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Abstract

Thousands of genes produce polyadenylated mRNAs that still contain one or more introns. These 

transcripts are known as retained intron RNAs (RI-RNAs). In the past 10 years, RI-RNAs have 

been linked to post-transcriptional alternative splicing in a variety of developmental contexts, but 

they can also be dead-end products fated for RNA decay. Here we discuss the role of intron 

retention in shaping gene expression programs, as well as recent evidence suggesting that the 

biogenesis and fate of RI-RNAs is regulated by nuclear organization. We discuss the possibility 

that proximity of RNA to nuclear speckles – biomolecular condensates that are highly enriched in 

splicing factors and other RNA binding proteins – is associated with choices ranging from efficient 

co-transcriptional splicing, export and stability to regulated post-transcriptional splicing and 

possible vulnerability to decay.
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Introduction

The processing of pre-messenger RNAs (pre-mRNAs) into mature mRNA requires 5′-end 

capping, splicing, 3′-end cleavage, and polyadenylation. A major open question in the field 

of gene expression is the degree to which pre-mRNAs can be spliced after 3′-end cleavage 

(post-transcriptionally). Splicing involves the removal of introns and the ligation of 

neighboring exons by the spliceosome [1,2]. The spliceosome is a multi-subunit molecular 

machine comprised of five snRNPs (U1, U2, U4, U5, U6) and numerous core and accessory 

proteins, which must assemble de novo on each intron [1]. In humans, genes contain a 

median of ~7 introns [3] and are frequently alternatively spliced to produce different 

transcript and protein isoforms. Sequencing and imaging studies in an array of different 
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organisms has demonstrated that ~75% of splicing is completed co-transcriptionally, 

meaning that exon-exon ligation occurs before 3′-end cleavage [2,4]. However, post-

transcriptional RNAs frequently contain introns [5–8] (Figure 1). For greater than 1/3 of all 

human and mouse genes in at least one cell type, ~50% of the transcripts they produce 

contain at least one intron [6]. These incompletely spliced transcripts are known as retained-

intron RNAs (RI-RNAs) [5–8]. Many RI-RNAs remain solely in the nucleus and this 

subclass has also been called detained-intron RNAs [5]. For clarity, we refer to all post-

transcriptional intron-containing transcripts as RI-RNAs. In this review, we first examine the 

potential fates of RI-RNAs including post-transcriptional splicing and RNA decay, and we 

assess the role of intron-retention in developmental and stress-responsive gene expression 

programs. Second, we discuss recent evidence that post-transcriptional splicing may be 

affected by nuclear organization, focusing on biomolecular condensates called nuclear 

speckles. Nuclear speckles form by liquid-liquid phase separation [9–11] and are highly 

enriched in both post-transcriptional RNA and RNA processing factors [12–17]. Thus, they 

are likely candidates to regulate RNA processing efficiency and thereby determine the fate 

of RI-RNAs.

Unspliced RNAs are fated for post-transcriptional splicing or RNA decay

Single-gene studies have provided several examples of RI-RNAs with two distinct fates: 

either RNA decay or rapid post-transcriptional splicing in response to signaling. In several 

tissue types, greater than 50% of transcripts produced from the CLK1 gene, encoding a 

stress-responsive kinase, have both intron 3 and intron 4 retained post-transcriptionally [18]. 

CLK1 RI-RNAs remain nuclear and can be spliced post-transcriptionally. In the absence of 

new transcription, deficiency in Clk1 kinase activity (due to heat shock, osmotic stress, or a 

Clk1 inhibitor) causes the CLK1 RI-RNA to decrease and the mature mRNA to accumulate. 

