 2018) and to prevent the replication of a damaged genome leading to 

mutagenesis and potentially carcinogenesis. Thus, senescence evolved as a protective 

mechanism necessary of organism health and homeostasis. However, there is now abundant 

genetic and pharmacologic data making it clear that too many persistent senescent cells 

disrupt tissue homeostasis and drive aging and age-related disease (Baker, et al., 2011; 

Marco Demaria, et al., 2014; Xu, et al., 2018). Indeed, senescent cells contribute to 

pathophysiology of chronic kidney disease (Knoppert, Valentijn, Nguyen, Goldschmeding, 

& Falke, 2019), type 2 diabetes (Palmer, Gustafson, Kirkland, & Smith, 2019), diabetic 

nephropathy (Xiong & Zhou, 2019), Alzheimer’s disease (Lyons & Bartolomucci, 2020; 

Walton, Begelman, Nguyen, & Andersen, 2020), osteoarthritis (Jeon, et al., 2017; Martin & 

Buckwalter, 2001), osteoporosis (Farr, et al., 2017; Khosla, Farr, & Kirkland, 2018), 

multiple sclerosis (Papadopoulos, Magliozzi, Mitsikostas, Gorgoulis, & Nicholas, 2020), 
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and chronic lung diseases, e.g. chronic obstructive lung diseases (Barnes, Baker, & 

Donnelly, 2019) and asthma (Z.-N. Wang, et al., 2020).

Senescence can contribute to the loss of organ function through cell-autonomous events such 

as impaired intercellular communication, loss of contractility or cell function for example in 

immune cells (Fafián-Labora & O’Loghlen). However, cell non-autonomous effects of the 

SASP seems to dominate in disease processes, as clearing senescent cells can improve stem 

cell function (Chang, et al., 2016) and reverse frank tissue damage (Yousefzadeh, et al., 

2018). SASP can induce senescence in neighboring non-senescent cells by paracrine 

signaling, which is described as a “bystander effect.” The bystander effect occurs both in 
vitro (Nelson, et al., 2012) and in vivo (Acosta, et al., 2013; da Silva, et al., 2019). 

Intriguingly, even a small number of senescent cells (10%) is enough to spread senescence in 
vitro (Pulakat & Chen, 2020) and shorten health and lifespan in vivo (Xu, et al., 2018). Co-

culture of late passage senescent fibroblasts with early passage fibroblasts can cause an 

increase in DNA damage markers in the young bystander cells via gap junction-mediated 

cell-to-cell communication (Nelson, et al., 2012). Second, SASP promotes chronic low-

grade inflammation, known as “inflammaging” (Franceschi, et al., 2000).

Cellular senescence driven by many types of cancer therapy, including chemotherapy and 

radiation, is called therapy-induced senescence (TIS) (Ewald, Desotelle, Wilding, & Jarrard, 

2010; Roninson, 2003). TIS is extensively studied in tumor cells and is a desirable outcome 

since senescence impedes tumor growth (S. Lee & Lee, 2019; Nardella, Clohessy, Alimonti, 

& Pandolfi, 2011). However, recent studies show that TIS can provide alternative ways for 

cancer cells to escape the lethality by entering a transient dormant state, which can later lead 

to a more aggressive cancer relapse (Tareq Saleh, et al., 2020; Saleh, et al., 2019). Cancer 

therapy can also induce senescence in healthy non-tumor cells, leading to multiple adverse 

effects (T. Saleh, et al., 2020). Different types of cells are affected by therapy-induced 

senescence, including stem cells, bone marrow, and cardiovascular cells (M. Demaria, et al., 

2017).

Cardiovascular aging is associated with cell death and structural remodeling, such as 

fibrosis, stiffness, circulatory impairment, and hypertrophy, which ultimately leads to heart 

failure (Pulakat & Chen, 2020). These changes occur with chronological and accelerated 

aging. Notably, cardiovascular senescence is linked to tissue remodeling and the 

predisposition to many CVDs, including coronary heart diseases (CHD), atrial fibrillation, 

congestive heart failure, atherosclerosis, and arterial diseases (Gorenne, Kavurma, Scott, & 

Bennett, 2006; Shimizu & Minamino, 2020; Stojanović, Fiedler, Bauersachs, Thum, & 

Sedding, 2020; Veronica & Esther, 2012). Recent studies demonstrate a significant 

accumulation of senescent vascular smooth muscle cells (VSMCs) and endothelial cells 

(ECs) in the walls of atherosclerotic vessels (Veronica & Esther, 2012). Using transgenic 

mice, Childs et al. found that in atherosclerosis, senescent foamy macrophages initially 

accumulate in the sub-endothelial space, then drive atherosclerosis pathology by 

overexpression of atherogenic and inflammatory cytokines and chemokines (Childs, et al., 

2016). Indeed, SASP inflammatory components, such as IL-6 and TNF-α, contribute to the 

development of CVDs (Rea, et al., 2018). Additionally, senescence-mediated inflammaging 

boosts the risk of endothelial dysfunction, insulin resistance, and atherosclerosis (Soysal, 
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Arik, Smith, Jackson, & Isik, 2020). Moreover, excessive matrix metalloproteinases 

(MMPs), a SASP component, in cardiomyocytes can induce sarcoplasmic proteins 

proteolysis, which eventually impairs cardiac contractile function (Chan, et al., 2020). 

Cellular senescence may also contribute to thrombosis. Administration of the 

chemotherapeutic agent doxorubicin (DOX) in p16–3MR transgenic mice induces 

senescence markers in the liver and the secretion of multiple homeostasis-related factors 

regulated by SASP, which potentiates blood clotting with shorter bleeding times relative to 

controls (Wiley, et al., 2019). Interestingly, clearance of senescent cells mitigates the 

activated clotting induced by DOX (Wiley, et al., 2019).

Since senescence occurs at the cellular level, it is important to discuss how senescence in 

specific populations of cardiovascular cells can contribute to the pathogenesis of CVDs. By 

understanding this, we can predict how senescence can contribute to cancer therapy-induced 

cardiovascular adverse effects.

2.1 Senescent Cardiomyocytes

It is hard to define the senescence of cardiomyocytes as cell cycle arrest because adult 

cardiomyocytes are generally considered terminally differentiated post-mitotic cells. Instead, 

senescent cardiomyocytes exhibit other functional changes that are characteristic of 

senescent cells, including SASP secretion, mitochondrial dysfunction, and DNA damage 

response (Tang, et al., 2020). Additionally, senescent cardiomyocytes have alterations in the 

cellular functions that can increase the risk of heart failure, including a decrease in the β-

adrenergic response, marked prolonged relaxation, and impaired contractility (Boccardi & 

Mecocci, 2020). Moreover, the flattened and enlarged morphological senescence changes in 

cardiomyocytes can also contribute to age-related diastolic dysfunction (Boccardi & 

Mecocci, 2020). Aged cardiomyocytes demonstrate decreased levels of cardiac troponin I 

and telomerase activity (Maejima, Adachi, Ito, Hirao, & Isobe, 2008). Shorter 

cardiomyocyte telomeres are observed in a number of CVDs, including heart failure and 

hypertrophic cardiomyopathy (Sharifi-Sanjani, et al., 2017). Interestingly, growing evidence 

suggests that adult cardiomyocytes retain proliferative capacity with a turnover rate of less 

than 1% per year (Bergmann, et al., 2009); however, the role of cellular senescence in 

halting this proliferative capacity is still not completely defined.

2.2 Senescent Endothelial Cells (ECs)

Senescent endothelial cells (ECs) exhibit a lower activity of endothelial nitric oxide synthase 

(eNOS) (Minamino, et al., 2002), nitric oxide (NO) production (Hoffmann, et al., 2001), and 

prostacyclin (PGI2) secretion (Nakajima, et al., 1997). Moreover, significantly higher levels 

of IL-1α and TNF-α have been demonstrated in senescent ECs (Khan, et al., 2017). These 

changes contribute to endothelial dysfunction, including impairment of vascular 

homeostasis, altered angiogenic response, and decreased endothelium-dependent dilation 

(Lesniewski, et al., 2017). Consequently, senescent ECs can play an important role in the 

development of atherosclerosis. Indeed, the overproduction of SASP activates the initial 

invasion of monocytes into the vessel wall, the first step in plaque formation (Boccardi & 

Mecocci, 2020). Additionally, chemoattractant factors in the SASP may trigger plaque 

formation since it has pro-atherosclerotic properties. Furthermore, senescent ECs 
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demonstrated higher levels of CD9, a tetraspanin membrane protein associated with cell 

adhesion regulation and contributing to atherosclerosis (Cho, et al., 2020). Senescent human 

aortic endothelial cells (HAECs) express increased levels of the anti-angiogenic vascular 

endothelial growth factor 165b isoform (VEGFA165b) (Latorre, et al., 2018). Interestingly, 

higher levels of VEGFA165b are reported in patients with CHD, which can suggest that EC 

senescence can contribute to CHD by this mechanism (Latorre, et al., 2018). Moreover, 

senescent ECs have changes in the microRNAs (miRNA), which regulates multiple 

processes, including inflammation, apoptosis, and eNOS production (Rippe, et al., 2012). 

This may lead to oxidative stress, which contributes to the development of mitochondrial 

dysfunction (Y. Wang, Boerma, & Zhou, 2016). Notably, although aged mice do not 

spontaneously develop atherosclerosis, a survey of tissues in aged wild-type mice and 

progeroid mice prematurely aged due to a DNA repair defect, revealed that expression of the 

senescence markers p16Ink4a and p21Cip1 were greatest in the aorta, relative to young mice 

as compared to thirteen other tissues (Yousefzadeh, et al., 2020).

2.3 Senescent Vascular Smooth Muscle Cells (VSMCs)

Senescence of vascular smooth muscle cells (VSMCs) has been shown to contribute to 

arterial stiffness by promoting vascular inflammation and matrix remodeling (Schellinger, 

Mattern, & Raaz, 2019). Senescent VSMCs have higher calcification levels as a result of 

trans-differentiation into osteoblasts. (Nakano-Kurimoto, et al., 2009). Indeed, several 

osteogenic pathways were shown to be activated in senescent VSMCs, including bone 

morphogenetic protein 2 (BMP-2), alkaline phosphatase (ALP), osteopontin (OPN), and 

osteoprotegerin (OPG), which contribute to plaque calcification. Almost one-fifth of the 

VSMCs in human carotid artery plaque stain positively for senescence markers, such as 

p16Ink4a, p21Cip1, and SA-β-gal (Matthews, et al., 2006), increased IL-6 (Gardner, 

Humphry, Bennett, & Clarke, 2015), and reduced levels telomeric repeat binding factors 

(TRF-2). Interestingly, activation of senescence in VSMCs augmented abdominal aortic 

aneurysm, and inhibition of senescence using SIRT1 activators prevents the disease (Chen, 

et al., 2016).

2.4 Senescent Cardiac Progenitor Cells (CPCs)

Adult cardiac progenitor cells (CPCs) have the stem cell properties of being self-renewing 

and multipotent, generating cardiomyocytes, ECs, and VSMCs. Senescence of CPCs plays 

an essential role in the onset and progression of heart failure (Chimenti, et al., 2003; Rota, et 

al., 2006). Endothelial progenitor cells isolated from CHD patients show telomere 

shortening and decreased telomerase activity (Satoh, et al., 2008). Recent studies revealed 

that endothelial progenitor cells are more sensitive to DOX-induced senescence than to 

apoptosis compared to other cell types, which results in dose-dependent upregulation of 

SASP markers, increased p16Ink4a, p21Cip1, p53, and SA-ß-gal activity (Jahn, et al., 2020).

2.5 Senescent Cardiac fibroblasts (CFs)

Cardiac fibroblasts (CFs) are a major cell population within the heart and play an essential 

role in maintaining mechanical, structural, and electrical homeostasis. The contribution of 

senescent CFs to heart disease is still unclear. On one hand, transient senescence in 

particular of myofibroblasts appears important for preventing fibrosis in a mechanical model 
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of myocardial fibrosis (K. Meyer, Hodwin, Ramanujam, Engelhardt, & Sarikas, 2016). 

