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a b s t r a c t 

Coronavirus disease 2019 (COVID-19) is largely threatening global public health, social stability, and econ- 

omy. Effort s of the scientific community are turning to this global crisis and should present future pre- 

ventative measures. With recent trends in polymer science that use plasma to activate and enhance the 

functionalities of polymer surfaces by surface etching, surface grafting, coating and activation combined 

with recent advances in understanding polymer-virus interactions at the nanoscale, it is promising to 

employ advanced plasma processing for smart antiviral applications. This trend article highlights the in- 

novative and emerging directions and approaches in plasma-based surface engineering to create antiviral 

polymers. After introducing the unique features of plasma processing of polymers, novel plasma strategies 

that can be applied to engineer polymers with antiviral properties are presented and critically evaluated. 

The challenges and future perspectives of exploiting the unique plasma-specific effects to engineer smart 

polymers with virus-capture, virus-detection, virus-repelling, and/or virus-inactivation functionalities for 

biomedical applications are analysed and discussed. 

© 2021 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

1

(

i  

r

c

t

d

P

O

t

n

t

m

M

n

p

M

e

a

s

T

i

h

0

. Introduction 

Ever since the first outbreak of coronavirus disease 2019 

COVID-19) in December 2019, it took just a few months before 

t was declared a global pandemic in March 2020 [ 1 , 2 ]. Despite
Abbreviations: COVID-19, coronavirus disease 2019; SARS-CoV-2, severe acute 

espiratory syndrome coronavirus 2; PPE, personal protective equipment; DC, direct 

urrent; MW, microwave; WCA, water contact angle; PC, polycarbonate; PTFE, poly- 

etrafluoroethylene; PP, polypropylene; PECVD, plasma-enhanced chemical vapour 

eposition; HMDSO, hexamethyldisiloxane; CF 4 , tetrafluoromethane; H 2 , hydrogen; 

DMS, polydimethylsiloxane; RSV, respiratory syncytial virus; RV, rhinovirus; TEOS- 

 2 , tetraethyl orthosilicate and oxygen; IPNpp, plasma polymerized isopentyl ni- 

rite; PET, polyethene terephthalate; REF, reference; RONS, reactive oxygen and 

itrogen species; NO, nitric oxide; ACE2, angiotensin-converting enzyme 2; �D, 

he variation of the dissipation; �f, the frequency shift; PFM, pentafluorophenyl 

ethacrylate; PS, polystyrene; BSA, bovine serum albumin; RF, radio frequency; 

ERS-CoV, middle east respiratory syndrome; PVC, polyvinyl chloride; SEM, scan- 

ing electron microscopy; PEG, polyethene glycol; RT-PCR, reverse transcription- 

olymerase chain reaction; HBV, hepatitis B virus; UV, ultraviolet. 
∗ Corresponding authors. 

E-mail addresses: 1281423490@qq.com (X. Dai), rino.morent@ugent.be (R. 

orent). 
1 These authors contributed equally. 
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normous effort s dedicated to COVID-19 control, many countries 

re still suffering from the ongoing local transmission with a per- 

istent threat to the public health, social stability, and economy. 

he current pandemic is caused by a novel human coronavirus that 

s named severe acute respiratory syndrome coronavirus 2 (SARS- 

oV-2) [3] . Although not all mechanisms responsible for the spread 

f the virus are already fully understood, it is believed that cur- 

ent known routes for many other viruses are also applicable. Sim- 

lar to other viruses, SARS-CoV-2 spreads through virion-laden res- 

iratory droplets, direct contact, airborne aerosols, and contami- 

ated surfaces [ 4 , 5 ]. It is worth noting that surfaces in hospital

ooms of infected patients such as floors, bedside lockers, car- 

iac tables, and electric switches were found to contain coron- 

virus particles [ 6 , 7 ], which could be responsible for the nosoco- 

ial outbreak at the early stage of the pandemic [8] . Moreover, 

revious studies have demonstrated that various viruses, includ- 

ng SARS-CoV-2, can remain viable and infectious in aerosols for 

ours and on surfaces including plastics, stainless steels, copper, 

nd card-boards up to days [ 9 , 10 ], suggesting that surfaces such 

s food packages, clothes, transports, and building elements could 

lso impose potential threats during the pandemic period. In re- 

ponse, these high-touch surfaces are thus needed to be able to 
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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) capture, b) detect, c) repel, and/or even d) inactivate viruses to 

rovide humans with the necessary protection from viral disease 

nfection. It is imperative to develop and fabricate antiviral sur- 

aces for an effective reduction and prevention of the spread of the 

urrent COVID-19 and for the prevention of the outbreak of future 

ovel virus-related pandemics. 

In particular, the COVID-19 crisis has raised the global need for 

he specialized polymeric materials for personal protective equip- 

ent (PPE) and virus-detection devices as they are indispensable 

t the forefront of fighting against SARS-CoV-2 and other infec- 

ious diseases. However, the commonly used polymeric materials 

enerally lack sufficient antiviral properties thus making front-line 

ealth-care workers vulnerable of being infected [11] . In litera- 

ure, one of the particularly crucial strategies to control infectious 

iseases is to exploit modern surface modification techniques to 

reate multifunctional materials with the desired ability to miti- 

ate the spread of infectious pathogens [12–14] . Considerable re- 

earch in the past decade has been conducted to combat bacterial 

athogens by antibacterial agent release, contact-killing, as well as 

nti-adhesion and bacteria-repelling surfaces [ 15 , 16 ]. However, lit- 

rature for a systematic study on broad-range antiviral surfaces is 

till scarce. Several reviews regarding antiviral surfaces have fo- 

used on either the performance of various antiviral agents or the 

irus-inactivation therapeutic tools [17–20] , but they generally fo- 

us on the specific surface engineering methods for engineering 

ntiviral surfaces. There is an emerging trend in developing inno- 

ative antiviral surfaces based on the well-established antibacterial 

xperience in the scientific community [17] . In this regard, high- 

ighting an effective and promising surface engineering technique 

ould thus be of critical importance for accelerating the related 

tudies. 

This trend article aims to highlight the state-of-the-art in the 

evelopment of antiviral surfaces using the diversified functionali- 

ies of the low-temperature plasma technology in polymer surface 

ngineering. Both focus and scope of this article differ from the 

vailable publications on the intrinsic (e.g. natural or biomimetic) 

ntiviral polymers used as antiviral therapeutics [21] and on 

lasma methods for surface functionalization of polymers [22] , 

lasma surface chemistry [23] , and antibacterial surface modifica- 

ion [ 24 , 25 ]. The distinctive feature of this article is in the sys-

ematic discussion of the possibility of processing common poly- 

ers with antiviral properties by plasma-based methods. Con- 

idering the virus as an object with a characteristic size at the 

anometres scale, one could use nanoscale structuring and func- 

ionalization of polymer surfaces to prevent the spread of viruses. 

s indicated in Fig. 1 , plasma structured and functionalized poly- 

ers with nanoscale features can be used for protecting humans 

rom virus infection by various antiviral strategies mainly includ- 

ng blocking the source of virions, breaking the spread pathways, 

nd protecting the susceptible hosts. Novel advances in plasma sur- 

ace engineering make the antiviral process non-toxic and environ- 

entally friendly. As a result, a healthier living and working envi- 

onment can be established that offers holistic solutions to people 

ith compromised or weakened immune systems. 

. Unique features of plasma processing of polymers 

Plasma is an ionized quasi-neutral gas known as the “fourth 

tate of matter” that consists of various charge carriers such as 

lectrons, ions, and reactive radicals. Among a variety of plasmas, 

on-thermal plasmas have been highly successful in the effective 

urface modification of polymeric materials for biomedical appli- 

ations [26] . 