Thus, post-transcriptional splicing of the CLK1 RI-RNA reservoir is auto-regulated by Clk1 

kinase activity. Similar studies analyzing precursor-product relationships recapitulated this 

result with CLK1 RI-RNA; however, two other abundant RI-RNAs, MAT2A and OGT, are 

not post-transcriptionally spliced into mRNA but are instead dead-end products [19]. Co-

transcriptional splicing of MAT2A, encoding an S-Adenosylmethionine (SAM) synthetase, 

is more efficient in SAM-limiting conditions due to altered adenosine methylation of the 

MAT2A 3′ UTR [19,20]. Thus, MAT2A uses a feedback loop to produce different ratios of 

mRNA to RI-RNA depending on environmental conditions [19,20]. These single-gene 

studies show that RI-RNAs are sometimes fated for decay (or potentially unknown nuclear 

functions), but in other instances are reservoirs for rapid production of mature mRNA not 

limited by the rate of transcription activation and elongation (Figure 2a). As these papers 

illustrate, precursor-product relationships are essential determinants of whether RNAs are 

bona fide substrates of post-transcriptional splicing [18–20]. It is not sufficient to examine 

the mRNA to RI-RNA ratio in two cellular conditions, as changes in these conditions can 

also alter the co-transcriptional splicing efficiency.

Recent studies suggest that co-transcriptional splicing of multiple introns within single 

transcripts is coordinated. Long read sequencing, which sequences whole transcripts from 

the 5′ to 3′ end, revealed that introns in nascent RNAs that are still being transcribed by 

RNA polymerase II (Pol II) are spliced in an “all-or-none” fashion [21–23]. Other 
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sequencing methods have also revealed coordination of splicing between introns [24,25]. 

Analysis of chromatin-bound nascent RNAs through biochemical fractionation in 

Schizosaccharomyces pombe showed that ~35% of nascent RNAs are fully unspliced and 

are degraded by the nuclear exosome [21]. Coordinated splicing between neighboring 

introns was also observed in human K562 and Drosophila S2 cells [22]. Similarly, >75% of 

co-transcriptional RNAs in Arabidopsis are fully unspliced, and 5-10% of chromatin-bound 

poly(A) RNAs were also fully unspliced [23]. Whether fully unspliced nascent RNAs are 

eventually spliced or targeted for decay remains to be determined in different species, cell 

types and biological contexts. Additionally, whether these RNAs arise from similar 

mechanisms as those that produce RI-RNAs is unknown.

RI-RNAs shape developmental gene expression programs through 

alternative splicing and RNA decay

Programmed intron retention is used to control several developmental and stress-induced 

gene expression programs. In some cases, co-transcriptional splicing is inhibited leading to 

accumulation of RI-RNAs fated for decay, whereas in other developmental contexts post-

transcriptional splicing is used to activate reservoirs of RI-RNAs. In neocortical cells, 

mimicking synaptic stimulation with a GABAA receptor antagonist resulted in post-

transcriptional splicing and export of >200 RI-RNAs [26]. Another striking example of 

intron retention is seen during mouse spermatogenesis [27]. Here, hundreds of genes 

enriched for spermatogenesis-related functions are transcribed and produce RI-RNAs. These 

transcripts are sequestered in the nucleus for several days and eventually post-

transcriptionally spliced, exported, and translated. In other situations, production of RI-

RNAs is associated with gene repression. This repressive function is particularly prominent 

when comparing mouse embryonic stem cells before and after differentiation into neurons 

[6]. Genes important for neuronal function produce mRNAs in neuronal cells but RI-RNAs 

in mouse ES cells, whereas the converse is true for genes important for ES cells function 

(Figure 2b) [6]. Specific introns may be retained due to the differential expression of RBPs. 

For example, genes encoding presynaptic proteins produce RI-RNAs in ES cells due to the 

activity of Polypyrimidine Tract Binding Protein 1 (PTBP1, also known as hnRNP I) [7]. 

PTBP1 is repressed in neuronal cells, allowing these genes to produce functional mRNA [7]. 

Another example wherein dozens of genes are repressed by intron retention is during 

differentiation of myelocytes into granulocytes. Remarkably, re-expression of only one of 

these genes (Lmnb1) in the mRNA form instead of RI-RNA form results in alterations to 

granulocyte nuclear shape, size, and total granulocyte numbers [8]. Specific RI-RNAs are 

also observed during erythropoiesis, CD4+ T-Cell activation, heat shock, and in a variety of 

other cell types and conditions [28–32]. Taken together, these data strongly suggest that 

intron retention is widely used to regulate important genes in several biological contexts.