Conversely, accumulation of senescent cells is positively correlated with fibrotic lesions in 

atrial fibrillation patients (J. Xie, et al., 2017). In this study, the majority of senescent cells 

are cardiac fibroblasts with minor contribution of cardiomyocytes and endothelial cells (J. 

Xie, et al., 2017).

3. Cancer therapy-induced cardiovascular senescence

3.1 Anthracycline-induced cardiovascular senescence

Anthracyclines (e.g., DOX and daunorubicin) are among the most commonly used 

chemotherapeutic agents in a wide variety of human cancers, including leukemia, 

lymphoma, and multiple solid tumors such as breast cancer. Despite its broad spectrum of 

therapeutic efficacy, the clinical utility of DOX is hindered by dose-limiting and often life-

threatening cardiovascular toxicity (van Dalen, van der Pal, Caron, & Kremer, 2009). 

Indeed, DOX treatment increases the risk of developing characteristic cardiomyopathy, 

including tachycardia, arrhythmia, and eventually congestive heart failure. The risk of DOX-

induced cardiotoxicity increases with higher cumulative doses. DOX-induced heart failure 

can affect approximately 26% of the patients with cumulative doses exceeding 600 mg/m2 

(Lefrak, Pitha, Rosenheim, & Gottlieb, 1973). Vascular toxicities are also associated with 

DOX, including induction of endothelial cell death, endothelial dysfunction, and premature 

vascular aging (Carlson, et al., 2018; H. He, et al., 2019). A previous clinical study reported 

endothelial dysfunction in children treated with anthracyclines (Jang, Choi, & Jeon, 2013). 

DOX-induced apoptosis is hypothesized to be the primary driver of DOX-induced 

cardiotoxicity. However, low and moderate doses of DOX are associated with subclinical 

cardiovascular toxicity (Drafts, et al., 2013), without the induction of significant apoptosis in 

cardiomyocytes, which suggests that other mechanisms, such as cellular senescence, may 

contribute to cardiovascular dysfunction, especially after chronic administration of low DOX 

doses.

Studies that demonstrate DOX-induced senescence in cardiovascular cells/tissues are 

summarized in Table 1. Multiple studies demonstrate DOX-induced senescence in different 

types of cardiovascular cells, including ventricular myocytes, ECs, VSMCs, endothelial 

progenitor cells, and cardiac progenitor cells. Importantly, the majority of these studies were 

in vitro studies with only a few in vivo or clinical studies. Based on these studies, low 

concentrations of DOX (≤ 0.5 μM) preferentially induce senescence of cardiovascular cells, 

with no induction of apoptosis (Table 1). Currently, low doses of DOX are commonly used 

to induce senescence in vitro. Three main mechanisms were identified by which DOX 

induces senescence in cardiovascular cells:

3.1.1 DOX-induced DNA damage—Replication stress caused by DNA damage or 

frank double-strand breaks (DSBs) activates the DNA damage response (DDR), which in 

turn causes stabilization/upregulation of the p53/p21 pathway. Activation of p53 through 

ATM-dependent phosphorylation leads to increased expression of many effector genes, in 

particular p21Cip1, a cyclin-dependent kinase (CDK) inhibitor, and thereby growth arrest 

(Larsson, 2011). Additionally, DNA damage increases p16INK4a expression, which blocks 
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cyclin-dependent kinase activity through the retinoblastoma (Rb) pathway (Rayess, Wang, & 

Srivatsan, 2012). The increase of CDK inhibitors, p16Ink4a and p21Cip1, is both dose and 

time-dependent, with p21Cip1 usually being induced first followed by a delayed upregulation 

in p16Ink4a. Prolonged activation of the PI3K/AKT/mTORC1 results in p53-mediated 

cellular senescence (Astle, et al., 2012). While most studies link mTORC1 to senescence, a 

recent study demonstrates increased mTORC2 in H2O2-induced senescence in human 

umbilical vein endothelial cells (HUVECs) (Yang, et al., 2018). In addition, DOX increases 

the expression of promyelocytic leukemia protein (PML), which induces acetylation of p53 

by forming PML-acetylated p53 complex, leading to activation of p21Cip1 (Maejima, et al., 

2008). Other studies demonstrate that DOX-induced activation of p53 is JNK-dependent 

(Spallarossa, et al., 2009).

3.1.2 DOX-induced oxidative stress—DOX causes an increased abundance of 

reactive oxygen species (ROS) through a variety of mechanisms. First, ROS is increased by 

the metabolism of DOX, mostly because of the unstable intermediate formed (Wallace, 

2003). Moreover, DOX-induced mitochondrial damage can lead to increased ROS, which is 

mediated by mitochondrial NADPH oxidase (Asensio-Lopez, Soler, Pascual-Figal, 

Fernandez-Belda, & Lax, 2017). This can lead to increased lipid peroxidation, depletion of 

anti-oxidants, and a feed-forward cycle of ROS production contributing to the overall DOX-

induced oxidative stress. Similar to genotoxic stress, oxidative stress can lead to p53 

activation and triggering of senescence. Hydrogen peroxide (H2O2), like DOX is used to 

induce senescence in vitro. The transcription factor NF-κB plays an important role in 

regulating the cellular response to oxidative and genotoxic stress (Lingappan, 2018). 

Additionally, it plays an important role in regulating SASP and can increase the expression 

of pro-inflammatory cytokines, such as TNF-α and IL-1 (Chien, et al., 2011). A number of 

studies have shown that DOX significantly activates NF-κB in cultured cardiomyocytes 

(Guo, et al., 2013; Notarbartolo, et al., 2005), which leads to the generation of free radicals 

and activation of the DDR, which ultimately induces senescence (Tilstra, et al., 2012). 

Similarly, DOX administration to Wistar rats induces NF-κB activation and oxidative stress 

and upregulated p53 and SA-β-gal expression in heart tissues (Fallah, et al., 2019). In 

endothelial progenitor cells, DOX treatment induces the activity of NADPH oxidase isoform 

2 (Nox2), which leads to superoxide generation resulting in oxidative stress-induced 

senescence (De Falco, et al., 2016). Low doses of DOX induce activation of AKT by 

phosphorylation at Ser473 in cardiac muscle cells (Altieri, et al., 2012). AKT activation 

induces phosphorylation of FOXO transcription factors, which leads to a decrease in 

superoxide dismutase-2 (SOD2) levels, a key antioxidant, eventually leading to increased 

oxidative stress (Bourgeois & Madl, 2018).

3.1.3 DOX-induced telomere dysfunction—Telomeres are repeated sequences at the 

ends of chromosomes and are essential for genome stability. Many cell stress stimuli, such 

as oxidative stress and mitochondrial dysfunction, can induce telomere damage, and 

repeated replication drives telomere attrition. When telomeres become critically short, this 

activates the DDR, and phosphorylation of histone variant H2AX (γH2AX), which marks 

sites of DNA DSBs including in telomeric DNA (d’Adda di Fagagna, et al., 2003). Telomere 

shortening is prevented by telomerase, which replaces telomeric repeat DNA lost during cell 
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division. Telomere dysfunction contributes to senescence via activation of either p53 or 

p16Ink4a signaling pathways in human cells or via p53 only in mouse cells (Smogorzewska 

& de Lange, 2002). DOX decreases telomerase in different cardiovascular cells (Maejima, et 

al., 2008; Xia & Hou, 2018; Z. Xie, Xia, & Hou, 2018).

Telomeric repeat binding factors 1 and 2 (TRF-1, TRF-2) are important shelterin complex 

proteins, which prevent telomeric DNA from becoming damaged or eroding. Upregulation 

of TRF-2 is associated with suppression of senescence. Downregulation of TRF-2 is 

implicated in the progression of CHD (Satoh, et al., 2017). The knockout of TRF-2 in mice 

accelerates the progression of atherosclerosis (J. Wang, et al., 2015). Low doses of DOX 

downregulate the levels of both TRF-1 and TRF-2 via increased p38-MAPK and p53 

phosphorylation (Altieri, et al., 2012; Spallarossa, et al., 2009), which contributes to DOX-

induced senescence in neonatal cardiomyocytes and endothelial progenitor cells 

(Spallarossa, et al., 2010). DOX also induces senescence in VSMCs via TRF-2 

downregulation (Hodjat, Haller, Dumler, & Kiyan, 2013). However, TRF-2 downregulation 

is induced by a different mechanism that is dependent on the urokinase receptor (uPAR) 

upregulation, which drives ubiquitination and proteasomal degradation of TRF-2 (Hodjat, et 

al., 2013). Interestingly, pretreatment of cardiomyocytes with testosterone protects against 

DOX-induced senescence (Altieri, et al., 2016). The protective effect of testosterone is 

mediated through TRF2 modulation via a pathway involving the PI3K/AKT/nitric oxide 

synthase 3 (NOS3)/ androgen receptor (Altieri, et al., 2016).

3.1.4 DOX-induced epigenetic alterations—The effects of DOX on epigenetic 

alterations were recently reviewed in (Kumari, Huang, & Chan, 2020). Previous studies 

show that DOX treatment downregulates DNMT1 (DNA Methyltransferase 1) and induces 

DNA hypomethylation both in vitro in H9c2 cells (L. L. Ferreira, et al., 2019) and in vivo in 

rat hearts (A. Ferreira, et al., 2017). Additionally, DOX caused fluctuation in DNMT1 level 

in a model of DOX-induced senescence in VSMCs (Bielak-Zmijewska, et al., 2014). 

Recently, DNMT1 was demonstrated to be suppressed before initiation of senescence in 

human fibroblasts (Jung, et al., 2017). Additionally, DOX treatment upregulates histone 

deacetylases (HDACs) levels in cardiomyocytes (R. Song, et al., 2018) and the heart of 

DOX-treated mice (Piotrowska, Isalan, & Mielcarek, 2017). Interestingly, the past few years 

have witnessed significant interest in HDAC inhibitors as anti-aging drugs to increase 

lifespan (McIntyre, Daniels, Molenaars, Houtkooper, & Janssens, 2019). To conclude, DOX 

induces dysregulation of multiple epigenetics pathways in cardiovascular cells both in vivo 
and in vitro. These alterations interplay with DOX-induced cellular senescence and may 

have an important role in DOX-induced premature cardiovascular aging. Taking into 

consideration that epigenetic alterations can be reversed (Freije & Lopez-Otin, 2012), 

epigenetic reprograming can be an important therapeutic strategy to mitigate cancer therapy-

induced aging.

3.2 Radiation-induced Cardiovascular Senescence

Radiation-induced heart disease (RIHD) is a serious complication of radiotherapy that can 

affect the quality of life of cancer survivors (Nabialek-Trojanowska, et al., 2018). Radiation 

causes a number of cardiovascular complications, including atherosclerosis, CHD, 
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myocardial fibrosis, pericarditis, pericardial fibrosis, valve dysfunction, and microvascular 

damage (Tapio, 2016). Although a plausible strategy to protect against radiation-induced 

cardiac complications is to limit cardiac exposure to radiation, this approach is not always 

feasible, especially with thoracic cancer patients, including breast, lung, and esophageal 

cancers. Several studies propose multiple mechanisms to mediate radiation-induced 

cardiovascular complications such as oxidative stress (Pradeep, et al., 2012), inflammation 

(Meeren, Bertho, Vandamme, & Gaugler, 1997), apoptosis (R. A. Panganiban, O. 

Mungunsukh, & R. M. Day, 2013), and cellular senescence (Table 2). The majority of these 

studies focus particularly on radiation-induced senescence (RIS) in endothelial cells, with 

few studies evaluating RIS in other cardiovascular cells, including cardiomyocytes. 

Additionally, most of these studies were conducted in vitro using different cell lines, with 

much fewer in vivo studies. Radiation-induced genotoxic and oxidative stress are the two 

major drivers of senescence in cardiovascular cells. The mechanisms of RIS in endothelial 

cells and its contribution to RIHD were recently reviewed (Y. Wang, et al., 2016). 

Additionally, while senescence is observed in most of these studies in the first weeks 

following radiation, others report persistent senescence for four weeks (Lafargue, et al., 

2017) and even up to 20 weeks following radiation (Oh, Bump, Kim, Janigro, & Mayberg, 

2001). Since RIHD can take more than a decade to manifest (Y. Wang, et al., 2016), chronic 

senescence could explain part of the delayed effects of radiation.