Generally, by taking advantage of high-energy particles in plas- 

as, several common approaches of plasma-enabled physical and 

hemical surface modifications can be determined as (i) plasma 
2 
magnetron) sputtering; (ii) plasma etching; (iii) plasma activation; 

nd (iv) plasma-assisted deposition, etc. The schematic representa- 

ion of various types of approaches for plasma processing of poly- 

er surfaces is shown in Fig. 2 . Typically, plasma sputtering has 

een widely applied for the deposition of hard metallic and non- 

etallic coatings on flat materials [27] . Plasma etching has been 

idely used for the engineering of desired surface morphology 

ith precise control at the nanoscale [28] . In contrast, plasma acti- 

ation and plasma-assisted deposition processes can be employed 

or tailoring special surface chemistry combined with controlled 

urface morphology [ 22 , 29 ]. 

Importantly, these processes are versatile and can be oper- 

ted in broad process parameter windows including the frequen- 

ies of plasma power (e.g., from direct current (DC) to microwave 

MW) and lasers), electrode configurations, gas pressures from ul- 

rahigh vacuum to atmospheric, and spatial scales from atomic to 

esoscales [ 30 , 31 ]. Therefore, plasma surface processing allows the 

abrication of polymers to be scalable to almost any level with pre- 

ise control over surface morphology and chemical composition. 

oreover, the plasma-based approach is well-known as a solvent- 

ree technique, which is regarded as one of the most promising en- 

ironmentally friendly methods as an alternative to conventional 

et chemistry. The high-speed, stability, repeatability, low-cost, 

nd no damage to the bulk characteristics of treated polymers are 

lso vital advantages over other conventional surface modification 

ethods [32–34] . 

With recent advances in nanostructured biomaterials, these 

lasma methods have collectively emerged as an extremely ef- 

cient nanofabrication toolbox for polymer surface processing in 

iomedicine such as controlled drug release [33] , tissue engi- 

eering scaffolds [35] , and antibacterial surfaces [36] . Accordingly, 

lasma processing of polymers is expected to be one of the truly 

nique tools in the nanofabrication of antiviral materials under 

he current COVID-19 pandemic caused by the SARS-CoV-2. Di- 

erse plasma-based nanofabrication methods make it possible to 

rovide sufficient flexibility to target viruses such as SARS-CoV-2. 

hese viruses can be considered as core-shell particles with rel- 

tively fast mutations [37–40] . The specific targets in this regard 

nclude disrupting the spread pathways and affecting the surface- 

irus interactions [4] . 

. Plasma processing of polymers to impart them with 

ntiviral properties 

Central to plasma processing of polymers to impart them with 

ntiviral properties is the enhancement of nanotexture formation, 

unctional groups grafting, and composite coating growth with tar- 

eted surface-virus interactions. This article aims to highlight the 

ain strategies and the most relevant recent trends in plasma- 

ssisted processing of polymer surfaces that can enable polymers 

ith antiviral properties. Therefore, some of the most relevant 

lasma-engineered polymer surfaces that could be extended for 

ntiviral applications are selected and discussed below. The sub- 

ections below represent the key strategies of plasma antiviral 

unctionalization of polymer surfaces, namely surface morphology 

 Section 3.1 ), surface chemistry ( Section 3.2 ), and composite coat- 

ngs ( Section 3.3 ). 

.1. Plasma processing of surface morphology 

In the last decade, considerable progress has been achieved in 

recise control of surface morphology by different plasma meth- 

ds, including plasma etching [ 41 , 42 ], plasma sputtering [43] , and

lasma-assisted deposition [44] . The surface properties such as 

ettability, adhesion, and mechanical performance that are highly 

ensitive to surface morphology can thus be precisely tailored to 
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Fig. 1. Graphic summary of options for plasma structured and functionalized polymer surfaces with nanoscale features to be used for protecting humans from viral infections. 

Plasma processing can be used to functionalize the high-touch surfaces, e.g., food packages, PPE, and some high-traffic objects such as doors and curtains in transports, 

homes, offices, and hospitals to protect people from getting infected. Moreover, plasma functionalized surfaces are promising to be used in smart antiviral applications, e.g., 

new virus biosensors with enhanced detection performance and novel self-sanitizing surfaces which involve some of the key antiviral processes including virus-capture, 

virus-detection, virus-repelling, and/or virus-inactivation. All these antiviral strategies meet the requirements of controlling infectious viral diseases by blocking the sources 

of virions, breaking the spread pathways, and protecting the susceptible hosts. 
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eet the high demand of desired applications in biology, energy, 

nd electronics [28] . For virus-related applicatons, the virus-laden 

espiratory fluid aerosols or droplets can range from < 10 μm to > 

00 μm in diameter (taking influenza A viruses as examples) [45] . 

owever, a virus is typically in the range of tens to hundreds nm 

n size, while the size of its features (such as viral spikes or bind-

ng domains) is much smaller that is in tens nm range. Accordingly, 

he antiviral surface response for targeting should be presented at 

he scales from nanometres to micrometres and even to millime- 

res when the prevention of virus spread pathways is tackled. 

Recent theoretical and experimental studies have suggested that 

he key to control respiratory virus transmission is to control the 

irus-containing aerosols or water droplets instead of the virus it- 

elf only [ 4 , 46–48 ]. Moreover, a positively charged nanofibrous mi- 

rofiltration membrane with hydrophilic properties functionalized 

y wet chemistry processes has demonstrated virus filters with en- 

anced performance that can meet the specific needs in the pu- 

ification of contaminated water [49] , showing the potential in the 

revention of human exposure even if aerosols or water droplets 

ere generated from the water [50] . Therefore, surfaces with the 

esired wettability can play a crucial role in controlling virus ac- 

ivities. More specifically, the use of hydrophilic surface function- 

lization with water contact angle (WCA) less than 3 ° has ensured 

he collapse of aspirated water droplets containing the MS2 bacte- 

iophage virus as shown for a bi-functional nano-composite coat- 

ng on a porous Nomex® fabric by a dip-coating method [51] . The 

tudy [51] has demonstrated that superhydrophilic fabric can be 

sed to separate the viruses from virus-containing water droplets 

nd prevent viruses from spreading in water droplets over a long 

istance. Furthermore, a recent model has shown that superhy- 

rophilic surfaces could be used to reduce the dry time of the 

irus-containing water droplets, and in the case of N95 mask/PPE 

odywear, a reduction in WCA to 10 ° can reduce the risk of getting 

OVID-19 infection by around 38% [52] . It has to be emphasized 

hat desiccation is an effective way for virus-inactivation as many 

urvival activities of viruses such as the assembly of membrane bi- 

ayers for the enveloped viruses could not maintain without wa- 

er [53] . Superhydrophilic surfaces are thus important during pan- 

emics such as COVID-19 to replace the mass use of chemical dis- 
3 
nfection solutions that could cause environmental pollution. How- 

ver, relatively little effort has been devoted to this field whereas 

uperhydrophilic surfaces specifically designed for antiviral appli- 

ations can be used as a complimentary approach to chemical dis- 

nfection. 