Bioinformatic and single-molecule approaches indicate that post-transcriptional splicing of 

RI-RNAs is linked to alternative splicing. Compared to introns that are constitutively 

spliced, retained introns are more likely than expected by chance to neighbor alternatively 

spliced exons, including cassette exons, mutually exclusive exons, alternative 5′ splice sites 

(5′SS) and 3′ splice sites (3′SS) [5,6]. Retained introns also have weaker 5′SS, 3′SS, and 
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polypyrimidine tracts, which are all features associated with alternative splicing [5,6,26,27]. 

Single-molecule fluorescence in situ hybridization (smFISH) experiments indicate that 

alternatively spliced exons are post-transcriptionally spliced more frequently than 

constitutive exons, meaning that transcripts are produced as RI-RNAs and then mature into 

mRNAs [33]. These data agree with metabolic labeling studies showing that alternative 

splicing occurs more slowly than constitutive splicing [34], and also with live-cell single-

molecule reporters demonstrating that introns with weaker splice sites are removed more 

slowly than introns with consensus splice sites [35]. The reduced efficiency and rate of 

alternative splicing likely allows for selection of downstream 5′SS and 3′SS, cassette exons, 

and mutually exclusive exons. If these exons were spliced quickly, the first transcribed splice 

sites would be much more likely to be used. Notably, post-transcriptionally retained introns 

are more evolutionarily conserved than constitutive introns, suggesting that their weaker 

splicing is functionally important [5].

Mammalian cells effectively prevent protein expression from RI-RNAs by promoting their 

decay and inhibiting their nuclear export. Cellular fractionation shows that RI-RNAs are 

primarily restricted to the nucleus in a variety of cell types [5,6,18,27]. RI-RNAs can be 

targeted for degradation by the nuclear exosome, a 3′-5′ exonuclease complex that operates 

through several pathways [7,19,36]. The exosome degrades some RI-RNAs by a pathway 

termed PABPN1 and Poly(A) Polymerase-mediated Decay (PPD) [36]. PPD employs 

Poly(A) Polymerases α/γ and PABPN1, the nuclear Poly(A) Binding Protein, to synthesize 

longer than average poly(A) tails, which precedes exosome-dependent decay [36]. PPD-

mediated degradation of RI-RNAs may also require ZFC3H1, an exosome-adapter protein, 

which functions in the same pathway as PABPN1 to degrade other nuclear transcripts [37]. 

Other RI-RNAs are degraded by the exosome utilizing distinct pathways. For example, 

neurogenesis-genes produce RI-RNAs in non-neuronal cells that are degraded through a 

pathway involving the exosome, the nuclear pore protein TPR and PTBP1, but not PPD 

components [7]. Apart from the exosome, the 5′->3′ exoribonuclease Xrn2 likely prevents 

the accumulation of unspliced RNAs by promoting co-transcriptional decay of unspliced 

pre-mRNAs [38]. Accumulation of unspliced RNAs was enriched in Xrn2 knockdown cells 

upon splicing inhibition. RI-RNAs are also not efficiently exported to the cytoplasm. This 

effect may be due to the presence of specific cis-acting sequences, such as 5′SS or 

polypyrimidine tracts, or due to association with splicing factors such as U1 snRNP, PTBP1 

and U2AF [7,39,40]. The splicing and export of RI-RNAs may also be influenced by other 

RBPs such as the SR proteins, a family of proteins with arginine- and serine-rich (RS) 

domains that function to couple transcription, splicing, and nuclear export [41]. The 

shuttling competence of some SR proteins has been shown to change during differentiation 

[42], which may influence which RI-RNAs are exported given that SR proteins bind to 

retained introns [43] and are known to promote export competence [44,45]. Finally, some 

