
In vitro effects-based method and water quality screening model 
for use in pre- and post-distribution treated waters

Elizabeth Medlock Kakaleya,*, Mary C. Cardona, Nicola Evansa, Luke R. Iwanowiczb, Joshua 
M. Allenc, Elizabeth Wagnerd, Katherine Bokenkampd, Susan D. Richardsonc, Michael J. 
Plewad, Paul M. Bradleye, Kristin M. Romanokf, Dana W. Kolping, Justin M. Conleya, L. Earl 
Gray Jr.a, Phillip C. Hartiga, Vickie S. Wilsona

aU.S. Environmental Protection Agency, Public Health and Integrated Toxicology Division, 109 TW 
Alexander Dr., Research Triangle Park, NC 27511

bU.S. Geological Survey, Leetown Science Center, 11649 Leetown Rd, Kearneysville, WV 25430

cUniversity of South Carolina Department of Chemistry & Biochemistry, Graduate Science 
Research Center, 631 Sumter St, Columbia, SC 29208

dUniversity of Illinois at Urbana-Champaign, Department of Crop Sciences, 1102 S. Goodwin Ave, 
Urbana, IL 61801

eU.S. Geological Survey, South Carolina Water Science Center, 720 Gracern Rd, Columbia, SC 
29210

fU.S. Geological Survey, Water Science Center, 3450 Princeton Pike, Lawrenceville, NJ 08648

gU.S. Geological Survey, Central Midwest Water Science Center, 400 S Clinton St Room 269 
Iowa City, Iowa 52240

Abstract

Recent urban public water supply contamination events emphasize the importance of screening 

treated drinking water quality after distribution. In vitro bioassays, when run concurrently with 

analytical chemistry methods, are effective tools to evaluating the efficacy of water treatment 

processes and water quality. We tested 49 water samples representing the Chicago Department of 

Water Management service areas for estrogen, (anti)androgen, glucocorticoid receptor-activating 

contaminants and cytotoxicity. We present a tiered screening approach suitable to samples with 

anticipated low-level activity and initially tested all extracts for statistically identifiable endocrine 

activity; performing a secondary dilution-response analysis to determine sample EC50 and 
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biological equivalency values (BioEq). Estrogenic activity was detected in untreated Lake 

Michigan intake water samples using mammalian (5/49; median: 0.21 ng E2Eq/L) and yeast cell 

(5/49; 1.78 ng E2Eq/L) bioassays. A highly sensitive (anti)androgenic activity bioassay was 

applied for the first time to water quality screening and androgenic activity was detected in 

untreated intake and treated pre-distribution samples (4/49; 0.93 ng DHTEq/L). No activity was 

identified above method detection limits in the yeast androgenic, mammalian anti-androgenic, and 

both glucocorticoid bioassays. Known estrogen receptor agonists were detected using HPLC/MS-

MS (estrone: 0.72–1.4 ng/L; 17α-estradiol: 1.3–1.5 ng/L; 17β-estradiol: 1.4 ng/L; equol: 8.8 

ng/L), however occurrence did not correlate with estrogenic bioassay results. Many studies have 

applied bioassays to water quality monitoring using only relatively small samples sets often 

collected from surface and/or wastewater effluent. However, to realistically adapt these tools to 

treated water quality monitoring, water quality managers must have the capacity to screen 

potentially hundreds of samples in short timeframes. Therefore, we provided a tiered screening 

model that increased sample screening speed, without sacrificing statistical stringency, and 

detected estrogenic and androgenic activity only in pre-distribution Chicago area samples.