A recent study revealed that RIS in cardiomyocytes occurs via upregulating of 

microRNA-34a (miR-34a), which inhibits Sirt1 expression and further decreases 

cardiomyocytes tolerance to stress (Hu, Xia, & Hou, 2018). Pretreatment of cardiomyocytes 

with macrophage migration inhibitory factor (MIF) suppresses radiation-induced oxidative 

stress via inhibition of miR-34a and consequently alleviates RIS (Hu, et al., 2018). The role 

of miRNAs in senescence and aging were recently reviewed (Majidinia, et al., 2020; 

Williams, Smith, Kumar, Vijayan, & Reddy, 2017). Long non-coding RNA (lncRNA) 

dysregulation is also involved in senescence (Puvvula, 2019) A recent transcriptomic 

analysis reveals that exposure of endothelial cells to 4 Gy of radiation alters the expression 

of more than 50 RNAs, including protein-coding and non-coding RNAs (Casella, et al., 

2019). Another proposed mechanism of RIS is that radiation-induced oxidative stress 

downregulates the expression of corin protein in cardiomyocyte-like cell lines HL-1 and 

H9c2 (E. J. Kim, et al., 2015). Corin is a cardiac protease that is responsible for cleavage of 

pro-atrial natriuretic peptide (pro-ANP) and pro-brain natriuretic peptide (pro-BNP) to 

generate the active forms. These natriuretic peptides are important regulators for myocardial 

function. Inhibition of corin function will inhibit ANP and BNP, which can contribute to the 

RIS in cardiomyocytes (E. J. Kim, et al., 2015).

RIS also triggers pro-atherosclerotic events (Lowe & Raj, 2014). Radiation increases 

monocyte adhesion to senescent endothelial cells observed as a higher number of monocyte 

clusters forming following primary endothelial cells irradiation with 10 Gy (Lowe & Raj, 

2014). Interestingly, this was time-dependent, with the number of monocyte clusters 

increasing up to 15 days post-irradiation. RIS is also seen in fibroblasts (Casella, et al., 

2019; Cmielova, et al., 2011; de Magalhaes, Chainiaux, Remacle, & Toussaint, 2002; 

Gorbunova, Seluanov, & Pereira-Smith, 2002; Studencka & Schaber, 2017; Suzuki, et al., 

2001) and alveolar epithelial cells (AECs) (Citrin, et al., 2013), which may contribute to 
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radiation-induced pulmonary fibrosis (RIPF) (Y. He, et al., 2019); astrocytes, which may 

mediate radiation-induced brain injury (Turnquist, et al., 2019); salivary glands, which may 

contribute to radiation-induced dry-mouth syndrome (Marmary, et al., 2016); and bone 

marrow stem cells, dental pulp stem cells (Muthna, et al., 2010), and bone resident cells 

which may drive radiation-induced bone loss (Yao, et al., 2020). Transplanting relatively 

small numbers of senescent cells into young mice is sufficient to cause detrimental long-

lasting systemic effects and reduce lifespan (Xu, et al., 2018); therefore, it is possible that 

RIS of non-cardiovascular tissues could also have detrimental cardiovascular effects.

3.3 Other Cancer Treatments

Anthracyclines and radiation therapy are the most studied cancer treatments with regard to 

their effects on cellular senescence in cardiovascular cells and organs. Nevertheless, other 

chemotherapeutic agents have been shown in a few studies to induce senescence in 

endothelial cells (Table 3). When there is a paucity of research regarding the senescence-

inducing effects of other chemotherapeutic agents in cardiovascular cells, we will briefly 

discuss their effects in non-cardiovascular cells.

3.3.1 Fluoropyrimidines—The antimetabolite 5-fluorouracil (5-FU) and its prodrug 

capecitabine are used for the treatment of multiple solid tumors. Focaccetti et al. found that 

5-FU induces senescence as indicated by increased activity of SA-β-Gal in HUVECs and 

human cardiac myocytes (Focaccetti, et al., 2015). Senescence could be due to replication 

stress or increased ROS abundance. These results were further confirmed by Altieri et al. in 

the human endothelial-derived EA.hy926 cells treated with 5-FU and sera from capecitabine 

treated patients (Altieri, et al., 2017).

3.3.2 Axitinib—Axitinib is an oral tyrosine kinase inhibitor with selectivity to vascular 

endothelial growth factors 1, 2, and 3 (Hu-Lowe, et al., 2008). It is used as a second-line 

treatment for advanced renal cell carcinoma. In HUVECs, axitinib triggers senescence and 

SASP by inducing oxidative stress and ATM activation in a way that does not depend on 

DNA damage or p53 phosphorylation (Mongiardi, et al., 2019). Axitinib-mediated 

senescence is not affected by the presence of glioblastoma tumor cells (GBM) (Merolle, 

Mongiardi, Piras, Levi, & Falchetti, 2020).

3.3.3 Bleomycin—Bleomycin is a chemotherapeutic drug that is used to induce DNA 

damage and senescence in multiple cell lines. Bleomycin induces senescence in HUVECs in 

a dose- and time-dependent manner (Yin, et al., 2017). ROS-mediated interaction of 

thioredoxin-interacting protein (TXNIP) with NOD-like receptor family pyrin domain-

containing 3 (NLRP3) in senescent endothelial cells activates NLRP3 inflammasome and 

caspase-1, which triggers IL-1 secretion.

3.3.4 Pegylated interferons (pIFN-α)—Peg IFN-α is added as adjuvant therapy in the 

treatment of melanoma (Agha & Tarhini, 2017). IFN-α acts by inducing interferon 

regulatory factor-1 (IRF-1), activating its tumor suppressor function resulting in an 

antiangiogenic agent (J. H. Lee, Chun, Park, & Rho, 2008). Peg IFN-α induces senescence 

in endothelial-derived EA.hy926 cells (Upreti, Koonce, Hennings, Chambers, & Griffin, 
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2010). The combination of pegylated IFN-α with the chemotherapeutic vinblastine (VBL), 

induces cell death of melanoma cells via IRF-1-mediated signaling and senescence of 

endothelial cells reducing angiogenesis to act as a further tumor suppressor.

3.3.5 Chemotherapeutic agents causing senescence in non-cardiovascular 
cell lines/tissues—Alkylating agents such as cyclophosphamide, busulfan, and 

temozolomide induce senescence in multiple cell lines and mice. Cyclophosphamide 

activates the MAPK pathway in response to oxidative stress resulting in senescence in 

human fetal lung fibroblasts (TIG-7) (Palaniyappan, 2009). Moreover, cyclophosphamide is 

capable of inducing senescence in mouse ovarian granulosa cells by activating the lncRNA-

Meg3-p53-p66Shc pathway leading to premature ovarian failure (Xiong, et al., 2017). 

Busulfan, an anticancer medication that causes DNA damage, induces senescence in human 

fibroblasts (WI-38) via Erk/MAPK activation in a p53-independent mechanism (Probin, 

Wang, Bai, & Zhou, 2006; Probin, Wang, & Zhou, 2007). In addition, busulfan induces 

senescence in bone-marrow-derived mesenchymal stem cells (BMSCs) and adipose tissue-

derived mesenchymal stem cells (ADSCs) (Qi, et al., 2012). The adverse hematopoietic 

effects of busulfan could be explained by its ability to induce senescence in murine bone 

marrow cells (BM-MNCs) (Papaconstantinou, 2019). Temozolomide increases the 

expression of p16Ink4a in mice (M. Demaria, et al., 2017). Cisplatin induces senescence in 

several human cell lines including human lung fibroblasts, human dental pulp stem cells, 

human dermal fibroblasts, and primary human oral fibroblasts (C. Liu, Ma, Zhuang, Liu, & 

Sun, 2020; Seifrtova, et al., 2012; Tasnuva D. Kabir1, Eric K. Parkinson5, & McCall, 2016). 

Moreover, cisplatin induces senescence in rat renal tubule epithelial cells (NRK-52E) and 

senescence in renal tissues which may explain the chronic kidney disease caused by cisplatin 

(Li, et al., 2019). Cisplatin-induced peripheral neuropathy (CIPN) is the most common dose-

limiting adverse effect of cisplatin (Cioroiu & Weimer, 2017; Kandula, et al., 2017). This 

could be because cisplatin causes the accumulation of senescent-like neuronal cells in 

primary culture and in mouse dorsal root ganglion (Acklin, et al., 2020). The cisplatin-

induced DDR activation and p21Cip1 upregulation cause senescence, not apoptosis, in mouse 

dorsal root ganglion sensory neurons (Calls, et al., 2020). Paclitaxel, a potent microtubule 

inhibitor, induces senescence in primary mouse cells and in vivo (M. Demaria, et al., 2017). 

Furthermore, paclitaxel induces senescence in mesenchymal stem cells (MSCs) which may 

help to explain the severe myelosuppression caused by taxane-based anticancer treatments 

(Munz, et al., 2018). Etoposide is commonly used to induce senescence in vitro. Low dose 

etoposide induces senescence in human diploid fibroblasts (WI-38) in a p53-dependent 

mechanism (Probin, et al., 2006). Etoposide also induces senescence in mouse embryonic 

fibroblasts (MEFs), normal human skin fibroblasts (BJ cells), retinal pigment epithelial cells 

(RPE), NRK-52E rat renal tubular epithelial cells, and normal human lung fibroblasts 

(IMR-90) (Biran, et al., 2017; Blagosklonny, 2010; L. Gu & Kitamura, 2012; Yosef, et al., 

2017). Actinomycin D is an antimetabolite that induces senescence in human foreskin 

fibroblasts (HDF-2, NHF-3), human lung fibroblasts (MRC-5), and hMSCs (Minieri, et al., 

2015; Steven J Robles & Adami, 1998). The topoisomerase inhibitor, irinotecan, induces 

senescence in normal human colonic fibroblasts (NCF), and normal human colonic mucosa 

cells (NCM) (Rudolf, John, & Cervinka, 2012). Low concentrations of mitoxantrone, 
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another topoisomerase inhibitor, induces senescence in hDPSCs and HDFs (Seifrtova, et al., 

2013).

In summary, multiple anticancer agents induce senescence in non-cardiovascular cells and 

tissues, accounting for some of their adverse effects. Taking into account that several 

chemotherapeutic agents cause cardiovascular adverse effects (Minami, Matsumoto, & 

Horiuchi, 2010; Yeh & Bickford, 2009), further investigation is warranted to better 

understand the mechanisms by which chemotherapy-induced senescence may contribute to 

these adverse cardiovascular effects.

4. Clinical Evidence for Premature Aging in Cancer Survivors

4.1 Cellular Senescence

Numerous in vitro and animal studies provide evidence for senescence in cardiac and non-

cardiac cells after exposure to chemotherapy or radiation (Tables 1–3). Cancer treatment 

effectively damages malignant cells but also causes unintended injury to nonmalignant cells. 

Treatment-induced DNA damage causes cell cycle arrest resulting in cellular senescence, 

telomere shortening, and is associated with a sterile pro-inflammatory state. Table 4 

summarizes the clinical studies that demonstrate increased senescence in cancer survivors.

In humans, p16INK4a is a measurable biomarker of cellular senescence utilized in many 

clinical studies. Among survivors of childhood acute lymphoblastic leukemia (ALL) treated 

with cranial radiation, a significantly higher level of p16INK4a is detected in skin biopsies of 

radiation-exposed tissue from the scalp compared to unexposed tissue from the buttocks 

(Marcoux, et al., 2013). Women who had undergone chemotherapy for breast cancer express 

higher levels of p16INK4a than those without cancer (Sanoff, et al., 2014). Breast cancer 

survivors treated with anthracycline-based regimens demonstrated significant increases in 

p16INK4a expression, equivalent to a 23- to 26- year acceleration in aging, compared to a 

more modest increase equivalent to 17 years of accelerated aging in those treated with non-

anthracycline based treatments (Shachar, et al., 2020). Likewise, cardiac progenitor cells 

procured from heart biopsies taken during autopsies of DOX-treated cancer patients who 

died from cardiomyopathy have elevated levels of p16INK4a compared to age-matched 

unexposed controls (Piegari, et al., 2013). RNA sequencing of T cells in breast cancer 

patients demonstrates higher expressions of genes associated with cellular senescence. e.g., 

p16IKN4a, IL8, HMGA2, and CCL4 following chemotherapy with DOX and 

cyclophosphamide (Wood, et al., 2016).