RI-RNAs that escape nuclear retention and nuclear decay are repressed by NMD [6,8]. How 

the exosome-dependent decay pathways differentiate partially spliced RI-RNAs from fully 

spliced mRNAs is not fully understood [46]. Likely mechanisms may involve RI-RNAs 

association with spliceosomal snRNPs and intronic RBPs. Moreover, it is unclear whether 

the nuclear degradation rates of different RI-RNAs impacts their potential for post-

transcriptional splicing.
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Nuclear speckles are dynamic hubs of poly(A) RNA and RNA binding 

proteins

A long-standing focus of RNA biology has been to understand how membraneless nuclear 

compartments impact gene expression. Recently, biomolecular condensation has been 

identified as a contributing mechanism to the assembly of these compartments [11,47]. In 

the following section, we discuss nuclear speckles, which are biomolecular condensates that 

separate from the surrounding nucleoplasm through liquid-liquid phase separation [9,10]. 

Nuclear speckles are highly enriched in dozens of RBPs that not only include spliceosomal 

snRNPs, but also other splicing factors such as the SR proteins and SR-like proteins (e.g. 

SON, SRRM1, SRRM2), transcription factors, cleavage and polyadenylation proteins, and 

mRNA export proteins (Figure 3a–b) [14–16]. Strikingly, nuclear speckles also contain very 

high concentrations of poly(A) RNA (Figure 3c) that exchanges rapidly between nuclear 

speckles and the surrounding nucleoplasm [17,48,49]. In addition to the spliceosomal 

snRNAs and poly(A) RNA, nuclear speckles contain the metastasis-promoting long non-

coding RNA (IncRNA) MALAT1, the levels of which affects speckle size [50,51]. High-

resolution imaging revealed that SR proteins form the core of nuclear speckles, with snRNPs 

and MALAT1 closer to the periphery and poly(A)+ RNA defining a broader region [50]. 

Nuclear speckles have also been called interchromatin granule clusters in reference to their 

appearance in transmission electron micrographs and are found in almost all metazoan cell 

types; interphase nuclei typically contain 20-50 speckles that are each ~0.5 μm in diameter 

[12,13]. Together, the composition and dynamics of nuclear speckles suggest that they affect 

mRNA biogenesis, processing, and export. Substantial debate has centered around roles for 

nuclear speckles as RBP storehouses versus active sites of mRNA biogenesis [12,13]. We 

favor an active function for nuclear speckles rather than a long-term storage function, 

because quantitative imaging studies show that poly(A) RNA freely diffuses between 

speckles and nucleoplasm, and RBPs have similar mobilities in nuclear speckles and at 

active transcription sites [48,49,52,53].

Evidence that proximity to nuclear speckles increases gene expression 

through co-transcriptional and post-transcriptional mechanisms

Several studies suggest that proximity to nuclear speckles increases gene expression by 

promoting transcription, co-transcriptional splicing, and post-transcriptional splicing, all of 

which can affect the mRNA to RI-RNA ratio (Figure 4). Three different methods for 

analyzing chromatin compartments genome-wide showed that active genes (compartment A) 

are highly enriched proximal to nuclear speckles, whereas repressed genes (compartment B) 

are more distant from speckles [54–56]. These studies have been extensively reviewed 

elsewhere [57]. Additionally, recent work by Su et al. used multiplexed error-robust FISH 

(MERFISH) to image hundreds of nascent RNAs, genomic loci, and nuclear speckles in 

single cells, and found proximity to nuclear speckles correlated with higher transcriptional 

bursting activity and compartment A genes [58]. Consistent with speckles promoting 

transcription, intronless genes produce significantly more transcripts when proximal to a 

nuclear speckle [59,60]. However, nuclear speckles may also directly affect co-

transcriptional and post-transcriptional splicing. Using smFISH to analyze splicing 
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efficiency at active transcription sites in single cells, it was shown that an individual gene’s 

splicing efficiency directly correlated with both transcriptional activity as well as its 

proximity to nuclear speckles, supporting a role for speckles in co-transcriptional splicing 

[61]. Other studies using smFISH revealed that post-transcriptionally spliced GFP reporter 

constructs and Influenza virus MS1 transcripts localize nearby to or within nuclear speckles 

[33,62]. RNAs are targeted to speckles through several types of cis-acting sequences that 

affect splicing, including SR protein binding sites and functional 5′SSs and 3′SSs [63,64]. 