Graphical Abstract
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1. Introduction

Despite great strides in physical and chemical drinking water treatment over the last century 

(Cutler and Miller, 2005; Schoenen, 2002), the growing global human population has 

depleted many freshwater sources and increased reliance on effective water treatment 
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processes (UNWAPP, 2017). In vitro effects-based methods (bioassays), when run 

concurrently with analytical chemistry methods, have gained popularity over the last decade 

as effective tools to evaluate the efficacy of water treatment processes (Conley et al., 2017b; 

Escher et al., 2014; Jia et al., 2015; Jia et al., 2016; Medlock Kakaley et al., 2020; Plewa and 

Wagner, 2015; Shi et al., 2018; Snyder and Leusch, 2018; Zhen et al., 2018). Much of the 

development and application of bioassays to water quality has focused on surface (Blackwell 

et al., 2019; Blackwell et al., 2017; Conley et al., 2017a; Jeong et al., 2012), waste (Dong et 

al., 2017; Dong et al., 2019; Leusch et al., 2018) and recycled water (Escher et al., 2014; Jia 

et al., 2015). In these water sample types, the detected biological activity can be relatively 

high. However, effects-based methods can also make exceptional tools for screening water 

samples that contain very low-level concentrations of individual contaminants (e.g. treated 

drinking water). This versatility results from bioassays’ inherent ability to detect cumulative 

biological activity from the sum of all present contaminants. Typically, biological activity in 

an environmental sample, reported in biological equivalency values (BioEq), is calculated by 

fitting a sigmoidal concentration-response curve to cell (or organism) responses from 

treatments of serial dilutions of a sample and determining an EC50 value and sample relative 

potency (compared to method reference compound). However, biological activity detected in 

treated drinking water can fall below an EC50 value, despite sample enrichment. Therefore 

alternative approaches to the traditional sigmoidal concentration-response curves to 

determining sample activity are necessary (Escher et al., 2018b).

In a preceding pilot study we sought to fill data gaps in chemical occurrences in point-of-use 

drinking water (tapwater, TW) using both bioassays and analytical chemical methods 

(Bradley et al., 2018). TW samples collected from locations across the United States 

suggested human exposure to mixtures of trace level organic and inorganic compounds that 

are not required to be monitored in TW. Herein we seek to identify potential sources, 

movement and transformation of biologically-active contaminants in treated drinking water 

during distribution. In a multi-agency collaborative study of pre- and post-distribution 

treated TW representing the Chicago Department of Water Management service areas, an 

extensive targeted-chemical toolbox (540 organic and 35 inorganic analytes) was employed 

and no detected chemical concentrations exceeded U.S. Environmental Protection Agency 

(USEPA) Maximum Contaminant Levels in any treated TW sample (Bradley et al., 2020). 

However, multiple exceedances of health-based advisories (e.g., maximum contaminant 

level goals; MCLG) in untreated and pre-distribution water samples, together with the 

recognized order of magnitude analytical underestimation in the TW exposure (350,000+ 

commercial compounds (Bradley et al., 2017) and unquantifiable transformation products 

(Dobson, 2004; Vasquez et al., 2014)), raised concerns for potential biological effects and 

therefore supported a non-targeted effects-based screening.

Bioassays that detect steroid hormone-active compounds have previously compensated for 

gaps in targeted analyte coverage (Bradley et al., 2017; Conley et al., 2017a; Medlock 

Kakaley et al., 2020). Therefore, we applied a suite of bioassays focused on steroid hormone 

signaling pathways to Chicago TW extracts to screen pre- and post-distribution water 

filtration plant (WFP)-treated water. Included in the suite was a highly sensitive method for 

detecting (anti)androgenic activity (Hartig et al., 2007) never before applied to water quality 

screening. Further, we provide a tiered screening model for sample analysis applicable to 
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routine water quality monitoring that expedites drinking water sample extract evaluation 

while maintaining statistical stringency.

2. Methods

2.1 Sample Collection

A total of 49 samples of raw-water intake from Lake Michigan (WFP-UT), WFP-treated/

pre-distribution water (WFP-TW), and post-distribution tapwater (TW) from private 

residences (cold water samples without pre-cleaning, screen removal, or flushing; exact 

locations of private residences have been anonymized) were taken from Chicago, Illinois and 

East Chicago, Indiana between July and December 2017 using procedures that were 

previously described (Supporting Information) (Romanok et al., 2018). Sampling sites (38 

total) were selected based on community volunteers and represented a broad geographical 

coverage of the City of Chicago Department of Water Management water filtration plants’ 