Telomere length is another surrogate marker for cellular aging. Ariffin et al. did a case-

control study examining telomere length in 87 long term young adult childhood ALL 

survivors compared to 87 age and sex-matched cancer-free controls (Ariffin, et al., 2017). 

Telomere length amongst survivors was shorter than the controls and similar to that 

predicted of healthy individuals 20 years older (Ariffin, et al., 2017). Shortened telomere 

length is also associated with increased risk for age-related diseases that are characterized by 

chronic inflammation (Kordinas, Ioannidis, & Chatzipanagiotou, 2016), such as insulin 

resistance and metabolic syndrome (Armstrong, et al., 2014; W. A. Smith, et al., 2014). 

Multiple studies show elevated inflammatory markers in survivors compared to their age and 
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sex-matched controls without a history of cancer (Alfano, et al., 2017; Ariffin, et al., 2017; 

Sanoff, et al., 2014).

DNA methylation is a method used to measure the cellular age of leukocytes (Horvath, 

2013; Weidner, et al., 2014). In a study examining 26 survivors of allogeneic hematopoietic 

stem cell transplant for hematologic malignancies, peripheral blood was collected from the 

recipients and their matched sibling donors. DNA methylation predicted a cellular age that 

was significantly higher in 62% of the transplanted recipients compared to the predicted 

cellular age in the donor (Uziel, et al., 2020). Another study demonstrated an increase in the 

epigenetic age acceleration following breast cancer treatment. Interestingly, those treated 

with radiation alone had more significant increases in age acceleration than those treated 

with chemotherapy and radiation (Sehl, Carroll, Horvath, & Bower, 2020). Taken together, 

these biomarkers are evidence for accelerated aging in survivors after exposure to cancer 

treatments.

4.2 Frailty

In addition to evidence for accelerated aging in cardiac and non-cardiac cells, cancer 

survivors display clinical signs of premature aging that manifest as frailty. Fried et al. were 

the first to describe a frailty or aging phenotype, defined as individuals who are vulnerable 

to adverse health outcomes, which often precedes the onset of chronic disease, and is a 

predictor of early mortality (Fried, et al., 2001). Fried developed clinical criteria for frailty, 

consisting of 5 components: 1) low muscle mass, 2) self-reported exhaustion, 3) low energy 

expenditure, 4) slow walking speed, and 5) weakness. Individuals who fulfill two of the five 

criteria are considered “pre-frail” and those who fulfill ≥ three criteria are “frail.” Table 5 

summarizes literature examining premature functional aging in cancer survivors measured 

by “frailty.”

Several studies examined the prevalence of the prefrailty and frailty phenotypes in childhood 

cancer survivors (CCSs). In an analysis from the St. Jude Lifetime Cohort Study, 1,922 adult 

CCSs were assessed for prefrailty and frailty and compared them to 341 individuals without 

a history of cancer (Kirsten K. Ness, et al., 2013). The mean age of the survivors was 33.6 

years, yet the prevalence of frailty was similar to that of persons aged 65 or older (Collard, 

Boter, Schoevers, & Oude Voshaar, 2012). Prefrailty was identified in 31.5% of female and 

12.9% of male survivors compared to 7.8% of female and 4.6% of male controls. 

Additionally, frailty was observed in 13.1% of female and 2.7% of male survivors compared 

to no individuals in the age-matched control group fulfilling this criterion. Importantly, 

frailty was associated with an increased risk of chronic health conditions (RR 2.2, 95% CI 

1.2–4.2) and a heightened risk for death (HR 2.6, 95% CI 1.2–6.2). In another large study 

comprised of 10,899 survivors in the Childhood Cancer Survivorship Study (CCSS), 6.4% 

of survivors were frail at a mean age of 37.6 years, compared to 2.2% in the sibling controls 

with a higher prevalence for frailty among females compared to males (Hayek, et al., 2020). 

Others examined smaller cohorts of survivors of disease-specific childhood cancers and also 

reported higher rates of frailty in those treated for brain tumors (K. K. Ness, et al., 2010), 

ALL (K. K. Ness, et al., 2012), and high-risk neuroblastoma (Vatanen, et al., 2017). Frailty 
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and comorbid conditions were found to be more prevalent in survivors of adolescent/young 

adult-onset cancers as well (Smitherman, et al., 2018).

In a study examining frailty in long-term survivors of adult-onset cancers in women, a 

geriatric domain assessment tool was utilized to distinguish functional age from 

chronological age. This assessed physical function, comorbidities, nutritional status, mental 

health, and cognition. Cancer survivors with greater deficits had a higher risk of 10-year all-

cause mortality. Cancer survivors without deficits still had a 1.3 to 1.4-fold excess risk of 

death compared to cancer-free controls (Blair, et al., 2019). Additionally, Hayek et al. 

demonstrated that cranial radiation, pelvic radiation ≥ 34 Gy, and lung surgery, all cancer-

directed therapies, were associated with a higher prevalence of frailty even after adjusting 

for chronic diseases and modifiable lifestyle factors such as physical activity, smoking, and 

obesity (Hayek, et al., 2020). This evidence suggests that cancer survivors experience 

premature functional aging in excess of their chronological age due to exposures to cancer 

therapies, and this is associated with accelerated morbidity and mortality. Thus, there is a 

need for interventions to delay the onset of chronic disease and to promote healthy lifestyle 

behaviors in cancer survivors.

5. Prevention/Treatment Strategies Against Cancer Therapy-induced 

Cardiovascular Senescence

Cardiovascular complications are the second leading cause of death in cancer survivors. 

Therefore, mitigation of cancer therapy-induced cardiovascular complications will improve 

the quality and quantity of survivors’ lives. As discussed earlier, cardiovascular senescence 

emerges as an important mechanism in mediating these cardiovascular complications 

(Figure 1). Therefore, it is pivotal to develop effective protective strategies that can prevent 

or treat cancer therapy-induced cardiovascular senescence. Multiple strategies have been 

demonstrated to modulate senescence and prevent adverse effects of cellular senescence, 

called as “senotherapy”. These strategies can be divided into two broad categories: 

senomorphics and senolytics. While senomorphics modulate function and morphology of 

senescent cells without induction of death of senescent cells, senolytics can selectively 

induce death of senescent cells as illustrated in Figure 2 (H. Fuhrmann-Stroissnigg, et al., 

2019; E. C. Kim & Kim, 2019).

5.1 AMPK/mTOR/SIRT1 Pathway

Several longevity studies have suggested interventions targeting the AMPK/mTOR pathway 

to mitigate senescence and age-related diseases. These strategies include calorie restriction 

(Gelino, et al., 2016), and calorie restriction mimetics such as rapamycin, metformin, and 

resveratrol (D. L. Smith, Jr., Nagy, & Allison, 2010). The mechanisms of these treatments 

converge in autophagy induction mediated by AMPK and SIRT1 activation or mTOR 

inhibition (Kucheryavenko, Nelson, von Zglinicki, Korolchuk, & Carroll, 2019). Autophagy 

can facilitate the removal of senescent cells and hence decrease the spread of senescence to 

other cells (Pattison & Korolchuk, 2018). Unfortunately, cardiac autophagy levels are 

reduced with aging, which can precipitate cardiac diseases (Shirakabe, Ikeda, Sciarretta, 

Zablocki, & Sadoshima, 2016). Rapamycin is an FDA approved drug that inhibits mTORC1 
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and extends lifespan in mice (Evangelisti, Cenni, & Lattanzi, 2016). A recent study 

demonstrates that rapamycin supplementation in diet decreases arterial senescence markers 

and improves endothelial dysfunction in old mice (Lesniewski, et al., 2017). Rapamycin also 

activates nuclear factor erythroid 2-related factor 2 (NRF2) a regulator of the response to 

oxidative stress and suppresses SASP production via an NRF2-independent mechanism (R. 

Wang, et al., 2017). Other mTOR inhibitors, such as Torin 1 and PP242, are more potent 

than rapamycin (Khor & Wong, 2020), and newer rapalogs are currently being studied in 

clinical trials to improve age-related immunosenescence (Mannick, et al., 2018). Metformin, 

an FDA approved drug used to treat Type II diabetes, appears to attenuate multiple age-

related diseases including CVD, and is thought to inhibit complex 1 of the mitochondria and 

AMPK, while activating SIRT1 (Longo, et al., 2015). Interestingly, metformin, like 

rapamycin attenuates SASP by suppressing NF-κB activation (Moiseeva, et al., 2013). 

Metformin abrogates the inflammaging state in T-cells isolated from old subjects (Bharath, 

et al., 2020). The protective effect of metformin is mediated via autophagy activation, 

suppressing STAT3 (regulator of age-dependent alterations in mitochondrial function), and 

improving mitochondrial function (Bharath, et al., 2020). A large clinical study, Targeting 

Aging with Metformin (TAME) trial, is designed to determine if metformin suppresses co-

morbidities associated with old age (Barzilai, Crandall, Kritchevsky, & Espeland, 2016). 

Having a good safety profile with some studies demonstrating anticancer effects (Aljofan & 

Riethmacher, 2019; Zordoky, Bark, Soltys, Sung, & Dyck, 2014), would be key points for 

successful repurposing of metformin as an adjunct therapy to ameliorate TIS in cancer 

survivors, in case of demonstrating significant anti-aging effects in clinical trials.

SIRT1 can be activated using sirtuin-activating compounds (STACs) or by increasing NAD+ 

by using NAD+ precursors or inhibition of NAD+ hydrolase inhibitors (Escande, et al., 

2013). Resveratrol, a SIRT1 agonist, has anti-aging effects (Sedding & Haendeler, 2007). 

Resveratrol abrogates oxidative stress-induced senescence in keratinocytes through AMPK-

FOXO activation (Ido, et al., 2015). Recently, we demonstrate that the combined treatment 

of DOX followed by angiotensin II (Ang-II) increases the expression of multiple 

senescence-associated genes, including p21Cip1, growth arrest and DNA damage-inducible 

gamma (Gadd45g), and insulin-like growth factor-binding protein 3 (Igfbp3) (Matsumura, et 

al., 2018). Interestingly, co-administration of resveratrol with DOX corrects this 

upregulation and protects from the delayed DOX-induced detrimental cardiovascular effects 

(Matsumura, et al., 2018). In another study, co-treatment of neonatal cardiomyocytes with 

resveratrol and DOX suppresses the acetylation of p53 and decreases p21Cip1 levels 

(Maejima, et al., 2008). Despite promising anti-aging effects, the clinical utility of 

resveratrol is limited because of its poor bioavailability due to its first-pass intestinal/hepatic 

metabolism (Abdelgawad, Grant, & Zordoky, 2019). Spermidine, a natural product, has been 

shown to have cardio-protection and increase the lifespan of mice, which is thought to be 

mediated by autophagy activation (T. Eisenberg, et al., 2016). Spermidine also increases the 

lifespan in yeast through epigenetic modulation by inhibition of histone acetyltransferases 

(HATs) in aging yeast which results in hypoacetylation of chromatin and inhibition of 

oxidative stress and necrosis (Tobias Eisenberg, et al., 2009). IGF1-PI3k-AKT/mTOR 

pathway activation was shown to be involved in radiation-induced endothelial cell 

senescence (Panganiban & Day, 2013). Insulin-like growth factor-binding protein-7 
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(IGFBP7) inhibits cell proliferation via cell cycle arrest in the G1 phase. Overexpression of 

IGFBP7 is associated with tissue aging and poor prognosis in heart failure patients with 

preserved ejection fraction (Gandhi, et al., 2017). Specific inhibitors of this pathway, 

including the IGF-1R inhibitor (AG1024); the PI3k inhibitor (LY294002); and mTOR 

inhibitor (rapamycin), inhibit senescence of human pulmonary artery endothelial cells 

(HPAECs) following radiation (Panganiban & Day, 2013).

