Table 3.
Performance summary of six machine learning models to predict CAD development.
Models | Accuracy | Precision | Recall | F1_score | AUC score |
---|---|---|---|---|---|
KNN | 0.771154 | 0.833628 | 0.851056 | 0.835283 | 0.827936 |
LR | 0.880769 | 0.920108 | 0.907473 | 0.911995 | 0.944622 |
SVM | 0.805769 | 0.877361 | 0.848318 | 0.855256 | 0.907529 |
DT | 0.846154 | 0.868333 | 0.929812 | 0.895352 | 0.805235 |
MLP | 0.830769 | 0.889812 | 0.862285 | 0.874413 | 0.907694 |
XGboost | 0.846154 | 0.878950 | 0.915806 | 0.891967 | 0.945121 |
KNN, k-nearest neighbors classifier; LR, logistic regression; SVM, a support vector machine; DT, the decision tree model; MLP, the multilayer perceptron network; AUC, area under curve.