Moreover, global inhibition of splicing results in the localization of poly(A) RNA (which is 

by definition post-transcriptional) almost exclusively to speckles and away from 

nucleoplasm [65,66], suggesting that speckles are quality-control centers that detain RI-

RNAs until splicing is completed. Further testing this idea will require splicing analyses in 

mutants that fully or partially eliminate nuclear speckle assembly [67].

Consistent with a global function of speckles in splicing, catalytically active spliceosomes 

are also highly enriched in nuclear speckles compared to nucleoplasm [68]. Compared to 

constitutively spliced exons, alternatively spliced exons have increased association with the 

MALAT1 IncRNA present in nuclear speckles [69], and are also more likely to be spliced 

post-transcriptionally and associated with intron retention [5,6,33,35]. These observations 

suggest that proximity to nuclear speckles correlates with increased co-transcriptional and 

post-transcriptional splicing. Nuclear speckles are also likely associated with assembly of 

export-competent mRNPs and not RNA decay, because global inhibition of mRNA nuclear 

export enhances poly(A) RNA localization to nuclear speckles [64]. Intriguingly, nuclear 

speckles promote export-competence irrespective of splicing. Both microinjected and 

endogenous intronless mRNAs transit through nuclear speckles to gain export-competence 

by associating with SR proteins and the TREX complex [63], both of which couple 

transcription, processing, and export [14,44,64,70]. The exosome is excluded from nuclear 

speckles, suggesting that speckle-proximal RNAs are less likely to be degraded [50]. 

Consistent with these ideas, recent work has demonstrated that the elongating form of Pol II 

directly associates with nuclear speckles in vivo and splicing factor condensates in vitro, 

whereas the initiation form of Pol II instead associates with transcriptional condensates [9]. 

Thus, condensate specificity may affect the proteomic environment of mRNA biogenesis, 

and proximity to nuclear speckles affects the biogenesis and fate of mRNAs and RI-RNAs 

through co-transcriptional and post-transcriptional mechanisms. In the future, it will be 

important to determine the molecular mechanisms that govern the biochemical activities 

proximal to or distal from speckles and how the dynamics of condensates allow for changes 

in transcription and splicing in response to cell physiology.

Outlook

Intron retention is clearly a significant determinant of gene expression, leading to several 

outcomes on a per transcript basis. RI-RNAs can either provide reservoirs for rapid mRNA 

expression or can decrease gene expression by triggering decay. Conversely, the biogenesis 

and fate of recently discovered fully unspliced RNAs are not well understood. How cells 

access these regulatory mechanisms for specific or complete intron retention, and how 

unspliced RNAs are post-transcriptionally regulated by cis-acting sequences and RNA-

binding proteins are pressing questions. For example, whether RI-RNAs are bound to 
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preassembled, potentially stalled spliceosomes pending catalysis is unknown. Alternatively, 

spliceosome assembly would have to be initiated de novo on retained intron-exon junctions 

entirely post-transcriptionally. Given the influence of the chromatin environment on co-

transcriptional splicing [2], post-transcriptional splicing may be subject to different 

mechanisms of regulation. Although microinjected adenovirus pre-mRNAs form splicing 

precursors that localize to nuclear speckles [71], it is unclear if this extends to endogenous 

RI-RNAs. Additionally, it is important to determine quantitatively the fraction of alternative 

splicing events that occur co- vs. post-transcriptionally, and proximal to or distal from 

condensates such as nuclear speckles. Advances in single molecule techniques, metabolic-

labeling strategies, and long-read sequencing pipelines will better distinguish between co- 

and post-transcriptional splicing events and help elucidate how cells use intron retention to 

fine-tune gene expression programs. Recent work in mouse P19 cells has shown that some 