5.2 Antioxidants

Since oxidative stress plays a crucial role in the induction of senescence, antioxidants have 

been proposed as a promising protective strategy against cardiovascular senescence 

(Papaconstantinou, 2019). Pretreatment of endothelial progenitor cells with N-acetyl 

cysteine (NAC) attenuates DOX-induced senescence and decreases SA-β-gal activity 

(Spallarossa, et al., 2010). In addition, pretreatment of cardiomyocytes with the antioxidant 

NAC abrogates ROS and inhibits RIS (E. J. Kim, et al., 2015). Similarly, chronic treatment 

of microvascular endothelial cells with NAC significantly decreases RIS (Lafargue, et al., 

2017). In the same study, post-radiation treatment of microvascular endothelial cells with a 

superoxide dismutase (SOD) mimetic, manganese metalloporphyrin (MnTBAP), decreases 

SA-β-gal positive cells. Transfection of HUVECs with KU86, a protein critical for DSB 

repair, inhibits low dose radiation-induced cellular senescence via SIRT1 and SOD2 

activation (K. Wu, et al., 2019). Supplementation of L-citrulline and L-arginine, in high 

glucose-induced senescence model in HUVECs, reduces p16Ink4a expression and SA-β-gal 

activity, and enhances telomerase function (Tsuboi, Maeda, & Hayashi, 2018). This 

protective effect against high glucose-induced senescence is suggested to be mediated 

through inhibition of ROS production.

It is noteworthy to mention that antioxidants that interfere with ROS homeostasis may 

reduce the effectiveness of some cancer treatments that depend on oxidative stress in their 

mechanism of action (Fernando, Rupasinghe, & Hoskin, 2019). Multiple pro-oxidant cancer 

treatments, including some tyrosine kinase inhibitors and monoclonal antibodies (Teppo, 

Soini, & Karihtala, 2017), procarbazine (Renschler, 2004), and cisplatin (Berndtsson, et al., 

2007) require activation of oxidative stress and accumulation of ROS in tumors at high 

levels that overwhelm the antioxidant capacity, ultimately inducing death of cancer cells via 

multiple mechanisms, including DNA damage, disrupting cell membrane, calcium channels 

activity, protein functions and signaling pathways, and epigenetic alterations (Perillo, et al., 

2020). However, elevated ROS levels in tumors can also contribute to cancer treatment 

resistance (Diehn, et al., 2009; H. Gu, et al., 2018). Therefore, maintaining an optimal 

balance between ROS production and scavenging is required to optimize the efficacy of 

cancer therapy. Previous studies using combinations of anti-oxidants and cancer therapies 

reported conflicting results about their effects on the efficacy of cancer therapy. The effects 

of anti-oxidants on chemotherapeutic efficacy were systematically reviewed in (Block, et al., 

2007). Multiple studies demonstrate anti-oxidants augment the anticancer effects through a 

number of mechanisms including reduction of P-gp expression and increase chemo/

radiosensitivity of cancer cells (Ahmad, et al., 2010; Ma, et al., 2014; Tak, Lee, & Park, 

2012; Wartenberg, et al., 2005). On the other hand, some studies report the reduction of 

anticancer effects following the combination with anti-oxidants (D’Andrea, 2005; Meng, et 
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al., 2020). Therefore, it is necessary to evaluate the potential of anti-oxidants to prevent 

cancer therapy-induced senescence without undermining their anticancer effects.

5.3 Anti-inflammatory agents

Using anti-inflammatory agents can be another means to antagonize the pro-inflammatory 

SASP. NF-κB is a critical regulator of age-related gene expression and SASP (Adler, et al., 

2007). Accordingly, inhibition of NF-κB suppresses senescence in a murine model of 

lymphoma (Chien, et al., 2011). This can be a valid approach since DOX is a potent 

activator of NF-κB. NF-κB Essential Modulator (NEMO) has been suggested as a potential 

target of senescence. Inhibition of these pathways using specific inhibitors or using knockout 

in vitro model has been shown to abrogate radiation-induced in endothelial cells and DNA-

damage-induced senescence in murine dermal fibroblasts (Dong, et al., 2015; P. Meyer, et 

al., 2017). Likewise, inhibition of NF-κB activation in mice with premature onset 

senescence due to increased genotoxic stress prevents senescence and slows aging 

(Robinson, et al., 2018; Tilstra, et al., 2012; Yousefzadeh, et al., 2020). Finally, inhibition of 

p38-MAPK antagonizes SASP effects (Cosgrove, et al., 2014) and ameliorates low doses 

DOX-induced senescence of ventricular myocytes (Spallarossa, et al., 2009).

5.4 Senolytics

Senolytics are promising pharmacological compounds that selectively induce apoptotic cell 

death in senescent cells, which normally demonstrate resistance to apoptosis (Chang, et al., 

2016; Kirkland, Tchkonia, Zhu, Niedernhofer, & Robbins, 2017; Zhu, et al., 2017; Zhu, et 

al., 2015). Numerous studies show that senolytics have beneficial effects in age-related 

disease models. One advantage of the use of senolytics is that they have the potential to 

reverse premature aging following cancer treatment. Unlike other strategies that should be 

administered before or concurrently with cancer treatment exposure, senolytics can be used 

by cancer survivors months to years following exposure. Up to ten compounds have been 

identified to have senolytic properties with dasatinib and quercetin (D+Q) and ABT263 

(navitoclax) being the most studied senolytics.

D+Q protective effects have been studied in diabetic kidney disease (Hickson, et al., 2019), 

idiopathic pulmonary fibrosis (Schafer, et al., 2017), hepatic steatosis (Ogrodnik, et al., 

2017), among several in vivo aging models. Indeed, D+Q treatment improves vasomotor 

function in aged mice with hypercholesterolemia (Roos, et al., 2016). Moreover, D+Q 

administration mitigates systolic cardiac dysfunction and abrogated end-systolic left 

ventricle dilation in 24-month-old mice (Zhu, et al., 2015). ABT263 is a selective inhibitor 

of the anti-apoptotic proteins BCL-2 and BCL-xL, which can selectively induce apoptotic 

cell death in senescent cells. ABT263 clears p16Ink4a-positive senescent cells in bone 

marrow following irradiation of mice (Chang, et al., 2016). Additionally, ABT263 

administration in an aged murine model of myocardial infarction improves cardiac 

remodeling and overall survival (Walaszczyk, et al., 2019). Fisetin, a quercetin-related 

flavonoid, increases the lifespan of mice and ameliorates tissue damage after administration 

in aged animal models (Yousefzadeh, et al., 2018). Interestingly, fisetin demonstrates both 

senolytic and senomorphic properties depending on the cell type (Zhu, et al., 2017). 

Recently, targeted inhibition of ubiquitin-specific peptidase 7 (USP7) is proposed as a novel 

Abdelgawad et al. Page 18

Pharmacol Ther. Author manuscript; available in PMC 2022 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



senolytic strategy (He, et al., 2020). Inhibition of USP7 is associated with an increase in the 

degradation of MDM2, which increases p53 and selectively induces apoptosis of senescent 

cells. In some cell types, the levels of p53 are observed to decrease after senescence 

initiation to maintain senescence, so the hypothesis is the sustained increase in p53 level 

induces apoptosis and selectively eliminate senescent cells. Interestingly, in vivo 
administration of USP7 inhibitor, P5091, successfully removes senescent cells and abrogated 

SASP production in DOX-treated p16Ink4a -3MR mice (He, et al., 2020). A recent screening 

of small library of compounds identified heat shock protein (HSP90) as a novel target for 

senolytics (Heike Fuhrmann-Stroissnigg, et al., 2017). Inhibition of HSP90 using 17-DMAG 

extends the healthspan and decreases senescence markers expression in progeroid mice 

(Heike Fuhrmann-Stroissnigg, et al., 2017). Additionally, blocking p53-FOXO4 interaction 

using cell-permeable peptide induces apoptosis of senescent cells leading to improvement of 

fitness and renal function in both progeroid and naturally aged mice (Baar, et al., 2017).

Senolytics are also demonstrated to protect against radiation-induced cardiovascular 

senescence. Both fisetin and BCL-XL inhibitors selectively induce cell death in senescent 

HUVECs following exposure to radiation (Zhu, et al., 2017). Additionally, recent studies 

demonstrate the protective effects of senolytics against other models of RIS. For instance, 

ABT263 decreases senescent cells and reverses radiation-induced pulmonary fibrosis in 

C57BL/6 mice (Pan, et al., 2017). In another study, genetic or pharmacologic (using 

ABT263) depletion of senescent astrocytes improves cognitive function in mice following 

whole-brain irradiation (WBI) (Yabluchanskiy, et al., 2020). Similarly, ABT263 oral 

administration in C57BL/6 mice mitigates total body irradiation-induced premature aging of 

the hematopoietic system and depletes senescent hematopoietic stem cells (HSCs) and 

muscle stem cells (MuSCs) (Chang, et al., 2016).

Despite the effectiveness of senolytics, potential toxicity is considered the most critical 

limitation and a major concern for their clinical utility. For instance, ABT263which was 

initially developed as anticancer drugs causes several side effects, such as nausea, vomiting, 

diarrhea, and thrombocytopenia because it can induce apoptosis of non-senescent cells 

including platelets (Rudin, et al., 2012). Therefore, optimizing local administration of 

senolytics and the development of novel senolytics with a good safety profile is a priority in 

the next few years. Another challenging aspect is to identify the optimum time during the 

post-cancer treatment period to administer senolytic drugs. Based on this evidence, 

senolytics administration should be considered as an attractive protective approach for the 

elimination of senescent cardiovascular cells following cancer therapy treatment. 

Additionally, senolytics should not interrupt cell cycle pathways as this can exaggerate 

cancer or hinder the anticancer effects of chemotherapy (Robbins, et al., 2020). Further in 
vitro and in vivo studies are warranted to identify the efficacy of senolytics against cancer 

therapy-induced senescence.

5.5 Other potential strategies to protect from therapy-induced senescence (TIS)

Oral matrix metalloproteinases (MMPs) inhibitors, such as doxycycline (sub-antimicrobial 

dosing) or ONO-481, attenuate DOX-induced cardiotoxicity and improve diastolic and 

systolic function and extracellular matrix remodeling in C57BL/6J mice (Chan, et al., 2020). 
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Improving chromosomal segregation delays cellular senescence and decreases the SASP in 

human dermal fibroblasts cultures (Barroso-Vilares, et al., 2020). Pioglitazone mitigates 

endothelial cell senescence through telomerase activation-mediated mechanism (Werner, et 

al., 2011). Rivaroxaban inhibits signaling cascades between factor Xa and Insulin-like 

growth factor binding protein 5 (IGFBP5), and hence decreases Factor Xa-induced VSMCs 

senescence (Sanada, et al., 2017). The ATM-TRAF6-TAK1 axis plays an important role in 

SASP. Furthermore, ATM signaling drives NF-kB-dependent senescence, stem cell 

dysfunction and premature aging in response to genotoxic stress and ATM inhibitors block 

that (Zhao, et al., 2020). Interestingly, high-throughput screening identified ATM inhibitor, 

KU-60019, to have anti-senescence effects (Kang, et al., 2017). Inhibition of the JAK/STAT 

pathway using JAK inhibitor 1 alleviates senescence in endothelial cells and preadipocytes 

by targeting SASP (Xu, et al., 2015). Cardiomyocytes treated with DOX and Pifithrin-α, a 

p53 inhibitor, exhibit a marked reduction of p53 and p21Cip1 protein expression and reduce 

the number of SA-ß-gal positive cells (Maejima, et al., 2008). Moreover, downregulation of 

X-linked inhibitor of apoptosis (XIAP)-associated factor 1 (XAF1) attenuates DOX-induced 

endothelial cell senescence (Heo, et al., 2016). Pretreatment with peroxisome proliferator-

activated receptor delta (PPARδ) agonist, L-165041, prevents low dose DOX-induced 

senescence in ventricular myocytes and H9c2 cells (Altieri, et al., 2012). PPARδ is the most 

abundant subtype in the heart. It plays an important role in cardiomyocytes survival through 

the regulation of cell cycle progression via BCL-6 -mediated mechanism. JNK and p-38 

activation is necessary for PPARδ protective effect (Altieri, et al., 2012). In the same 

manner, another PPARδ agonist, GW501516, prevents Ang-II-induced senescence of 

VSMCs (H. J. Kim, et al., 2011).