(WFP) service areas (Figure 1; Chicago North, CN: 16 sites; Chicago South, CS: 18 sites; 

East Chicago, EC: 4 sites). Only pre-distribution samples were screened from the City of 

East Chicago Utilities Department service area and were included for comparison to 

Chicago, IL pre-distribution samples. Field blanks were collected as part of the quality 

assurance and quality control protocols at three sites (CS-WFP-TW, EC-WFP-UT1 and EC-

WFP-TW1). Sample aliquots from each sampling site were allocated for multiple analysis 

types e.g., analytical chemistry, endocrine bioassays and cytotoxicity bioassay.

2.2 Analytical Chemistry

Water samples were analyzed by U.S. Geological Survey (USGS) using 14 organic (540 

unique analytes) and 7 inorganic (37 analytes) analytical methods (Supporting Information) 

and a full report of detected analytes were reported previously (Bradley et al., 2020). Of the 

550 analytes, several known estrogen, androgen, and glucocorticoid receptor agonists were 

quantified using HPLC/MS-MS (Yost et al., 2013; Yost et al., 2014), as described previously 

(Bradley et al., 2020; Romanok et al., 2018), and are reported and discussed herein.

2.3 Endocrine Bioassays

A 4 L sample from each site was extracted into 400 μL methanol using the solid phase 

extraction methods described previously (Supporting Information) (Romanok et al., 2018). 

Two 100 μL extract aliquots were shipped overnight on ice to both U.S. Environmental 

Protection Agency, Research Triangle Park, NC (mammalian bioassay) and USGS Leetown 

Science Center, Kearneysville, WV (yeast bioassay) for in vitro screening of steroid 

hormone activity.

2.3.1 Mammalian Bioassays—The T47D-KBluc cell line (American Type Cell 

Culture, ATCC, Manassas, VA; #CRL-2865) (Wilson et al., 2004; Wilson et al., 2002) has 

been applied to chemical and environmental sample testing for estrogenic activity previously 

(Conley et al., 2017a; Conley et al., 2017b). Cell culture maintenance and sample screening 

were conducted as previously described (Wilson et al., 2004), with exceptions (Supporting 

Information) (Medlock Kakaley et al., 2020). Briefly, treatments included methanol vehicle 

control, serially diluted water samples, 17-beta estradiol (E2; CAS#: 50-28-2; Sigma) 
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standard curve or 1 μM ICI 182,780 (antagonist control; Tocris Bioscience) in competition 

with E2 in Dulbecco’s Modified Eagle’s Medium (DMEM) with 10% dextran-coated 

charcoal treated fetal bovine serum (DCC-FBS).

The CV1 cell line (ATCC; CCL-70), which is naturally devoid of glucocorticoid and 

androgen receptor (AR) was cultured and transduced with the human glucocorticoid receptor 

(GR) to test for glucocorticoid activity in water samples as previously described (Hartig et 

al., 2002; Medlock Kakaley et al., 2018). Approximately 5 × 106 cells were transduced with 

the human GR (Ad/GR4) and MMTV-luciferase (Ad/Luc7), with a multiplicity of infection 

(MOI) of 1 and 50, respectively. Cells were plated at a rate of 22,000-33,000 cells/well, and 

exposed to cell media with either the methanol vehicle control, serially-diluted water extract 

samples, dexamethasone standard curve (Dex; CAS#: 50-02-2; Sigma) or 300 nM 

mifepristone (antagonist control; CAS: 84371-65-3; Sigma) in competition with Dex for 24 

hrs. CV1-cells were frozen at −80°C with lysis buffer and thawed at room temperature 

before analyzing with luminometer.