On the other hand, plasma technologies have been widely used 

or tailoring surface wettability of polymer surfaces, which pro- 

ides ideal tools for relevant studies. Representative examples 

f plasma nanotexturing polymer surfaces with superhydrophilic 

roperties are present in Fig. 3 (a) [54] . A forest of nanopillars 

ith a number density of 39 ± 8 μm 

−2 on polycarbonate (PC) sur- 

ace can be observed at 20 min of 100 W oxygen plasma surface 

tching which induced a pronounced hydrophilic behaviour with 

alues of 12 ° and 3 ° on the surface for the advancing and reced- 

ng WCA, respectively. It is worth noting that such plasma etched 

olymer surfaces were subjected to a typical hydrophobic recovery 

ith advancing WCA reaching 78 ° and receding WCA reaching 19 °
t 21 days after the processing [54] . However, when it was cov- 

red by a thin layer of the silica-like coatings by plasma-assisted 

eposition, the advancing WCA and receding WCA were slightly 

hanged to 4 ° and 2 °, respectively, and the superhydrophilicity of 

he covered coating was preserved for as long as 5 months [54] , 

hich is promising for practical applications. 

Likewise, superhydrophobic surfaces with the abilities to re- 

el water droplets could also be targeted in some practical an- 

iviral applications [55] . Recently, superhydrophobic surfaces with 

iral repellence properties have been achieved using polytetraflu- 

roethylene (PTFE) nanoparticles by a wet chemistry approach 

hrough thermal sintering in a liquid phase to polypropylene (PP) 

icrofibers [56] . The coated textiles reduce the attachment of ade- 

ovirus type 4 and 7a virions by 99.2 ± 0.2% and 97.6 ± 0.1% (2.10 

nd 1.62 log), respectively, as compared with the non-coated con- 

rols. The outstanding performance can be attributed to the Cassie- 

axter state of wetting, a state where a liquid drop is located on 

op of a surface’s rough features and traps pockets of gas between 

hese features, leading to a very high WCA greater than 150 ° and a 

ery low WCA hysteresis below 10 ° with water repellent and self- 

leaning characteristics [ 57 , 58 ]. However, the environmental pol- 

ution level during the fabrication steps using solvents as used in 
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Fig. 2. Schematic representation of typical approaches for plasma processing of polymers. (a) plasma (magnetron) sputtering, (b) plasma etching (taking reactive ion etching 

as an example), (c) plasma activation (in atmospheric-pressure open-air), and (d) plasma-assisted deposition. 

[

l

d

r

i

t

i

t

t

f

p

a

p

r

p

p

a

t

i

l

t

m

q

i

t

i

n

t

o

n

(  

o

h

m

s

c

f

p

s

r

a

c

i

56] are quite high. Moreover, a recent study has shown that the 

aser-fabricated graphene-coated masks with outstanding superhy- 

rophobic and photo-thermal performance are self-cleaning and 

eusable after sunlight sterilization [59] . However, such a method 

s very costly and only applicable at a small-scale without perspec- 

ive for industrial-scale application, and more importantly, laser- 

nduced surface modification of polymers may cause bulk damage 

o the material. 

Plasma fabricating methods , on the other hand, are viable al- 

ernatives to the laser-based approaches. Superhydrophobic sur- 

aces can be achieved by oxygen plasma etching combined with 

lasma-enhanced chemical vapour deposition (PECVD) using hex- 

methyldisiloxane (HMDSO) as the precursor ( Fig. 3 (b)) [60] . Im- 

ortantly, the surfaces are also in a Cassie-Baxter state, which can 

esult in sharp bouncing when hit by water droplets at high im- 

act velocity (see Fig. 3 (b) (iii)) [60] . Such surfaces prepared by 

lasma methods represent a class of polymers with water repellent 

nd self-cleaning characteristics [61] and can theoretically be used 

o repel those respiratory viruses such as the above-mentioned 

nfluenza A and SARS-CoV-2 that mainly spread through virion- 

aden droplets. These polymer surfaces should be of high impor- 

ance for medical equipment, protective clothes, and respiratory 

asks [55] . 
4 
Plasma engineered nanopatterned surfaces. In many cases, the re- 

uired morphology of a surface for many advanced applications 

s inspired by nature where nanotexturing of the materials is of- 

en a case for plants, animals, and insects [64] . The new trends 

n mimicking biological surfaces have led to the development of 

ovel surfaces with unique properties. It has been reported that 

he topography of dragonfly wing surfaces has a bactericidal effect 

n Escherichia coli [65] . Similar behaviour of plasma engineered 

anopatterned surfaces has been obtained by tetrafluoromethane 

CF 4 ) / hydrogen (H 2 ) plasma texturing on a Si surface [66] . More-

ver, some biomimetic plasma nanopatterned polymer surfaces 

ave been demonstrated to convey bactericidal efficacy [67] . The 

echanisms of bactericidal activity are mainly attributed to the 

tressing mechanical killing by nanostructured surfaces, known as 

ontact-killing [ 68 , 69 ]. Despite the well-studied antibacterial ef- 

ects, experimental evidence of the antiviral functionality of such 

olymer surfaces is rare. Viricidal effect of nanotexturing polymers 

hould be investigated in the future. 

Considering the difference between the bacteria and viruses 

egarding the structure and size, the requirement on the size 

nd density of the nanostructured polymers for disabling viruses 

an be very high. Plasma fabrication can provide high flexibil- 

ty in polymer morphology for subsequent research on antivi- 
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Fig. 3. Representative examples of plasma processing of polymers with controlled surface morphologies. (a) Superhydrophilic PC surface prepared by plasma etching. The 

scale bar is 1 μm. [54] , Copyright 2011. Adapted with permission from John Wiley & Sons Inc. (b) A Cassie-Baxter state robust superhydrophobic PC surface obtained by 

oxygen plasma etching combined with PECVD using HMDSO as the precursor:(i) Surface morphology, (ii) WCA image showing WCA > 170 °, and (iii) the sharp bouncing 

behaviour when hit by 3 μL water droplets at an impact velocity of 1.1 m/s. The scale bars in (i) and (iii) are 1 μm and 1 mm, respectively. [60] , Copyright 2014. Adapted 

with permission from Elsevier. (c) Plasma etching of polymer nanowires with controlled density and length. The figure shows examples of Kapton nanowires by covering 

the initial surface with 15 nm Au before plasma treatment. The scale bar is 1 μm. [62] , Copyright 2009. Adapted with permission from the American Chemical Society. (d) 

Surface morphologies of ZnO nanowires grown on channel diffused plasma modified regions of PDMS substrate at different magnifications. The scale bars are 2 μm. [63] , 

Copyright 2012. Adapted with permission from the Royal Society of Chemistry. 
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al activities. For example, plasma-assisted methods of deposi- 

ion can provide sufficient flexibility in the fabrication of dense 

olymer nanowires with a typical length up to 7-8 μm [70] . 

ne-step plasma etching of polymer films covered with a thin 

ayer of metal nanoparticles has been demonstrated to fabricate 

arge-scale polymer nanowire arrays of any organic materials with 

easonable control over the density and length ( Fig. 3 (c)) [62] . 

etal oxide nanowires can be fabricated using oxygen plasma site- 

elective surface modification combined with wet chemistry on 

olydimethylsiloxane (PDMS) surfaces with desired control over 

he growth position ( Fig. 3 (d)) [63] . 