RI-RNAs are exported to the cytoplasm and can escape NMD [43], and mass spectrometry 

of melanoma tumor cells showed that RI-RNAs are translated and are a source of 

neoepitopes presented on MHC type I [72]. Although the biological relevance of these 

RNAs and neoepitopes is not fully understood, ribosome profiling and genetic screening of 

intronic sequences could elucidate roles for cytoplasmic RI-RNAs. Likewise, mRNA fate 

regulation by nuclear speckles is not precisely defined and will require conditional removal 

of nuclear speckles in otherwise wild-type cells. Although MALAT1, SON, and SR proteins 

are known structural components of speckles, knockdown of these factors individually only 

results in speckle disorganization, not disassembly [51,73–75]. A promising direction for 

this line of research comes from the recent finding that combined knockdown of SON and 

SRRM2 causes near complete speckle disassembly, as does knockdown of SON along with 

deletion of SRRM2’s intrinsically disordered domain [67]. It is worth noting that RNA 

splicing and export in D. melanogaster and C. elegans is promoted by association with 

nuclear pores, highlighting differences in nuclear architecture between species [76–78]. 

Furthermore, comparing the relative activities of RNA binding proteins in the nucleoplasm 

and in nuclear speckles, as well as determining the extent of transcription, splicing, and 3′-
end processing within and outside of speckles, may shed light on the role of speckles in 

coordinating pre-mRNA synthesis and processing.
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Highlights

• Intron retention is a widespread feature of mammalian gene expression 

programs.

• Retained introns are associated with post-transcriptional alternative splicing.

• Unspliced RNAs are repressed through nuclear retention and RNA decay.

• Proximity of genes to nuclear speckles boosts transcription, co-transcriptional 

splicing, and post-transcriptional splicing.
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Figure 1: 
A variety of potential products can be derived from synthesis and processing of a single pre-

mRNA, including post-transcriptional RNAs with retained introns. Introns are depicted as 

thinner black bars spaced between the thicker, colored exons. Co-transcriptional RNAs are 

elongating, depicted by rightward-facing arrows whereas post-transcriptional RNAs have 

been cleaved and polyadenylated. Retained introns are often flanked by alternatively spliced 

exons (orange) compared to constitutively spliced exons (blue).
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Figure 2: 
RI-RNAs can be post-transcriptionally spliced or targeted for decay. (a) RI-RNAs can be 

post-transcriptionally spiced and exported upon cell signaling, developmental transitions, or 

stress response. In contrast, other RI-RNAs can be degraded through exosome-dependent 

mechanisms. (b) Intron retention serves as a mechanism to regulate gene expression. The 

ratio of mRNA to RI-RNA is altered to regulate gene expression in specific cell types.
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Figure 3. 
Structured illumination microscopy images of nuclear speckles adapted with permission 

from the Journal of Cell Science, Fei et al. (2017) [50]. (a) Shown here are nuclear speckle 

components including the MALAT1 lncRNA, the SR-like protein SON, and many SR 

proteins detected by the SC35 antibody. SON and SC35 are in the nuclear speckle interior 

whereas MALAT1 is closer to the periphery. (b) U1 and U2 snRNAs localize to the 

periphery of nuclear speckles, outside of SC35. (c) Poly(A) RNA is highly enriched in 

nuclear speckles. White scale bars: 5 μm. Black scalebar of insets: 1 μm.
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Figure 4: 
Model of nuclear speckle functions: Proximity to speckles results in increased transcription, 

splicing, and export-competence. The diagram depicts a model in which nuclear speckle-

proximal genes are highly expressed and their RI-RNAs are able to diffuse into speckles for 

post-transcriptional splicing and export, whereas speckle-distant genes are lowly expressed 

and their RI-RNAs are fated for decay. Not depicted but discussed in the text is the idea that 

nuclear speckles also promote co-transcriptional splicing.
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