Using a similar CV1 transduction system, water extract samples were also tested for 

(anti)androgenic activity using a CV1-chAR bioassay (Hartig et al., 2007). Culturing, 

transduction and exposure methods are identical to the CV1-hGR bioassay with the 

following exceptions. Cells were transduced with chimpanzee androgen receptor (chAR) 

and the MMTV-luc gene with MOIs of 1 and 50, respectively. In the AR agonist assay cells 

were exposed to media with either methanol vehicle control, 4,5α-Dihydrotestosterone 

(DHT; CAS#: 521-18-6; Sigma) standard curve (0, 3, 10, 30, 100, 300, 1000, 3000 pM), 

hydroxyflutamide (OHF; antagonist control; CAS#: 52806-53-8; Sigma) in competition with 

DHT, or serially diluted extract samples. In the AR antagonist assay, standards and samples 

were diluted with a concentration of AR agonist that produces approximately 80% of the 

maximal response (100 pM DHT) in RMPI. Cells were exposed to media with either 

methanol vehicle control (no DHT), OHF standard curve concentrations (0, 1, 3, 10, 30, 100, 

300, 1000, nM), or serially diluted water extract samples. Antagonist activity was quantified 

as OHF equivalents (OHFEq).

All cells for T47D-KBluc and CV1-hGR/chAR screening assays were plated in 96-well 

luminometer plates. Each standard, control, or sample was run in quadruplicate, and each 

sample screen was at least duplicated i.e. different cell passage number. After 24 hr in vitro 
exposure, cells were visually scored for cytotoxicity (scale of 1–5) and any wells with cells 

exhibiting cytotoxic effects were excluded from subsequent analysis (Bhatia and Yetter, 

2008; Conley et al., 2017a). Cells were washed, lysed and immediately following injection 

of luciferase reaction buffer and Firefly D-luciferin substrate, luminescence was quantified 

by measuring luminescence every 0.2 sec for 5 sec using a FLUOstar luminometer (BMG 

Labtech, Cary, NC) (Medlock Kakaley et al., 2020). The method detection limits (MDL) for 

mammalian bioassays were determined using the equation described below and were as 

follows; 0.0044 ng E2Eq/L, 0.3 ng DHTEq/L, 67.10 ng OHFEq/L, and 1.06 ng DexEq/L for 

the T47KBluc, CV1-chAR, CV1-chAR in antagonist mode, and CV1-hGR bioassays, 

respectively.
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2.3.2 Yeast Bioassays—To add depth to our in vitro analysis of endocrine activity in 

the water extract samples (Blackwell et al., 2019; Könemann et al., 2018; Medlock Kakaley 

et al., 2020), the bioluminescent yeast estrogen screen (BLYES; 490 BioTech, Knoxville, 

TN) also was used to assess estrogenicity (estrogen receptor-alpha only) in the water extract 

samples as previously described (Conley et al., 2017a; Sanseverino et al., 2005), with 

modifications (Ciparis et al., 2012). Extracts were also screened for androgenicity and 

glucocorticoid activity using yeast strains DSY-1555 and MCY-105, respectively, as 

previously described (Kassotis et al., 2016).

Complete method details are provided in the Supporting Information. Briefly, each assay 

plate included either a 17β-estradiol, DHT, or hydrocortisone standard curve, vehicle 

controls, and sample extracts. All treatments were added as 10 μL volumes to wells of solid 

white 96-well plates and methanol was allowed to evaporate to dryness prior to the addition 

of media and yeast reporter. Final sample dilutions were 1:20. The reference hormone/

environmental contaminant-induced chemiluminescent signal was measured using a 

SpectraMax M4 microplate reader (Molecular Devices, San Jose, CA) in luminescent mode 

(100 ms integration time). Endocrine activity within each sample, relative to respective 

standard curves, was determined using a four-parameter logistic regression (SoftMax Pro 

6.6.6, Molecular Devices) and corrected for sample enrichment. Method detection limits for 

the BLYES, DSY-1555, and DSY-105 bioassays were 0.10 ng/L 17β-estradiol, 1.3 ng/L 

dihydroxytestosterone, 1.1 ng/L hydrocortisone, respectively.

2.4 Cytotoxicity

The Chinese hamster ovarian (CHO) cell cytotoxicity assay measures the reduction in cell 

density (surrogate for viability) as a function of the concentration of the test (Supporting 

Information) (Plewa et al., 2002; Plewa et al., 2010; Wagner and Plewa, 2017). Water sample 

aliquots (20 L) were extracted into DMSO as described previously (Daiber et al., 2016). 