Recently, it has been reported that 23 nm wide nanostructures 

andomly aligned as ridges on aluminium surfaces engineered by a 

et etching technique exhibited both antibacterial and antiviral ef- 

ects that are promising for clinical applications [71] . In the study 

71] , common respiratory viruses, respiratory syncytial virus (RSV) 

nd rhinovirus (RV) have been tested on the fabricated nanoscale 

urfaces, and the surfaces have significantly reduced the amount 

f viable RSV recovered as compared with the control surfaces. 

he structured surfaces were more effective in preventing RV than 

SV infection. In the case of RV, there was a 3 −4 log reduction

bserved in viable viruses after 24 h, showing the ability of the 

anosurfaces to reduce the potential for surface contact transmis- 

ion of diseases [71] . Even though it is extremely difficult to ex- 

loit such kind of wet etching technique to nanotexture the widely 

sed polymeric materials in the desired manner as it is hard to 

ontrol and may contaminate the treated polymers [72] , the study 

71] provides evidence about the viricidal effect of nanostructured 

urfaces. Therefore, we believe that the versatile plasma fabrica- 

ion approaches with controllable properties could play a vital role 

n fabricating similar or even better nanopatterned polymeric an- 

iviral surfaces, and the relevant studies should be carried out im- 

ediately. 

It should be noticed that the mechanism of virus reduction is 

till unclear. One possible mechanism can be similar to the bac- 

ericidal effect of nanostructured surfaces. We can thus infer that 

lasma-fabricated nanowires deposited on a polymer surface could 
b

5 
ave certain antiviral efficiency if their sizes and dimensions could 

atch the characteristic dimensions of the viruses. Another pos- 

ible mechanism is attributed to the physical adsorption of viruses 

n surfaces, as the process is a function of surface area and surface 

ctivity [51] . 

It should also be emphasized that bacterial infection is a typical 

omplication of viral infections [ 73 , 74 ]. Therefore, surfaces com- 

ined with both bactericidal and viricidal effects are necessary and 

an be fabricated using plasma-based approaches that could result 

n multifunctional polymers. 

There is no doubt that current advances in fabricating the de- 

ired wetting and nanopatterned polymer surfaces as antiviral ma- 

erials are not sufficient and many observed effects are not yet 

ully understood. There is a trend and a strong need to employ 

ersatile plasma techniques to tailor surface morphology to tar- 

et viruses including the novel COVID-19 type. More specifically, 

he wettability control for desiccating or repelling virus-containing 

roplets and the nanostructured surface interactions with viruses 

hould be one of the foci in both plasma technology and polymer 

cience. 

.2. Plasma processing of surface chemistry 

Plasma methods of processing polymer surfaces can target the 

orphology of the polymers and provide a convenient way to reg- 

late the chemical composition of the surfaces, which may play a 

rucial role in the development of a new class of antiviral materi- 

ls. Variation of the polymer surface chemistries by plasma func- 

ionalization can result in surface properties with the desired wet- 

ability and specific functional groups without altering mechanical 

roperties. 

As discussed in Section 3.1 , the control of surface wettability 

s one of the important antiviral strategies. Targeted surface wet- 

ability can also be achieved by tailoring surface chemistry using 

lasma approaches. As it is known, surface hydrophilicity induced 

y plasma activation generally shows a hydrophobic recovery that 
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Fig. 4. Representative examples of plasma engineering polymers with controlled surface chemistries. (a) Superhydrophilic surfaces by plasma-polymerized TEOS- 

O 2 /CH 4 /PDMS with long-term stability. The inset shows WCA ~ 0 ° and the scale bar shows 1 μm. [75] , Copyright 2012. Adapted with permission from Elsevier. (b) One-step 

production of rough superhydrophobic plasma coatings with WCA = 167 ° using He gas plasma containing 0.3 vol % benzene + cyclohexane (8:2) mixture on a flat Si wafer 

substrate. The scale bar shows 300 nm. [81] , Copyright 2011. Adapted with permission from the American Chemical Society. (c) Bacterial proliferation in REF sample (i) and 

the NO release coating produced by IPNpp (ii) after 14 h incubation. Scale bars show 200 μm. [85] , Copyright 2015. Adapted with permission from the Royal Society of 

Chemistry. 
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s caused by the reorganization of chemical polar groups to mini- 

ize the surface energy. 

Multi-layer plasma depositions , however, can be considered as 

ne of the most promising strategies that can overcome such 

roblems. Fig. 4 (a) shows the stable superhydrophilic surfaces 

abricated by such multi-layer plasma depositions [75] . In [75] , 

he hydrophobic PDMS block firstly covered by a layer of CH 4 

lasma coating was then overlaid by a hydrophilic SiO x layer us- 

ng tetraethyl orthosilicate and oxygen (TEOS-O 2 ) precursors. This 

pproach provided superhydrophilic properties of the polymer sur- 

ace for over 28 days. The highly cross-linked hydrocarbon layer 

cted as a physical barrier between the bare PDMS surface and the 

ydrophilic layer, which possibly hindered the reorganization and 

igration of chemical polar groups and resulted in the surface that 

emained stable over a long time. 

Similarly, stable superhydrophilic surfaces can also be obtained 

y Ar plasma post-treatment of plasma polymerized HMDSO coat- 

ngs in the atmospheric-pressure roll-to-roll system that is promis- 

ng to be scaled-up for industrial applications [76] . It is worth em- 

hasizing that due to the diversities of plasma reactor configura- 

ions [77] , it is promising to integrate the existing or newly de- 

igned atmospheric-pressure plasma reactor into the existing roll- 

o-roll industrial production line. Typical examples with the poten- 

ial for mass production of the desired antiviral polymers are pre- 

ented in the literature [78–80] . 

Recent years have also witnessed major advances in the fabrica- 

ion of superhydrophobic surfaces using the plasma-assisted mod- 

fication of surface chemistry. As surface wettability is determined 

y surface chemistry and surface microstructures, it is extremely 

ifficult to achieve superhydrophobicity in a single-step process us- 

ng conventional fabrication strategies. 

Plasma polymerization, one of the most important plasma tech- 

iques is based on the fact that the formation of particles is highly 

ependent on the nature of the precursor monomer and occurs 
6 
ith the assistance of the reactive species in plasmas to induce 

ondensation reactions in the gas phase. Therefore, it allows a 

ne-step process for tailoring both surface chemistry and surface 

oughness simultaneously. Fig. 4 (b) indicates that one-step pro- 

uction of a rough superhydrophobic plasma coating with WCA of 

67 ° using He gas plasma containing 0.3 vol % benzene + cyclohex- 

ne (8:2) mixture on a flat Si wafer substrate [81] . Similar super- 

ydrophobic coatings on different substrates including gold film, 

imwipe, and cotton have also been achieved using He-CF 4 -H 2 

lasma at atmospheric-pressure [82] . In addition to these chem- 

cals mentioned above, precursor monomers containing alkyl- or 

uoroalkyl- groups that can lead to surface hydrophobicity, such as 

MDSO (O[Si(CH 3 ) 3 ] 2 ) [83] , 1H,1H,2H,2H-perfluorododecyl acrylate 

C 13 H 7 F 17 O 2 ) and dodecyl acrylate (C 15 H 28 O 2 ) mixture [84] have

lso been investigated intensively for producing superhydrophobic 

urfaces by the method of plasma polymerization. 

We emphasize that some of the hydrophobic surfaces tailored 

y plasma fabrication may not only repel the virus-containing wa- 

er droplets for some antiviral applications (as described above) 

ut also play a crucial role in inactivating viruses themselves. A 

revious study has demonstrated that surfaces that are simultane- 

usly hydrophobic and oleophilic are efficient in inactivating in- 

uenza A viruses (e.g. for the surface with WCA = 111 ° and hexade- 

ane contact angle = 45 ° simultaneously, the infection degree can 

e reduced to below 30%) due to the disruption of the viral mem- 

rane upon its contact with the alkyl chains coated on the glass 

urfaces [86] . More importantly, nanostructured surfaces with the 

nhanced highly hydrophobic and oleophilic behaviour induced by 

he plasma (reactive ion) etching can increase the inactivation ef- 

ects (e.g. the surface with WCA = 154 ° and hexadecane contact an- 

le = 26 ° simultaneously can lead to a dramatic reduction in the 

nfectivity level of influenza A viruses to below 10%) [86] . Indeed, 

hen some of the virus-containing water droplets failed to be re- 

elled by the functionalized hydrophobic surfaces, such kind of hy- 
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rophobic “contact-killing” surfaces could play a role of “the sec- 

nd line of defence” to inactive the attached viruses. 