6. Conclusions and Future Directions

It has become increasingly clear that most if not all cancer survivors experience some form 

of accelerated aging. Every clinician caring for cancer survivors has heard repeatedly from 

patients, “I just feel like I’m 10 years older…” or “They keep telling me it’s all just in my 

head…” when referencing the symptoms of frailty or accelerated aging. The ultimate proof 

of this not being the case lies in identifying interventions and designing clinical trials to halt 

or reverse the chronic consequences of cancer therapy-induced senescence. Indeed, 

interventions are desperately needed to arm clinicians with the tools necessary to help cancer 

survivors attain the highest quality of life possible.

Several challenges may hinder the development of the interventions that target senescence. 

First, a comprehensive understanding of the complicated interplay between senescence and 

other cell death mechanisms is necessary, so we can have a clearer view of the role of 

senescence in mediating cancer therapy-induced cardiotoxicity. Second, the lack of specific 

markers of senescence can impede the detection of senescence and proof of efficacy in 

preclinical and clinical studies. Additionally, developing more quantitative tools to estimate 

senescent cell burden will enable selective treatment of cancer survivors with high 

senescence burden following cancer treatment. Detection of local senescence, for example, 

in specific cell types, can provide a better tool to target these particular cells since the 

efficacy of anti-senescence strategies has been shown to be cell-type dependent (Sikora, 

Bielak-Zmijewska, & Mosieniak, 2019).
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Addressing these challenges will ultimately open the door to a new era of interventional 

research and clinical care that improves the lives of cancer survivors across the lifespan. 

Moreover, this can be a fundamental first step toward precision medicine approach following 

cancer treatment. Rigorous clinical research steeped in team science with expertise in the 

biology of aging will be needed to properly vet such interventions, but the reward will be 

exponential for cancer survivors in desperate need for ways to combat accelerated aging.
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Figure 1. Cancer therapy-induced senescence in cardiovascular cells.
Cancer therapy induces senescence in different cardiovascular cells through a number of 

molecular mechanisms. Accumulation of senescent cells contributes to premature 

cardiovascular diseases in cancer survivors. Multiple interventions are proposed to mitigate 

cancer therapy-induced cardiovascular senescence. D+Q, Dasatinib and quercetin; IL-6, 

Interleukin-6; MMP, Matrix metalloproteinase inhibitor; NAC, N-acetyl cysteine; SA-β-gal, 

Senescence associated-β-galactosidase assay; SAHF, Senescence-associated 

heterochromatin foci; SASP, Senescence-associated secretory phenotype; TNF-α, Tumor 

Necrosis Factor-alpha.
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Figure 2. Senotherapeutics as a strategy to counteract cancer therapy-induced cardiovascular 
senescence.
Several senotherapeutics have been developed to target and modulate the senescence 

phenotype. Senotherapeutics can be divided into senolytics (shown in light green rectangles) 

and senomorphics (shown in light blue rectangles). Senolytics target signaling pathways 

leading to apoptosis of senescent cells. Senomorphics modulate the senescence phenotype 

e.g. SASP without inducing death in senescent cells. SASP, Senescence-associated secretory 

phenotype; RTK, Receptor tyrosine kinase.
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Table 1.

Studies demonstrating doxorubicin-induced cardiovascular senescence.

Study Cell type Dox Treatment 
(Conc / Time) Detection of Senescence Finding Proposed 

Mechanism

(Maejima, et 
al., 2008)

Neonatal rat 
cardiomyocy tes 0.1 μM for 7 days

↑SA-β-gal activity ↑ 
Acetylated p53/p21cip1 

↑p27kip1 ↓Telomere length 
↓cTnI phosphorylation

Low concentrations of 
DOX induce 
senescence in 

cardiomyocytes

Oxidative stress 
Telomere 

dysfunction

(Spallarossa, et 
al., 2009)

Neonatal rat 
cardiomyocytes 
and H9c2 cells

0.01, 0.05, or 0.1 
μM for 3 h 
Different 

experiments at 6 h, 
24, or 48 h 

following treatment

Cell cycle alterations 
Morphological changes ↑ 
SA-β-gal activity ↓Chk2 ↓ 

TRF2, TRF1

Low doses of DOX 
induce a senescence-

like phenotype in 
cardiomyocytes, which 

undergo late cardiac 
death by mitotic 

catastrophe

Telomere 
dysfunction through 

p53 and MAPKs

(Spallarossa, et 
al., 2010)

Endothelial 
progenitor cells 

(EPCs)

0.01, 0.05, 0.25, 
0.05, 0.1 μM for 3 h 

(further 
experiments with 

0.25 μM at 24 or 48 
h following 
treatment)

Cell cycle arrest at G2/M 
phase Morphological 

changes with cytoskeleton 
remodeling ↑ SA-β-gal 
activity ↑ Cytoplasmic 

p16INK4a ↓ TRF2

Low concentrations of 
DOX induce 

senescence in EPCs 
Higher concentrations 

induce apoptosis

Oxidative stress 
Telomere 

dysfunction through 
p38-MAPK 
activation

(Altieri, et al., 
2012)

Neonatal rat 
ventricular 
myocytes

0.1 μM for 3 h 
Different 

experiments at 6h, 
24, or 48 h 

following treatment

Cell cycle arrest at S phase 
Morphological changes 

with cytoskeleton 
remodeling ↑ SA-β-gal 

activity ↑ pi6Ink4a ↓ TRF2

Pretreatment with the 
PPARδ agonist 

L-165041, protected 
against DOX- induced 

senescence

DOX activates 
PPARδ, which 

sequesters the anti-
senescence protein 

BCL-6. PPARδ 
agonist L-165041 
releases BCL-6 in 

MAPK/AKT 
dependent 
mechanism

(Hodjat, et al., 
2013)

Human primary 
vascular smooth 

muscle cells 
(VSMCs)

0.25, 0.5, and 1 μM 
for 3 h, experiments 

were done 3 days 
after treatment

↑ SA-β-gal activity ↑ p53/ 
p21CIP1 No change 

p16INK4 ↓ TRF2

Low doses of DOX 
induce senescence in 

VSMC that may 
initiate vascular 

damage

Telomere 
dysfunction (DOX 
upregulates uPAR-

mediated TRF2 
ubiquitination and 

proteasomal 
degradation)

No oxidative stress 
was observed at 

these concentrations

(Piegari, et al., 
2013)

Human cardiac 
progenitor cells 

(CPCs)

0.1, 0.5, and 1.0 
μM for 24 or 48 h

Morphological changes ↑ 
SA-β-gal activity ↑ 

p16INK4a No change in 
p21CIP1 ↑ p-p53 ↑ γ-
H2AX ↓ Cyclin D1 ↓ 

phosphorylated RbSer798

DOX exposure induces 
senescence in hCPCs 
which may mediate 

DOX-induced 
cardiomyopathy

DNA Damage

(Bielak-
Zmijewska, et 

al., 2014)
Human VSMCs 0.1 μM for 1, 3, or 

7 days

Morphological changes 
Cell cycle arrest at G2/M ↑ 
SA-β-gal activity ↑ p53/p-
p53 ↑ p16INK4a,↑ p21CIP1 ↑ 
SASP (IL-6, IL-8, VEGF) 
↑Superoxide production

DOX-induced 
senescence in VSMCs 
with some differences 

to replicative 
senescence

DNA Damage

(Heo, et al., 
2016)

Human 
pulmonary 

microvascular 
endothelial cells 

(HMVECs)

1 μM for 4 h then 
incubated for 6, 24, 

or 48 h

Morphological changes ↑ 
SA-β-gal activity ↑ p53

XAF1 may contribute 
to inducing senescence 

in HMVECs

Activation of XAF1 
via a p53-dependent 

mechanism

(Altieri, et al., 
2016)

H9c2 cells and 
neonatal mouse 
cardiomyocytes

0.1 μM for 3 h +/− 
pretreatment with 

0.01 μM 
testosterone or 
0.001 μM 17β- 

↑ SA-β-gal activity ↑ 
SAHF ↑ p16INK4a ↑ p53 

phosphorylation/p21cip1 ↓ 
TRF2

Testosterone, but not 
17β- estradiol, protects 
against DOX- induced 

senescence in 
Cardiomyocytes

Testosterone 
modulates TRF2 via 
PI3K/AKT/NO S3 

mechanism

Pharmacol Ther. Author manuscript; available in PMC 2022 May 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Abdelgawad et al. Page 44

Study Cell type Dox Treatment 
(Conc / Time) Detection of Senescence Finding Proposed 

Mechanism

estradiol for 15 
minutes. Different 
experiments were 

carried out at 24 or 
48 h

(Bent, Gilbert, 
& Hemann, 

2016)

Human umbilical 
vein endothelial 
cells (HUVECs)

0.225 μM for 24 or 
120 h

Cell cycle arrest ↑ SA-β-
gal activity ↑ p21CIP1 ↑ 
p16INK4a ↑ Acute IL-6 

production

DOX induces 
endothelial cell 

senescence without the 
typical SASP but 

rather ASAP

Oxidative stress 
induces ASAP 
through p38 
signaling and 

downregulation of 
PI3K/AKT/mT OR 

pathway

(De Falco, et 
al., 2016)

Endothelial 
progenitor cells 

(EPCs)
0.25 μM for 3 h

↑ SA-β-gal activity ↑ 
p21CIP1 ↑ IL-6 ↓ NO

DOX induces 
senescence in EPC. 

Nox2 Inhibition may 
protect against DOX-
induced senescence

Oxidative stress via 
Nox2- dependent 

mechanism

(Przybylska, et 
al., 2016) Human VSMCs

1 μM for 2 h 
Experiments were 
done 6 days after

Morphological changes ↑ 
SA-β-gal activity ↑ p53/p-

p53 ↑ p21CIP1 ↑ SASP 
(IL-6, IL-8, VEGF)

DOX induces 
senescence in VSMCs 

Both increased and 
diminished ROS levels 
can lead to senescence

DOX-induced DSB 
and ROS activates 
p53/p21 pathway 
NOX4 silencing 

activates p27

(Xia & Hou, 
2018)

H9c2 Rat BM-
MSCs 0.5 μM for 24 h

↑ p53/ p16INK4a gene 
expression ↓ Telomere 

length ↓Telomerase 
activity

Co-culture with MSCs 
attenuated DOX-

induced senescence 
and increased cells 

proliferation

MSCs induce anti-
senescence effect by 
upregulating Sirt1 

expression via 
miR-34a Inhibition

(Z. Xie, et al., 
2018)

HL-1 murine 
cardiomyocytes 5 μM for 24 h

↑ p53/ p16INK4a gene 
expression ↓Telomere 
length ↓Telomerase 

activity ↓ Proliferation 
SOD activation

lincRNA-p21 silencing 
attenuated DOX-

induced senescence in 
cardiomyocytes

DOX induces 
lincRNA-p21 which 
regulates oxidative 
stress via WNT/β-
catenin signaling 

pathway (Decrease 
β-catenin)

(Fallah, et al., 
2019)

Wistar rats (Heart 
tissues)

DOX: 0.75, 0.5, 0.1 
mg/kg Liposomal 
DOX: 0.1, 0.025, 
0.05 mg/kg. Both 
daily for 6 weeks

↑ SA-β-gal activity ↑ p53

Both DOX and 
liposomal DOX induce 

senescence and mild 
inflammation

Oxidative stress

ASAP, Acute stress-associated phenotype; Akt, Protein Kinase B; Bcl-6, B cell lymphoma-6; Chk2, checkpoint kinase 2; CPCs, Cardiac progenitor 
cells; CTn, Cardiac troponin; DSB, double-strand breaks; HUVECs, Human umbilical vein endothelial cells; IL, Interleukin; linc, Long intergenic 
non-coding; MAPK, Mitogen-activated protein kinase; MSCs, Mesenchymal stem cells; NOX, NADPH oxidases; PI3K, Phosphatidylinositol 3-
kinase; ROS, Reactive oxygen species; SA-β-gal, Senescence associated-β-galactosidase assay; SAHF, Senescence-associated heterochromatin 
foci; SASP, Senescence-associated secretory phenotype; TRF, Telomeric repeat binding factor; VSMCs, Vascular smooth muscle cells; VEGF, 
Vascular endothelial growth factor
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Table 2.