DMSO concentrate was diluted in F12+ 5% fetal bovine serum cell culture medium (F12-

FBS). In a 96-well flat-bottomed microplate, a blank control (no cells), negative control 

(F12-FBS plus cells) and experimental samples were analyzed concurrently. Initially, all 

negative and experimental wells contained 3×103 CHO cells. A covered microplate was 

rocked at 37°C for 10 min, ensuring even cell distribution, and incubated for 72 hr at 37°C 

under 5% CO2. Cells fixed in methanol were stained with crystal violet and washed with 

DMSO: methanol (3:1 v/v)l. Fixed cells were incubated at room temperature for 10 min and 

subsequently analyzed at 595 nm with a SpectraMax™ microplate reader.

Detailed statistical methods for CHO cytotoxicity assay were conducted as described 

previously and are provided in the Supporting Information (Box et al., 1978; K and M, 

2008). Experimental treatments were normalized to percent of negative control treatment 

(100% survival) and LC50 values were converted into mean cytotoxicity index (CTI) values 

(CTI = 103 × LC50
−1) (Box et al., 1978; K and M, 2008). One-way analysis of variance 

(ANOVA) tests were conducted to determine the lowest concentration factor that induced 

cytotoxicity compared to negative control (P ≤0.05).
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2.5 Screening Model and Data Analyses

Steroid hormone activity is typically low, and often undetectable, in treated point-of-use TW, 

therefore we used a tiered screening process (Figure 2). In tier one, the presence of 

estrogenic/(anti)androgenic/glucocorticoid activity in each sample extract was determined. 

All 49 water sample extracts were screened at 10x and 5x final assay sample enrichment 

factors. Mean fold change above concurrent control of treatment replicates were normalized 

to percent maximal assay activity (based on assay-specific hormone standard saturation 

levels). Sample extracts with significant within plate increases/decreases in percent maximal 

activity of respective agonist/antagonist reference compound were identified with the 

General Linear Model Procedure using the Least Square Means Statement and Dunnett’s 

multiple comparison procedure.

In tier two, only active samples from tier one were screened using a series of 2-fold serial 

dilutions (1:1000, 1:2000, 1:4000, 1:8000, etc). Biological equivalency values (BioEq; 

reported in ng Reference/L) were calculated (Conley et al., 2017a; Medlock Kakaley et al., 

2020) and graphically represented for each positive sample using the equation,

BioEq =  
Reference EC50

Sample EC50 Sample EF

where the sample EC50 was a unitless bioassay sample dilution and was extrapolated using 

mean observed transcriptional activation values. The enrichment factor (EF) = 10,000 (prior 

to assay dilution) due to 4,000-fold concentration of sample during extraction (4 L water 

sample) and dried extract resuspension 0.4 mL methanol. Reference EC50 values are 

provided in Table S1.

The minimum detectable concentration (MDC) for hormone activity was determined as 

described previously (Conley et al., 2017b), and the method detection limit (MDL), where

MDL =   MDC
Final Sample EF

and Final Sample EF = 10 (10,000x Enrichment Factor and 1,000x assay dilution), was used 

in the final step of the tiered screening process. Samples were identified as a positive hit for 

activity depending on whether the BioEq value was above or below the respective assay 

MDL.

2.6 Statistical Analysis

Statistical analyses were performed using SAS statistical software (Cary, NC USA) and 

graphs were generated using GraphPad Prism version 7.02 for Windows (GraphPad 

Software, LaJolla CA, USA).

3. Results

We efficiently screened raw WFP intake from Lake Michigan, WFP-treated pre-distribution 

water and point-of-use tapwater from locations near and around Chicago, IL (Table 1 and 
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Figure 1), for multiple types of biological activity using a tiered testing model applicable to 

water quality monitoring (Figure 2). Overall, no treated point-of-use TW sample produced 

significant responses in endocrine activity (estrogenic, androgenic, anti-androgenic or 

glucocorticoid) or cytotoxicity. Estrogenic activity and androgenic activity were detected in 

raw WFP intake samples above method detection limits (Figure 3, 4 and Tables S2, S3, and 

S4).