Another type of the known contact-killing microbicidal surfaces 

unctionalized by specific surface chemistry is the polymeric coat- 

ngs comprising hydrophobic polycations such as branched or lin- 

ar N, N -dodecyl methyl-polyethylenimines and their derivatives 

hat have shown the capacity to kill influenza A virus with essen- 

ially a 100% efficiency (at least a 4 log reduction in the viral titer) 

ithin minutes, as well as the airborne human pathogenic bacte- 

ia Escherichia coli and Staphylococcus aureus [87] . Generally, these 

olyethylenimines-based coatings are hydrophobic and positively 

harged, when viruses owning an inherent negative charge (e.g. in- 

uenza A virus) strike the coated surface due to thermal motion, 

he hydrophobic and electrostatic interactions will make viruses 

dhere to the surface and then lead them towards inactivation by 

estroying their genomic content or structures [ 88 , 89 ]. Typically, 

hese hydrophobic polycations are either covalently attached or de- 

osited onto surfaces of diverse materials and regarded as non- 

eaching, permanently microbicidal coatings with promise for re- 

lacing these toxic and easy to be exhausted biocide release prod- 

cts [88] . However, fabricating these covalently modified antiviral 

urfaces by wet chemistry generally requires harsh reaction condi- 

ions, multi-step processes, and specific substrates [ 88 , 90 ]. 

Atmospheric-pressure aerosol-assisted plasma deposition has been 

roposed as a direct and substrate-independent approach to fab- 

icate N, N -hexyl,methyl-polyethylenimine coatings for virucidal 

gainst human influenza A virus with a reduction of greater than 

 log [90] . Importantly, the coatings have shown thermal stability 

up to 150 °C) and durability upon exposure to vigorous washes and 

xposure to detergents. However, the relevant studies still remain 

t the early stages and a combination of both plasma-based ap- 

roaches and polyethylenimines-based chemistry should be inves- 

igated and applied for more kinds of viruses beyond the influenza 

 virus. 

Chemically active plasma-assisted coatings are proposed as an- 

ther strategy in the development of antiviral polymers based on 

he engineering layers capable of releasing reactive oxygen and 

itrogen species (RONS). Indeed, it is known that RONS play a 

ital role in cancer treatment [91] , antibacterial [92] and virus- 

nactivation [93] . Therefore, active materials capable of generating 

ONS are considered as a new trend in virus-inactivation. Some of 

hese materials are based on the coatings that integrate photosen- 

itizers and photocatalysts capable of RONS generation under light- 

ctivation that results in antimicrobial efficiency with multiple ad- 

antages including high biocidal effect, broad-spectrum antimicro- 

ial action, and low toxicity with little environmental concern [94] . 

anofibrous membranes grafted with the designed photosensitizer 

olecules based on benzophenones and polyphenols by wet chem- 

stry approaches have shown the ability to release RONS such as 

ydroxyl radicals ( • OH), superoxide ( • O 

2 −), and hydrogen perox- 

de (H 2 O 2 ) [95] . This ability was activated by the daylight, showing

ontact-killing of both Gram-negative Escherichia coli O157:H7 and 

ram-positive Listeria innocua bacteria (efficiency > 99.9999%) and 

7 bacteriophage viruses (efficiency > 99.999%) either in aerosol 

r liquid form [95] . The materials are quite promising to pro- 

uce PPE with the desired antiviral functions. However, such kinds 

f photosensitizer-based RONS agent release coatings prepared by 

lasma processing of surface chemistry for both antibacterial and 

ntiviral applications are still rare and are thus worth to be inten- 

ively investigated. 

In addition to these RONS virucidal agents, RONS could also 

e effective for stimulating immune responses against viruses in 

he patients [19] . Hence, RONS release coatings can be used as 

rug delivery systems. One important such type of RONS is ni- 

ric oxide (NO) that is a critical messenger molecule in biologi- 

al systems and has been applied in biofilm inhibition and dis- 
7 
ersal [96] , vasodilatation [97] , and stem cell behaviour modifi- 

ation [98] . More importantly, NO has shown the high efficiency 

f antibacterial activities [96] and antiviral effect by improving ar- 

erial oxygenation and enabling the reduction of inspired oxygen 

herapy and airway pressure support in patients carrying SARS 

r COVID-19 [ 99 , 100 ]. It has been reported that plasma polymer- 

zed isopentyl nitrite (IPNpp) coatings on polyethene terephthalate 

PET) surfaces can be successfully used for NO release at bacte- 

iostatic concentrations, inhibiting bacterial ( Staphylococcus epider- 

idis ) growth without cytotoxic side effects to human mesenchy- 

al stem/stromal cells: the bacteria in the reference (REF) sample 

ontinued to multiply and form biofilms and in contrast, bacteria 

eing in contact with the IPNpp neither multiplied nor formed any 

isible biofilm even after 14 h incubation ( Fig. 4 (c)) [85] . Similarly,

recursor monomers such as allylamine and diallylamine have also 

een used for plasma polymerization to load NO that enables ex- 

ellent cell-surface interactions and continuous release of NO over 

8 h [101] . The plasma polymerization approach allows the forma- 

ion of stable amine polymers with targeted surface anchoring sites 

or loading the NO molecular which can avoid potentially carcino- 

enic amine decomposition products. 

We emphasize that the antiviral mechanisms of NO are quite 

ifferent from the antibacterial mechanisms. As a highly reactive 

ree radical, NO may be a modulator of host response against nu- 

erous viruses rather than a simple antiviral agent [ 102 , 103 ]. A 

ecent study has shown that acute respiratory distress, caused by 

he inflammatory cascade inside the lungs, is the leading cause of 

OVID-19 case-fatality [104] . Thus, NO may soak up cellular signals 

hat enhance inflammation, which is an important factor for antivi- 

al protection against the current pandemic. Despite the promising 

herapeutic potential of NO, the delivery of NO remains a challenge 

ue to its reactive nature and short half-life in the biological me- 

ia (typically in the order of seconds). Plasma polymerization of 

O release coatings could thus be one of the viable candidates for 

he delivery of the NO molecules to the infected loci with the con- 

rolled release amount and release time. The relevant antiviral ef- 

ects and in-depth mechanisms of the NO release coatings are thus 

lso needed to be urgently investigated. On the other hand, it also 

eeds to investigate the collective strategies by combining the ef- 

ective antibacterial effects of NO and other antiviral strategies to 

revent the spread of viruses in the environment and reduce con- 

urrent bacterial infections caused by viral infections. 

.3. Plasma processing of composite coatings 

Materials-centred approaches that impart antiviral properties 

nto a polymer surface are also focused on the processing of 

omposite coatings by integrating the desired biomolecules or an- 

iviral drugs/agents into the coating structure. Such techniques 

re truly versatile in enabling different surface-virus interactions. 

lasma-based approaches are also known for the engineering of 

omposite coatings in a controllable and spatially selective man- 

er [105] , which could be highly promising for the nanofabrica- 

ion of antiviral polymers. Various strategies with typical exam- 

les of plasma processing of composite coatings, including surface- 

mmobilized bioactive compounds and antiviral drug/agent release 

oatings, that can be applied for imparting polymers with antivi- 

al properties are discussed below. 