In vitro and In vivo studies demonstrating radiation-induced cardiovascular senescence

Study Cell type Radiation Dose Detection of Senescence Finding Proposed 
Mechanism

(Oh, et al., 2001) BAECs
5–15 Gy Different 
experiments at 0–8 

weeks after

Morphological changes ↓ 
BrdU incorporation ↑ 
SA-β-gal activity ↑ 

p21cip1

IR induces a senescence-
like phenotype in 

endothelial cells (ECs)
DNA damage

(Igarashi, Sakimoto, 
Kataoka, Ohta, & 

Miura, 2007)

BAECs 
HUVECs 2, 4, and 8 Gy

Morphological changes ↑ 
SA-β-gal activity ↓ BrdU 

incorporation ↑ SASP 
(IL-8, IL-1α, VEGF-B) ↑ 

VCAM-1, ICAM-1

IR induces a senescence-
like phenotype in ECs 

which could inhibit their 
angiogenic features

DNA damage

(Sermsathanasawadi, et 
al., 2009) HUVECs 8 Gy

Morphological changes ↑ 
SA-β-gal activity ↑ 

VCAM-1, ICAM-1, E-
selectin

IR induces senescence-
like phenotype in ECs 

with increased 
expression of adhesion 

molecules that may 
promote tumor 

neovascularization

DNA damage

(Mendonca, et al., 
2011)

Endothelial 
colony-
forming 

cells 
(ECFCs) 
isolated 

from adult 
peripheral 

blood

3 and 10 Gy ↑ SA-β-gal activity

While 10 Gy induces 
senescence in adults 

ECFCs, this response is 
not observed with 3 Gy 

radiation

Possible telomere 
dysfunction

(Panganiban & Day, 
2013) HPAECs 10 Gy followed by 

1, 2, or 3 days

Morphological changes ↑ 
SA-β-gal activity ↑ p53/ 

p21CIP1 ↑ 
Phosphorylation of 
IGF-1R and AKT

IR induces accelerated 
senescence in ECs

ROS which 
activates IGF-1R-

mediated 
senescence via 
mTOR/PI3k 

pathway

(R. A. M. Panganiban, 
O. Mungunsukh, & R. 

M. Day, 2013)

Bovine 
PAECs

2 – 50 Gy 
followed by 1, 3, 

or 5 days

Morphological changes ↑ 
SA-β-gal activity ↑ 

p21cip1 ↓ Sirt1 ↑ Bcl-2

Low doses (< 10 Gy) of 
IR induces senescence 

with limited apoptosis in 
ECs

DNA damage 
independent of 

ER stress

(Ungvari, et al., 2013) Rat primary 
CMVECs

2–8 Gy for 1–14 
days

↑ SA-β-gal activity ↑ 
p53, p16INK4a gene 

expression No change in 
p21cip1 ↑ SASP (IL- 6, 
IL-1α,, MCP-1,GM- 

CSF)

Low doses of IR induces 
senescence and impaired 
angiogenic capacity in 

CMVECs

DNA Damage

(Yentrapalli, 
Azimzadeh, 

Barjaktarovic, et al., 
2013)

HUVECs

Continual low 
dose gamma 
radiation (4.1 

mGy/h), cells were 
harvested 1, 3, or 6 

weeks after.

Morphological changes ↑ 
SA-β-gal activity Acute 
↑ p53/p-p53 Acute ↑ 
p21CIP1 Delayed ↑ 

p16INK4a No change in 
AKT or p16INK4a

Chronic radiation inhibits 
the replicative potential 

of HUVECs and induces 
premature senescence

Activation of 
p53/p21 pathway 
due to radiation-
induced oxidative 
stress and DNA 

damage

(Yentrapalli, 
Azimzadeh, Sriharshan, 

et al., 2013)
HUVECs

Two doses were 
compared: 1.4 
mGy/h and 2.4 

mGy/h

↑ SA-β-gal activity ↑ 
p21CIP1 No change p53 

or p16INK4a

The 2.4 mGy/h dose, but 
not 1.4, was able to 

induce senescence in 
ECs

DNA damage 
mediated by 

altered 
PI3K/Akt/mT OR 

pathway

(Lowe & Raj, 2014) HCAECs 10 Gy ↑ SA-β-gal activity

IR induces premature 
aging in ECs which may 

contribute to 
atherosclerosis

DNA damage
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Study Cell type Radiation Dose Detection of Senescence Finding Proposed 
Mechanism

(K. S. Kim, Kim, Choi, 
Bae, & Kim, 2014) HUVECs 4 Gy

Morphological changes ↑ 
SA-β-gal activity ↑ p53/ 
p21CIP1 ↑ γ-H2AX foci ↓ 

Cyclin A, Cyclin B1

Using microarray 
analysis, IR altered the 

expression of senescence 
genes in ECs

DNA damage

(E. J. Kim, et al., 2015) HL-1 and 
H9C2 cells 8 and 15 Gy

↑ SA-β-gal activity ↑ 
p21cip1

Radiation induces 
senescence in 

cardiomyocytes by ROS 
generation via impairing 

corin function

Oxidative stress

(Azimzadeh, et al., 
2015)

10 week old 
male 

C57Bl/6 
mice

Single Dose of 8 
or 16 Gy Mice 

were sacrificed 16 
weeks later 
Senescence 
markers are 
measured in 

cardiac 
microvascular ECs

↑ ICAM-1,2, PECAM-1, 
VCAM-1 ↑ p21cip1 ↑ 

p16Ink4a ↑ p21, p16, and 
Igfbp3 gene expression 

No change p53/p-p53 No 
increase in SA-β-gal 

activity

Acute irradiation-
induced endothelial 

dysfunction was 
mediated by senescence 
in cardiac microvascular 

ECs

Increased ROS 
and decrease NO 
bioavailability via 

deactivation of 
the insulin/IGF-

PI3K-Akt

(Dong, et al., 2015) HUVECs 0–8 Gy
Morphological changes ↑ 
SA-β-gal activity ↑ IL-6 

gene expression

IR induces senescence-
like phenotype, but not 

apoptosis, in ECs

DNA damage via 
NF-κB activation 
through NEMO

(Heo, et al., 2016) HMVECs
4 Gy then 

incubated for 6, 
24, or 48 h

Morphological changes ↑ 
SA-β-gal activity ↑ p53

XAF1 may contribute to 
inducing senescence in 

HMVECs

Activation of 
XAF1 via p53-

dependent 
mechanism

(Park, Kim, Jeong, 
Park, & Kim, 2016) HAECs 4 Gy for 24 or 48 h

Morphological changes ↑ 
SA-β-gal activity ↑ p-

p53 ↑ p21CIP1

GDF15 is involved in IR- 
induced senescence in 

ECs

DNA damage 
induces GDF15 

which contributes 
to senescence via 
oxidative stress-

mediated p16 
pathway

(Lafargue, et al., 2017) HMVECs

0–15 Gy, cell 
cultures were 

maintained for 28 
days

↑ SA-β-gal activity ↑ 
p21CIP1 ↑ p16INK4a ↑ γ-

H2AX foci ↑ IL-8 ↑ 
ATM phosphorylation

IR induces long term 
senescence in HMVEC

DNA damage 
Oxidative stress-

mediated 
mitochondrial 
dysfunction

(Hu, et al., 2018)

Human 
cardiac 

myocytes 
(HCMs)

5 Gy

↑ SA-β-gal activity 
↓Telomere length ↓ 

Telomerase activity ↓ 
Sirt1 ↑ p21CIP1 gene 

expression

IR induces senescence in 
cardiomyocytes via 

induction of miR-34a
Oxidative stress

(Casella, et al., 2019) HUVEC, 
HAECS

4 Gy Cells were 
harvested after 10 

days

↑ SA-β-gal activity ↑ 
p16INK4a gene expression

The study identified 
common transcriptomic 

signature in different 
senescence models

(K. Wu, et al., 2019) HUVECs

Two days 
following cell 

transfection with 
Ku86, continual IR 
was applied for 7 

days with 
cumulative doses 
of 0, 0.1, 0.2, 0.3, 

and 0.5 Gy

↑ SA-β-gal activity ↑ 
p16INK4a

Low doses of IR induces 
senescence, higher 

intensities were 
associated with apoptosis

DNA damage 
Ku86 activated 

Sirt1 and SOD2, 
abrogated IR-

induced 
senescence

AKT, Protein Kinase B; Bcl-2, B Cell Lymphoma-2; DDR, DNA damage response; BAECs,Bovine aortic endothelial cells; ECFCs, Endothelial 
colony-forming cells; ECs, Endothelial cells; GM-CSF, Granulocyte-macrophage colony-stimulating factor; HAECs, Human aortic endothelial 
cells; HCAECs, Human coronary artery endothelial cells; HMVEC-L, Human Cardiac Microvascular Endothelial Cells; HUVECs, Human 
umbilical vein endothelial cells; IR, Ionizing radiation; ICAM, Intercellular adhesion molecule; IGF-1R, Insulin-like growth factor type 1 receptor; 
IL-6, Interleukin-6; Sirt1, Sirtuin 1, silent information regulator 2 homolog 1; MCP, Monocyte chemoattractant protein; miR-34a, microRNA-34a; 
NEMO, NFkappa-B essential modulator; NO, Nitric oxide; PECAM, platelet endothelial cell adhesion molecule; ROS, Reactive Oxygen Species; 
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SA-β-gal, SA-β-gal, Senescence associated-β-galactosidase; SOD2, Superoxide dismutase-2; VCAM, Vascular cell adhesion molecule; VEGF, 
Vascular endothelial growth factor; XAF1, X-linked inhibitor of apoptosis (XIAP)-associated factor 1
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Table 3.

Studies demonstrating other chemotherapy-induced cardiovascular cellular senescence.

Study Cell type Chemotherapy
Cell 

Treatment 
(Conc./Time)

Detection of 
Senescence Finding Proposed 

Mechanism

(Focaccetti, 
et al., 2015)

HUVECs 
HCMs

5-Fluorouracil 
(5-FU)

Cells were 
treated with 5-
FU up to 72 h

↑ SA-β-gal activity t 
SASP

5-FU induces endothelial 
senescence leading to 
vascular collapse or 

vasospasm

ROS production 
resulting in 
senescence 
induction

(Altieri, et 
al., 2017)

EA.hy926 
cells

5-Fluorouracil 
(5-FU), sera 

from 
capecitabine-

treated patients

100 μgmL−1 5-
FU for 4 h or 
10% human 
serum from 

patients 
receiving 

capecitabine

↑ SA-β-gal activity 
↑ p16INK4a 

Morphological 
changes ↓ eNOS

Both 5-FU and sera from 
capecitabine-treated 

patients induce 
endothelial cell 

senescence

Activation of p38 
and JNK 

Downregulation of 
Sirt-1 and eNOS

(Yin, et al., 
2017) HUVECs Bleomycin

HUVECs were 
exposed to 

bleomycin (5 – 
20 μM) for 2 – 

6 days

↑ p53 and p21 ↑ 
SA-β-gal activity ↑ 
IL-1 Sirt1 mRNA 

level remained 
unchanged

Bleomycin significantly 
induces HUVECs 

senescence in a dose- and 
time-dependent manner

ROS-dependent 
activation of the 

NLRP3 
inflammasome

(Mongiar di, 
et al., 2019) HUVECs Axitinib

Axitinib 25 μM 
for 1 h then 

HUVECs were 
cultured in 
drug free 

medium for 4 
days

↑ SA-β-gal activity 
↓ ki67 expression ↓ 
CDKN1B (p27) ↓ 
LMNB1, LMNB2, 

LBR ↑ SASP 
(CCL2, CX3CL1) ↑ 
BTG2 expression 

No H2AX 
Phosphorylation No 

p53 activation

Axitinib-induced 
endothelial cells 

senescence phenotype 
was quite different from 

DOX-induced senescence
Both antioxidants as 

GSH, NAC; and ATM 
inhibitors as 

KU-60019,KU-55933, 
abrogated Axitinib-
induced senescence

ATM activation 
(phosphorylation) 
through increased 
ROS without DDR

(Merolle, et 
al., 2020)