Estrogenic activity was detected in untreated WFP intake waters using both the T47D-KBluc 

and BLYES bioassays (Figure 3A and B). All five extract samples that produced responses 

above method detection limits for estrogenicity in the T47D-KBluc bioassay (MDL: 0.0044 

ng estradiol equivalents(E2EqT47D-KBluc)/L) also produced positive responses in the BLYES 

bioassay (MDL: 0.10 ng E2EqBLYES/L). Estrogenic activity ranged from 0.04 to 0.52 ng 

E2EqT47D-KBluc/L (Mean: 0.21 ± 0.14 SD) and 0.19 to 1.93 ng E2EqBLYES/L (Mean: 1.24 ± 

0.84). A linear regression analysis was conducted to compare the magnitude of estrogenic 

activity (ng E2Eq/L) in corresponding samples with positive detections. There was a distinct 

positive relationship between the results of the two bioassays (Figure 4; R2 = 0.82), although 

ng E2EqT47D-KBluc/L were consistently an order of magnitude lower than the corresponding 

ng E2EqBLYES/L.

In Bradley et al.(Bradley et al., 2020), many known estrogen receptor agonists were targeted 

environmental analytes and four were detected above established laboratory method 

reporting limits (Tables S5 and S6). Estrone (MRL: 0.5 ng/L) was detected in East (EC-

WFP-TW1, Sept.) and South Chicago WFP-treated pre-distribution water (CS-WFP-TW, 

Nov.), one East Chicago WFP intake (EC-WFP-UT2, Sept.), and one South Chicago point-

of-use samples extract (CS-TW-15). Both 17α-estradiol (MRL: 0.5 ng/L) and 17β-estradiol 

(MRL: 0.5 ng/L) were detected in one South Chicago pre-distribution water sample (CS-

WFP-TW1, Nov.), and Equol (MRL: 0.5 ng/L), a non-steroidal phytoestrogen, was detected 

in a South Chicago point-of-use samples extract (CS-TW-14) (Table S6).

We used the inaugural application of an androgenic activity bioassay to illustrate a model for 

water quality monitoring with endocrine bioassays (Figure 2). Androgenic activity 

(significantly higher than vehicle control) was detected in two untreated intake and two 

treated pre-distribution water samples from North and South Chicago using the CV1-chAR 

bioassay (Figure 5). All four samples with quantifiable androgenic activity contained levels 

above the bioassay MDL (0.30 ng dihydroxytestosterone equivalents(DHTEq)CV1-chAR/L). 

Activity ranged from 0.77 to 1.17 ng DHTEqCV1-chAR/L (Mean: 0.94 ± 0.16), yet no sample 

produced androgenic activity above the yeast assay MDL for androgen activity (1.3 ng 

DHTEqDSY-1555/L). Further, of the targeted androgen receptor agonist analytes assessed, 

none were reported in the water extract samples above method detection limits by Bradley et 
al. (Table S5 and S6) (Bradley et al., 2020).

The CV1-chAR bioassay can also be used in an antagonist mode, to evaluate the presence of 

compounds that might interfere with, or reduce, androgen receptor activity. No sample 

exhibited significant antagonist activity compared to the 100% maximal activity of 100 pM 

dihydrotestosterone positive control. The MDL for the CV1-chAR antagonist bioassay, 

67.10 ng OHFEq/L, was calculated using the previously reported methods (Conley et al., 
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2017b), with the exception of using the lower 95% prediction interval around the 100% 

maximal 100 pM DHT response.

The CV1 cell line transduced with the human glucocorticoid receptor (CV1-hGR) can detect 

samples with glucocorticoid activity, but no samples contained significant activity compared 

to vehicle control (MDL: 1.06 ng DexEqCV1-hGR/L). Similarly, the chemiluminescent yeast 

bioassay for glucocorticoid activity (MDL: 1.1 ng DexEqMCY-105/L) did not produce any 

positive detections for glucocorticoid activity. Of the targeted glucocorticoid receptor 

agonist analytes assessed, none were reported in the water extract samples above method 

detection limits (Table S5 and S6) (Bradley et al., 2020).