.3.1. Surface-immobilized bioactive compounds 

It is known that the multivalent interactions between viruses 

nd their protein receptors on host cells such as interactions be- 

ween SARS-COV-2 and angiotensin-converting enzyme 2 (ACE2) 

re the primary step during virus infection [106] . Therefore, 

rotein-immobilization on the polymeric materials could be re- 

arded as one of the antiviral strategies given the specific inter- 
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Fig. 5. Representative examples of plasma-assisted surface-immobilized bioactive compounds. (a) Two plasma-based approaches (PECVD and plasma grafting of PFM) for BSA 

protein-immobilization. The left plot indicated that the variation of the dissipation ( �D) vs the frequency shift ( �f) showing a higher increase in the viscoelastic properties 

per mass unit attached on the grafting PFM-modified surface. The right bar graph showed the final value of the �D/ �f ratio confirming that the protein layer formed by 

PECVD was more rigid and thus had lower water content. [108] , Copyright 2013. Adapted with permission from the American Chemical Society. (b) Plasma immersion ion 

implantation for antimicrobial peptide immobilization. The results showed that the bacteria adhesion on the covalently attached melimine-coated surface was significantly 

reduced. Scale bars show 10 μm. [113] , Copyright 2019. Adapted with permission from the American Chemical Society. 

a

t

s

p

m

t

v

b

a

a

s

a

o

r  

P

t

i

g

l

s

c

f

a

i

a

h

p

m

p

s

i

s

f

e

s

p

t

C

k

b

t

v

a

i

a

t

[  

p

m

t

v

c

h

o

a

i

S

s

w

c

i

g

p

a

ctions between a particular protein and its specific binding viral 

arget. During the last decade, multiple plasma-assisted methods of 

urface modification and activation have been employed to create 

olymers with surface functional groups that can covalently attach 

any types of biomolecules [107] . 

Protein-immobilized surfaces can be one of the important an- 

iviral materials due to their specific interactions with targeted 

iruses. Fig. 5 (a) presents a typical example of two plasma- 

ased approaches for protein-immobilization [108] . Both PECVD 

nd plasma grafting using pentafluorophenyl methacrylate (PFM) 

s monomers were investigated to functionalize polystyrene (PS) 

trips surfaces with reactive ester groups. Such functional groups 

re highly reactive toward amines, and allow the covalent bonding 

f bovine serum albumin (BSA) proteins to the surfaces in different 

anges (200 ng • cm 

–2 for PECVD, 100 ng • cm 

–2 for plasma grafting of

FM) [108] . Importantly, both approaches can maintain the bioac- 

ivity of the immobilized proteins despite that PECVD can result 

n more conformational changes than those induced by the plasma 

rafting approach [108] . Similarly, various monomers such as ally- 

amine [109] and ethylenediamine [110] , and various reactive gases 

uch as oxygen [111] and ammonia [112] were also used as reactive 

hemicals in plasma polymerization or plasma activation processes 

or the immobilization of various proteins including antigens and 

ntibodies. 

It should be emphasized that some of the antibody- 

mmobilization surfaces prepared by plasma technology have 

lready been employed for virus-capture. Anti-influenza A virus 

emagglutinin antibody was anchored via N -succinimidyl 3-(2- 

yridyldithio) propionate on the surface of graphite-encapsulated 

agnetic beads functionalized by radio frequency (RF) ammonia 

lasma, and the infectivity of captured viruses was maintained, 

howing that this method is useful for the enhanced detection and 

solation of influenza A virus [112] . On the other hand, a recent 

tudy has revealed that the single-domain antibodies isolated 
8 
rom a llama immunized with the prefusion-stabilized middle 

ast respiratory syndrome (MERS-CoV) or SARS-CoV coronavirus 

pikes can be used for neutralizing MERS-CoV or SARS-CoV spike 

seudo-type viruses, respectively, showing the promise for the 

reatment of diseases caused by coronaviruses including SARS- 

oV-2 [114] . There is no doubt that polymer surfaces with such 

inds of antibodies engineered by plasma technology could also 

e potentially used for targeting a specific virus. 

The antiviral peptide immobilized surface is another important 

ype of bioactive materials that can be applied for fighting against 

iral infections. Generally, antimicrobial peptides are produced by 

ll microorganisms, plants, and animals as a part of the innate 

mmune response, and display a broad-spectrum of antibacterial, 

ntifungal, and antiviral activities [ 115 , 116 ]. Indeed, antiviral pep- 

ides play a vital role in fighting against various virus infections 

 117 , 118 ]. Fig. 5 (b) illustrates an example of a plasma-based ap-

roach for the immobilization of antimicrobial peptides on poly- 

er surfaces [113] . In this example, plasma immersion ion implan- 

ation was adopted as a linker-free single-step treatment that co- 

alently coupled antimicrobial peptides to polyvinyl chloride (PVC) 

atheter, showing a strong antimicrobial activity demonstrated by 

igher than 3 log kill of Staphylococcus aureus [113] . Similarly, 

xygen plasma treatment of silicone surfaces has been regarded 

s a straightforward strategy to immobilize antibacterial peptides 

n a site-specific way with excellent antibacterial activities [119] . 

urfaces functionalized by argon plasma activation followed by 

ilanization or plasma polymerized allyl glycidyl ether coatings 

ere also investigated in-depth for the immobilization of antimi- 

robial peptides [ 120 , 121 ]. The key point of surfaces functional- 

zed by plasma is the specific reaction between surface functional 

roups and the chemical composition of targeted bioactive com- 

ounds. 

Therefore, it is reasonable to transfer from antibacterial towards 

ntiviral surfaces by the fabrication of composite coatings contain- 
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ng antiviral peptides for antiviral applications, as the chemical 

omposition for antibacterial peptides is similar to that of antivi- 

al peptides. Moreover, a recent study has revealed that two types 

f cellular polymeric sponges made of the derivatives from human 

ung epithelial type II cells or human macrophages displayed the 

ame protein receptors, both identified and unidentified, required 

y SARS-CoV-2 for cell entry, and can be used as effective med- 

cal countermeasures against SARS-CoV-2 infection [122] . As the 

lasma-based approach is both scalable and flexible, it is promis- 

ng to apply plasma technology for the mass production of such 

inds of polymeric nanoparticles with bioactive compounds. Nev- 

rtheless, all such antiviral applications should be investigated in- 

epth both in theory and in practice. 

.3.2. Antiviral drug/agent release coatings 

Recently, major attention has been paid to the controlled 

rug/agent release polymeric coatings as they are regarded as 

uccessful tools to modulate surface properties of biomaterials, 

amely tissue responses and fouling behaviour [ 123 , 124 ]. Specifi- 

ally, plasma treatment is a novel and advanced method that can 

lay a crucial role in this emerging research area [125] . Differ- 

nt from the aforementioned “contact-binding” strategy through 

lasma-enabled immobilization of bioactive compounds and virus- 

ecognition, composite drug release coatings aim to inactivate spe- 

ific viruses by releasing antiviral drugs/agents from the polymeric 

oatings in a controlled way. Generally, several plasma-based ap- 

roaches can be applied to fabricate such coatings with specific 

rugs/agents, as presented in Fig. 6 . 