HUVECs 
co-

cultured 
with GBM 

tumor 
cells in 

transwell 
plates

Axitinib

25 μM for 1 h 
then GBM cells 
were removed 
and HUVECs 
were cultured 
another four 

days

↑ SA-β-gal activity 
↓ ki67 expression ↓ 
CDKN1B (p27) ↓ 

LMNB1 
downregulation ↑ 

SASP (CCL2, 
CX3CL1) ↑BTG2 

expression

Co-culture with GBM did 
not prevent Axitinib-

induced HUVEC 
senescence, rather it 

modified transcriptomic 
profile

ROS-dependent 
ATM activation

ATM, Ataxia Telangectasia Mutated; BTG2, B-cell translocation gene 2; DOX, Doxorubicin; DDR, DNA damage response; eNOS, Endothelial 
nitric oxide synthase; GBM, glioblastoma; GSH, Glutathione; HCMs, Human cardiac myocytes; HUVECs, Human umbilical vein endothelial cells; 
IL-1, interleukin-1; JNK, N-terminal kinase; LMNB1, Lamin B1; NAC, N-acetyl cysteine; NLRP3, NOD-like receptor family pyrin domain-
containing3; PAI-1, Plasminogen activator inhibitor-1; ROS, reactive oxygen species; SA-β-gal, senescence-associated β-galactosidase; SASP, 
senescence-associated secretory phenotype
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Table 4:

Clinical studies demonstrating elevation of cellular senescence biomarkers in cancer survivors

Study Study type
Cellular 

Senescence 
Biomarkers

Population of 
interest Study groups Methods Findings

(Piegari, et 
al., 2013)

Case 
control

p16INK4a Heart autopsies 
to examine 

cardiac 
progenitor cells 
among cancer 

patients

Cases: 6 heart 
autopsies from DOX- 

treated cancer 
patients who died 

from cardiomyopat 
hy, 2 who died from 

other causes Controls: 
6 heart autopsies 
from cancer free 

individuals

p16INKa levels 
were collected 
from cardiac 

progenitor cells 
obtained from 

autopsy samples

p16INK4a levels were 
higher in cardiac 

progenitor cells from 
individuals who were 
exposed to DOX and 

deceased from 
cardiomyopathy

(Marcoux, 
et al., 
2013)

Case 
control

p16INK4a Survivors of 
childhood ALL 
who received 
chemotherapy 

and cranial 
radiation

Cases: 10 survivors of 
childhood ALL who 

received 
chemotherapy and 
cranial radiation 

Controls: 11 sibling 
controls without 

cancer

p16INKa levels 
were collected 

from skin biopsies 
of the scalp 

(exposed) and 
buttocks 

(unexposed) in the 
cases, and from the 

buttocks only in 
the controls

p16INK4a levels were 
higher in skin biopsies 

from the scalp 
compared to skin 
biopsies from the 
buttocks in ALL 

survivors at a mean of 
12 years post-diagnosis. 
There was no difference 
between p16INK4a levels 

from biopsies of the 
buttocks in the cases 

compared to the 
controls

(Sanoff, et 
al., 2014)

Cohort p16INK4a, 
p14ARF 

Telomere 
length 

Senescence-
associated 
cytokines 

(VEGFA and 
MCP1)

Women treated 
for stage I-III 
breast cancer

Prospective cohort = 
33 women who were 
treated with adjuvant 
chemotherapy Cross-

sectional cohort = 
176 women, 39% 
received adjuvant 

chemotherapy, 61% 
did not

Serum samples 
were drawn prior 
to chemotherapy 

exposure, 
immediately after 

exposure, 3 
months, and 12 

months later in the 
prospective cohort. 

A single sample 
obtained in cross-
sectional cohort

Women who received 
chemotherapy had 

elevated p16INK4a ARF 
mRNA, and VEGFA 

and MCP1 expression 
immediately after and at 

12 months after 
chemotherapy exposure. 

Telomere length was 
not affected

(Ariffin, et 
al., 2017)

Case 
control

Inflammatory 
cytokines 

(IL-2, IL-10, 
IL-17a) 

Telomere 
length High-
sensitivity 

CRP

Survivors of 
childhood ALL

Cases: 87 young adult 
childhood ALL 
survivors with a 

median of 18 years 
off therapy

Controls: 87 age and 
sex- matched 

volunteers without 
history of cancer

Serum biomarkers 
measured

Survivors have 
significantly higher 

levels of inflammatory 
cytokines and shorter 
leukocyte telomere 
lengths compared to 
controls. Telomere 
lengths in survivors 

were similar to that of 
healthy individuals aged 

20 years older

(Alfano, et 
al., 2017)

Cohort Inflammatory 
cytokines 

(TNF-α, IL-6)

Women treated 
for stage I-III 
breast cancer

Survivor cohort: 209 
women treated with 
multimodal therapy 

for breast cancer 
Controls = 106 

women worked up 
and found to not have 

breast cancer

Baseline 
questionnaire, 
interview, and 
blood draw at 

work-up for both 
groups. Post-

treatment 
assessments were 

performed at 6 and 
12 months off- 

therapy for cases

Breast cancer survivors 
had significantly 

elevated inflammatory 
cytokines and higher 
burder of comorbid 

conditions compared to 
controls

(Uziel, et 
al., 2020)

Case 
control

DNA 
methylation 

status 

HSCT survivors Cases: 26 survivors of 
allogenic- HSCT for 

a hematologic 

Blood samples 
collected from 

survivors and their 

WBC methylation and 
buccal cells predicted 
accelerated aging in 
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Study Study type
Cellular 

Senescence 
Biomarkers

Population of 
interest Study groups Methods Findings

Telomere 
length

malignancy Controls: 
matched sibling 

donors

matched sibling 
donors. Buccal 

swabs collected in 
survivors

survivors compared to 
controls. No difference 

in telomere length

(Sehl, et 
al., 2020)

Prospective 
cohort 
study

DNA 
methylation 

and epigenetic 
biomarkers

Stage 0- IIIA 
breast cancer 

patients

72 women treated for 
breast cancer with 

surgery followed by 
adjuvant radiation 
alone (n=37) or 
chemoradiation 

(n=35)

Blood samples 
with epigenetic 

analysis collected 
pre- and 

posttreatment

Epigenetic markers of 
accelerated aging were 

most significant in 
patients treated with 

radiation compared to 
those treated with 
chemotherapy and 

radiation.

(Shachar, 
et al., 
2020)

Prospective 
cohort 
study

P16INK4a Stage I-III 
breast cancer 

patients

146 women treated 
for breast cancer; 

47.9% treated with 
anthracyclines, 34.9% 

treated without 
anthracyclines

Serum p16INK4a 
levels drawn prior 
to chemotherapy 

initiation and 
>/=60 days after 
completion of 
chemotherapy

P16INK4a expression 
was significantly 
elevated to levels 

equivalent to 23 to 26 
years of accelerated 

aging in patients treated 
with anthracycline

ALL, Acute lymphoblastic leukemia; CRP, C-reactive protein; DOX, Doxorubicin; HSCT, Hematopoietic stem cell transplant; IL-6, Interlukin-6; 
MCP1, Monocyte chemoattractant protein-1; TNF-α, Tumor Necrosis Factor alpha; VEGFA, Vascular endothelial growth factor A; WBC, White 
blood cell
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Table 5.

Clinical studies demonstrating increased frailty in cancer survivors

Study Study 
type

Frailty 
Measurement

Population of 
interest Study groups Methods Findings

(K. K. Ness, et 
al., 2010)

Case 
control

Muscle strength 
Fitness Physical 

performance 
Participation

Survivors of 
childhood brain 
tumors treated at 

St. Jude or 
University of 

Minnesota

Cases: 78 
survivors of 

childhood brain 
tumors Controls: 
78 age, sex, and 
zip codematched 
population-based 

controls

In-home 
evaluations for 

muscle strength, 
fitness, physical 

performance, and 
an interview

Survivors with a median 
age of 22 demonstrated 

muscle strength and 
fitness similar to that 

expected of an 
individual in their 60’s.

(K. K. Ness, et 
al., 2012)

Cohort Neuromuscular 
impairment

Survivors of 
childhood ALL 

enrolled in the St. 
Jude Lifetime 
Cohort Study

Participants : 415 
survivors of 

childhood ALL 
Non-participants: 

285 controls

Chart abstraction 
and tests for 

neuromuscular 
function

Survivors in their 30’s 
demonstrated 

neuromuscular 
impairments that limit 
physical performance 

similar to what is 
observed in individuals 
in their 60’s. This effect 
correlated with higher 
cumulative doses of 
vincristine and/or 

intrathecal 
methotrexate.

(Kirsten K. 
Ness, et al., 

2013)

Cohort Prefrailty Frailty 
Morbidity 
Mortality

Survivors of 
childhood cancer 
from the St. Jude 
Lifetime Cohort 

Study

Survivors: 1922 
adult childhood 
cancer survivors 

Controls: 341 
individuals 

without history of 
cancer

Chart extraction 
for medical 

records, 
questionnaires for 

frailty, and in-
clinic assessments 
at follow up visits

Prevalence of prefrailty 
and frailty were higher 
in survivors compared 
to controls, particularly 
in women. Frailty was 
also associated with 

higher risk of chronic 
condition onset and 
with risk of death.

(Vatanen, et 
al., 2017)

Case 
control

Frailty 
Cardiovascular 

function 
Inflammatory 

markers 
Telomere length

Survivors of high-
risk 

neuroblastoma 
who underwent 

high dose 
chemotherapy 
followed by 

autologous stem 
cell rescue

Cases: 19 
survivors of high 

risk 
neuroblastoma 

Controls: 20 age 
and sex- matched 

volunteers

Assessed frailty 
using tests for 
muscle mass, 

energy 
expenditure, 
running, and 

weakness

Survivors were more 
likely to be “frail” and 

to report physical health 
limitations in vigorous 
activities compared to 

controls. Survivors also 
had higher CRP and 

shorter telomere length 
than controls.

(Smitherman, 
et al., 2018)

Cross 
sectional

Prefrailty Frailty 
Comorbid 
conditions

Adolescent- 
young adult 

cancer survivors 
treated at 

University of 
North Carolina

271 survivors who 
were diagnosed 

between ages 15–
39

Frailty 
questionnaire to 

assess frailty 
status and 
comorbid 
conditions

Prevalence of prefrailty 
and frailty were high in 
AYA survivors. Frailty 

was associated with 
higher prevalence of 

comorbidities.

(Blair, et al., 
2019)

Case 
control

Deficiencies in 
geriatric 

assessment 
domains All-

cause mortality

Female survivors 
of any cancer in 
participants from 

the Iowa Women’s 
Health Study

Cases = 1723 
female survivors 

of cancer Controls 
= 11,145 age 

matched cancer 
free women

Questionnaire to 
assess for 
Geriatric 

assessment 
domains and for 

all-cause 
mortality

Cancer survivors were 
more likely than 

controls to have deficits 
in multiple geriatric 

domains. Predicted 10- 
year mortality was 

higher in survivors than 
in controls.

(Hayek, et al., 
2020)

Cohort Prefrailty Frailty Survivors of 
childhood cancer 
in the Childhood 
Cancer Survivor 

Study

Survivors: 10,899 
survivors 

Controls: 2,097 
Sibling controls

Baseline and 
follow up 

questionnaire

Demonstrated that 
prefrailty and frailty are 

higher in survivors 
compared to controls, 

and higher among 
females than in males. 
Exposure to cranial, 

abdominal/pelvic 
radiation, lung surgery, 
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Study Study 
type

Frailty 
Measurement

Population of 
interest Study groups Methods Findings

and comorbidities were 
also with risk of frailty. 
Findings suggest cancer 

therapies are a risk 
factor for the premature 

aging.

ALL, Acute lymphoblastic leukemia; AYA, Adolescent and young adult
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