Notably, the only sample with a significant increase in cytotoxicity from the CHO bioassay 

also produced measurable levels of estradiol equivalents in both estrogenic activity bioassays 

(EC-WF-UT1-Sept). Cytotoxicity (using cytopathogenic effect) was not apparent in either of 

the estrogenic bioassays (no reduction in cell viability, no reduction in bioluminescent 

signal) which may have resulted from variations in contaminant mixtures produced by the 

respective extraction methods.

4. Discussion

Drinking water treatment (Murray et al., 2019) and methodologies for water quality 

screening (Martin et al., 2007) continue to be developed and refined. However, isolated 

public water supply contamination events emphasize the value of specifically assessing 

treated drinking water after distribution from public water filtration plants (WFP). Aging 

water distribution infrastructure has contributed to altered water quality post-treatment in 

residential taps in Flint (2015) and Detroit, Michigan (2018) (Hyde, 2015). So in 2016, we 

conducted a pilot study to screen residential and workplace point-of-use tapwater samples 

across the US to investigate potential exposures from public water supplies (Bradley et al., 

2018). The current wastewater and water infrastructure study described herein was designed 

to limit some of the variables present in the previous study. Only one source water, Lake 

Michigan, was used to determine the occurrence as well as the potential changes in chemical 

content of water during treatment and distribution. Further, the scope of water sampling was 

limited to a few water filtration plants and to residential sites served by those treatment 

facilities.

Despite the extensive list of targeted analytes included in the current study (complete list 

reported elsewhere (Bradley et al., 2020)), we (Bradley et al., 2017; Conley et al., 2017a; 

Medlock Kakaley et al., 2020) and others (Blackwell et al., 2019; Hashmi et al., 2020; 

Könemann et al., 2018) have previously shown that bioassays, which produce a cumulative 

value for all compounds affecting a single biological endpoint, may compensate for gaps in 

the targeted analytical chemical coverage. Könemann et al. reported estrogen activity 

detections two orders of magnitude lower compared to concentrations of targeted estrogens 

in European surface water sample analyzed using both methods (Könemann et al., 2018). 

However, bioassays are frequently applied to water quality monitoring using only relatively 

small samples sets often collected from surface and/or wastewater effluent (Escher et al., 

2014; Neale et al., 2015; van der Oost et al., 2017).
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To realistically adapt bioanalytical tools to treated water quality monitoring (especially in 

the absence of robotic sample and reagent dispensing), programs must have the capacity to 

screen potentially hundreds of samples in short timeframes, and subsequently obtain results 

in real time. Considering the number of samples tested in the current study and that we 

expected little to no detectable biological activity in many of the samples (30 tapwater 

samples), a tiered screening approach was preferable over the standard dilution-response 

testing. Locations within the US (Denison et al., 2020) and Europe (Brack et al., 2015) are 

already applying bioassays to water quality monitoring and the State of California’s 

guidance document for developing standard operating procedures for applying bioassays to 

water quality monitoring recommends a similar tiered approach to screening (Denison et al., 

2020).

The tiered screening model we used is illustrated in Figure 2 using our inaugural application 

of the CV1-chAR bioassay as an example. To determine if androgenic activity was present, 

we screened all 49 samples using two sample dilutions and found only 4 samples with 

activity compared to concurrent plate vehicle control using the General Linear Model 

followed by Dunnet’s multiple comparison procedure. A secondary in vitro screen was 

conducted on the active samples only with a series of dilutions (concentration-response) to 

determine how much activity was in each sample. Using the DHT standard curves run 

concurrently with each sample, we determined all measurable activity in androgen active 

samples fell above the MDL. Although no human health EBTs have been determined for the 

CV1-chAR bioassay, all the samples fall below the previously reported EBTs for DHTEq 

established by Brand et al. for the AR-CALUX bioassay (11 ng DHTEq/L) in drinking water 

(Brand et al., 2013).