Aerosol-assisted plasma deposition represents a typical example 

f a process for preparing drug release coatings. As depicted in 

ig. 6 (a), water containing antimicrobial drugs Gentamicin was 

njected in the form of an aerosol into a dielectric barrier dis- 

harge plasma through an atomizer, the ethylene gas was added 

s a precursor of the matrix simultaneously [126] . With the assis- 

ance of the non-thermal plasma, the drug molecules were suc- 

essfully incorporated into the plasma polymers without altering 

heir chemical structure, and the embedded drug showed excellent 

ntibacterial effects with the controllable release [126] . This single- 

tep procedure performed at the atmospheric-pressure is quite at- 

ractive and can be scalable to meet the industrial demands. Im- 

ortantly, the aerosol-assisted plasma deposition process can keep 

he bioactivity of the drug molecules unchanged due to the mild 

ragmentation conditions as featured by the atmospheric-pressure 

lasma and the shield of the drug by a thin protective solvent shell 

hat preserves its structure and functionality [ 126 , 130 ]. Moreover, 

erosol-assisted plasma deposition also shows excellent versatil- 

ty, as various drugs or bioactive molecules (including proteins and 

eptides mentioned above) such as Vancomycin and Lysozyme have 

lso been investigated in-depth for biomedical applications [131–

33] . 

Multi-steps plasma surface engineering processes, in addition to 

he single-step plasma process for drug release coatings, present 

nother important strategy to achieve improved drug release per- 

ormance. As indicated in Fig. 6 (b), air plasma activation of 

olypropylene (PP) surgical meshes were firstly adopted to in- 

rease the drug-loading capacity (nearly 3-fold higher Ampicillin 

oading after 3.5 s treatment), followed by polyethene glycol (PEG)- 

ike coatings using tetraethylene glycol dimethyl ether as the pre- 

ursor under a low-pressure RF plasma condition [127] . It allowed 

ombining higher drug-loadings and maintaining essentially un- 

hanged fibroblast properties such as chemotaxis or adhesion with 

espect to untreated PP meshes. 

Therefore, there is no doubt that combined with the rapid de- 

elopment of antiviral drugs, plasma techniques could be promis- 

ng for the production of antiviral drug release coatings even 

hough relevant antiviral studies are currently rare. 
9 
Although specific reactions between viruses and antiviral drugs 

nsure the high efficiency of virus-inactivation, antiviral materi- 

ls need to have a broad-spectrum activity to enable their bind- 

ng or interacting with the mutated viral spike as viruses have al- 

ays been evolving, e.g. the mutation of SARS-CoV-2 spike may 

otentially produce more aggressive coronaviruses [40] . Functional 

etal-based nanoparticles including Cu, Au, Ag, TiO 2 have shown 

road-spectrum antiviral activities [ 134 , 135 ]. A recent study has 

hown that Cu 2 O nanoparticles embedded into polymeric coatings 

an inactive SARS-CoV-2 with about 99.9% reduction of viral titer 

n average as compared with the uncoated sample [136] , implicat- 

ng that metal-based nanoparticles may inactivate unknown and 

nderstudied viruses given their broad virus binding spectrum. As 

 versatile technique, the aforementioned aerosol-assisted plasma 

eposition can also be applied to dope polymeric coatings with an- 

iviral metal-based nanoparticles [ 137 , 138 ]. 

Plasma sputtering, as a recent example, has been employed 

n a configuration of the gas-aggregation plasma sputtering sys- 

em for the production of composite surfaces with the capabil- 

ty of metal ions release (such as Pt, Ti and Al) and hydropho- 

ic/superhydrophobic behaviour ( Fig. 6 (c)) [ 128 , 129 ]. Such sur- 

aces are expected to fight against infections due to the surface 

ydrophobicity/superhydrophobicity and the broad-spectrum an- 

ibacterial/antiviral activities of the nanoparticles. It should be em- 

hasized that plasma technology can be employed to functionalize 

ot only polymer surfaces but also metal/metal oxide nanoparticles 

e.g. ZnO, Al 2 O 3 , and ZrO 2 in [139] ) with specific functional groups 

r bioactive compounds to enhance their antiviral effect. Im plant- 

ng the functionalized nanoparticles into the fabricated polymeric 

oatings (by e.g. the gas-aggregation plasma sputtering system) can 

roduce highly desired materials for inactivation of the targeted 

irus. 

Considering the extreme complexity of virus inhibition and the 

ariability of the viruses, employing plasma techniques for prepar- 

ng composite antiviral materials is expected to grow as an effec- 

ive antiviral material engineering strategy in the future thus form- 

ng a new trend at the interface of polymer science, plasma sci- 

nce, biology and medicine. 

. Future trends in smart polymers for antiviral applications 

As discussed in Section 3 , non-thermal plasmas generate ac- 

ive physical and chemical species which make them of consider- 

ble value in the production of advanced materials with antiviral 

roperties. Further applications of such materials should be suffi- 

iently smart to involve some of the key processes including virus- 

apture, virus-detection, virus-repelling, and/or virus-inactivation. 

o illustrate the potential utility of non-thermal plasmas, below 

his article highlights the selected further trends in the emerg- 

ng antiviral applications that are most relevant to plasma polymer 

rocessing. 

.1. Plasma-enhanced performance of virus biosensors 

Early diagnosis and management of virus spread are crucial for 

onstraining the spread of infectious viral diseases such as COVID- 

9 [ 48 , 140 ]. Currently, real-time reverse transcription-polymerase 

hain reaction (RT-PCR) is the primary approach for emerging 

athogen diagnosis. However, the protocol of RT-PCR involves mul- 

iple steps, and errors in any of these steps such as the DNA/RNA 

reparation could affect the diagnostic accuracy [ 141 , 142 ]. Hence, 

he development of advanced highly sensitive immunological diag- 

ostic methods that directly detect viral antigens in clinical sam- 

les without sample preparation is necessary for rapid and accu- 

ate diagnosis of the emerging pathogens. Basically, immunoassays 

re based on highly specific antigen-antibody interactions. The key 
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Fig. 6. Representative examples of plasma engineering of drug/agent release coatings. (a) Single-step aerosol-assisted plasma deposition of gentamicin-containing coatings 

for drug release applications. Both continuous and pulsed mode plasma-exposed disks produced antimicrobial activity against Pseudomonas aeruginosa DSM939 and Staphy- 

lococcus aureus DSM799. The scanning electron microscopy (SEM) image shows the coating morphology which was prepared in the pulse mode for 20 min with 5 slm He, 

20 sccm ethylene, and 10 mg/mL gentamicin solution. The scale bar shows 1 μm. [126] , Copyright 2018. Adapted with permission from the American Chemical Society. (b) 

Multi-steps plasma surface engineering drug-loading processes and the relevant summary of the effects of the different plasma treatments performed to PP fibres on the 

adsorption of drugs and on the cell adhesion and morphology. [127] , Copyright 2015. Adapted with permission from Elsevier. (c) Gas-aggregation plasma sputtering system 

(1-vacuum flange, 2-aggregation chamber, 3-exit orifice, 4-water cooling, 5-gas inlet, 6-magnetron, 7-target, 8-electrical connection, 9-plasma, 10-beam of nanoparticles) for 

composite surfaces production with the capability of metal ions release and hydrophobic/superhydrophobic behaviour. Scale bars are 200 nm. [ 128 , 129 ]. [128] , Copyright 

2012. Adapted with permission from Elsevier. [129] , Copyright 2014. Adapted with permission from Elsevier. 
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o immunological diagnostic is immobilizing bioactive antibodies 

n support polymeric substrates by a protein-immobilization tech- 

ique to enable virus-capture and virus-detection. 

As discussed in Section 3.3.1 , plasma-based approaches are 

owerful tools for protein-immobilization that can retain the 

ioactivity of proteins on the test kit surfaces. Polymer sur- 

aces functionalized by plasma could effectively enhance the virus 

iosensor performance by enhancing immobilization of receptor 

ntibodies. For example, the sensitivity of a plasma functional- 

zed biosensor for human hepatitis B virus (HBV) is improved as 

uch as 10 0 0-fold in comparison with a commercial one [143] . Al-

hough relevant in-depth studies and commercial devices are rare, 

t is promising to develop new viral biosensors with enhanced per- 

ormance for detecting emerging pathogens using similar plasma 

unctionalization protocols [ 144 , 145 ]. Therefore, the development 

f novel viral biosensors by plasma surface functionalization is one 

f the important trends in antiviral applications. The key attention 

hould be on the relationships between the plasma treatment and 
w

10 
he performance of the biosensors for future scalable production 

nd commercial devices. 

.2. Plasma-enabled new sanitizing approaches 

Clean air and common surfaces such as food packages, PPE, 

nd building elements without pathogens are essential for human 

ealth. Wet chemical solutions containing alcohol or hypochlorite 

re often used to mitigate pathogens in the air or on these com- 

on surfaces through spraying or wiping. However, the sanitizing 

pproach is labour- and materials-intensive, impractical for cover- 

ng all exposed areas, and needs to be periodically reapplied. In 

ddition, it may cause environmental pollution and then, in turn, 

egatively influence human health. Therefore, new sanitizing ap- 

roaches are required for creating a healthier living and working 

nvironment. 

One possible sanitizing approach is to collect virion-laden 

ater droplets in the air using plasma engineered hydrophilic- 
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ydrophobic patterned polymers by taking advantage of the ca- 

acity of water-collection [146] , and then one can use physical 

ethods such as ultraviolet (UV) light, sunlight, and cold plasma 

tself to inactivate the viruses [ 93 , 147 ]. It should be emphasized

hat the UV sterilization can also be based on the utilization of 

old plasmas, with typical examples of the excimer- and Hg-lamps 

 148 , 149 ]. The challenge for such kind of sanitizing approach is the

nknown efficiency of the polymers collecting virion-laden water 

roplets in the air that needs to be precisely quantified. 

Self-sanitizing surfaces are ideal alternatives to the conventional 

anitizing approaches. Plasma engineered polymers with photocat- 

lytic self-cleaning [150–152] and/or water-repelling [153] proper- 

ies can be among the effective self-sanitizing surfaces. It is nec- 

ssary to pinpoint that the photocatalytic self-cleaning and super- 

ydrophobic water-repelling surfaces could be able to not only re- 

el the virion-laden respiratory droplets but also remove the de- 

ctivated or decomposed products. Typical examples of such bi- 

unctional self-sanitizing surfaces can be achieved by combining 

he superhydrophobic water-repelling polymer coatings with TiO 2 

anoparticles [154] . Moreover, plasma engineered superhydrophilic 

olymers could be useful for self-sanitizing applications to some 

xtent as they have theoretically shown the potential in reducing 

he risk of getting COVID-19 infection by reducing the dry time of 

he water droplets on them [52] . Another type of self-sanitizing 

urfaces can be plasma engineered chemically active coatings ca- 

able of RONS release and composite coatings capable of binding 

iruses or releasing antiviral drugs/agents [155–157] , as described 

n Section 3.2 and Section 3.3 , respectively. Such self-sanitizing 

oatings should be durable against rubbing and washing, long- 

asting, and nontoxic, which represent challenges for future stud- 

es. 

.3. Future antiviral polymers for future viruses 

As mentioned above, viruses evolve naturally, thus becoming 

ore aggressive to infect and/or more effective to kill. During the 

ast 20 years, various types of coronavirus including SARS-CoV, 

ERS-CoV, and SARS-CoV-2 have caused epidemics or pandemics, 

ith ACE2 being the primary receptor of SARS-CoV and SARS-CoV- 

 [1] , and CD26 mediating the entry of MERS-CoV [158] . These to-

ether with other receptors such as TMPRSS2 [159–161] that ac- 

ivate the spike protein of SARS-CoV, MERS-CoV, and SARS-CoV- 

, and CD209L [162] that mediates the entry of SARS-CoV, Ebola 

nd Sindbis, form the primary pool to predict the emerging highly 

revalent pathologic viruses (especially coronaviruses). The high 

ariety of the receptors and the mechanisms that lead to the entry 

f viruses into recipients pose a great challenge that complicates 

he development of specific drugs and vaccines for efficient viral 

isease control including COVID-19. 

Although drugs/vaccines against viral infection and multiplica- 

ion are the most efficient and canonical approaches for viral dis- 

ase management, their development is quite time-consuming and 

as a high risk to fail. The complexity of the specific drug develop- 

ent is also related to the fast evolution of the virus structure that 

an challenge the efficacy of medical treatment. SARS-CoV-2 has 

utated from type D614 to type G614 that is the current dominant 

ype in almost every nation and region affected by the COVID-19 

andemic [40] . 

To tackle challenges in the establishment of antiviral strategies 

gainst emerging viruses in the future, and challenges in the devel- 

pment of novel drugs as well as antiviral polymer surfaces, new 

pproaches and materials with broad-spectrum properties are re- 

uired [163] . Through computationally modelling virus-host recep- 

or interactions and identifying key factors affecting their recep- 

or binding affinities, one could predict the structure of potential 

iruses with enhanced transmission ability and corresponding an- 
11 
ibodies or antiviral drugs to prevent their potential spread. On the 

ther hand, an integrated pipeline or platform from initial compu- 

ational predictions of virus-host interactions to downstream poly- 

er fabrications including the plasma-assisted approach should be 

stablished for preventing emerging pandemics, which is of funda- 

ental significance to the public health and socio-economic devel- 

pment. 

. Conclusions and outlook 

The unpredictable nature of viral diseases and their impacts on 

he global economy and society pose a major challenge. Despite 

eing recognized as one of the most devastating global problems, 

tudies on the prevention and treatment of emerging viral diseases 

re sparse. The goal of this article is to provide a critical analysis of 

he recent progress in the field of plasma surface engineering for 

eveloping future polymer based antiviral surfaces. Several current 

nd emerging trends have been emphasized in the areas of poly- 

er science and surface engineering technology based on the use 

f plasma processing methods. 

Impressive recent advances in plasma functionalization of poly- 

er surfaces suggest that plasma-assisted surface functionalization 

pproaches are promising for the production of antiviral polymers 

ith targeted antiviral applications ranging from in-vitro preven- 

ion to in-vivo therapy. The strategy of antiviral polymers engi- 

eered by plasma processing such as biosensors and virus destruc- 

ion could be established in advance to respond to the next gener- 

tion of viruses and evolve faster than any emerging human viral 

athogens in the future. 

Ideally, the antiviral polymers for disease diagnosis, prevention 

nd therapeutics should be of a broad-spectrum activity against 

ultiple viruses and have multiple functionalities, i.e., in the form 

f a mixture of multiple types of plasma engineered polymers that 

ould be used for biosensing, disinfection and decontamination. 

mportantly, new approaches in antiviral polymers development 

ake advantage of computational predictions and are not limited 

o any particular type of viruses to cope with the fast evolution of 

iruses in practice. Considering major achievements in the manu- 

acturing of novel antibacterial surfaces using plasma surface engi- 

eering the hope in a fast translation of the available approaches 

or fighting against viruses is arguably high. However, practical 

mplementation of the highlighted trends will require a highly- 

oordinated cross-disciplinary collaboration involving researchers 

nd engineers from the areas spanning virology, bioinformatics, 

olymer science, and plasma surface engineering. 
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