The addition of the bioassay screening components to the overall study design undoubtedly 

increased the spectrum of chemical detection. For example, in four of the five samples that 

produced estrogenic activity above MDL (CN-WFP-UT-July, CN-WFP-UT-Nov, EC-WFP-

UT1-Sept, and EC-WFP-UT2-Aug; Figure 3A and B), none of the targeted estrogen receptor 

ligands were detected above analytical method detection limits. This could result due to the 

presence of 1) ER ligands that were not included in targeted analysis, 2) analytes included in 

the targeted analysis that have not been previously identified as an ER activating compound, 

or 3) a mixture of known and/or unidentified targeted ER ligands present at individual 

concentrations below analytical detection limits. Effects-directed analysis (EDA), an 

emerging experimental approach, could mitigate these recurring issues in scenarios one and 

two (Dong et al., 2020; Dusza et al., 2019; Hashmi et al., 2020; Zwart et al., 2020). An 

alternative explanation for the discrepancies in chemical and biological detection exists in 

the creation of sample aliquots and conducting separate extraction methods. While separate 

extraction methods are necessary to prevent contamination that interferes with biological 

analysis, separate methods create inherent bias i.e., extraction methods are optimized only to 

retain compounds that will be subsequently analyzed.

Estrogenic activity was detected in two of the four WFP intakes from Lake Michigan 

(T47D-KBluc), and was comparable to estrogenic activity previously detected upstream 

(0.14 ng E2EqT47D-KBluc/L) and downstream of wastewater treatment plants (0.16 ng 

E2EqT47D-KBluc/L) (Medlock Kakaley et al., 2020), and in European surface waters (0.16 ng 
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E2EqHeLa/L) (Könemann et al., 2018). We have previously shown differences in resulting 

estradiol equivalents from the two estrogenic activity bioassays (Conley et al., 2017a), which 

may be due in part to T47D-KBluc measuring ERα and ERβ, and the BLYES bioassay 

measuring ERα activation only. Others assessing estrogenic activity with both human and 

yeast cell lines have also reported order of magnitude difference in maximum reported 

activity (Könemann et al., 2018). We have previously detected estrogenic activity in 

unfinished drinking water (pre-distribution) and treated drinking water above MDL at 0.03 

(Medlock Kakaley et al., 2020) and 0.078 ng E2EqT47D-KBluc/L (Conley et al., 2017b), 

respectively. Estrogenicity has also been reported as high as 5.2 ng E2Eq/L in treated water 

in China using estrogenic activity bioassays other than the T47D-KBluc (Shi et al., 2018), 

but treated water from the Chicago area WFPs did not contain measurable levels of 

estrogenic activity.

Previous studies that have included bioanalytical and concurrent analytical chemistry 

methods have directly compared detected biological activity to the environmental 

concentrations of estrogens by transforming each environmental concentration to biological 

equivalency values using bioassay-specific compound potency (Conley et al., 2017a; Jia et 

al., 2016; Medlock Kakaley et al., 2020; Neale et al., 2015). This type of correlation analysis 

clarifies whether the targeted and detected environmental compounds capture the entire 

measured biological activity in each sample. However, only one sample, the September 2017 

EC-WFP-UT2 water extract, produced a mean bioactivity of 0.29 ng E2Eq/L (Figure 3a) and 

contained 0.72 ng/L estrone (Table S6). The estimated T47D-KBluc bioactivity value, based 

on previously reported T47D-KBluc relative potency value for estrone (1.39) (Conley et al., 

2016), was 1.00 ng E2Eq/L for the September 2017 EC-WFP-UT2 sample.

Imperative to the value of detected biological activity in treated tapwater is the exposure 

concentration at which it is predicted to adversely affect human health, e.g. effects-based 

trigger values (EBTs). Human health EBTs have been conceived using acceptable daily 

intakes, bioassay-specific relative potency factors, and pharmacokinetic parameters (Escher 

et al., 2018a). To our knowledge a T47D-KBluc specific-EBT has not been determined using 

either method. However, Brand et al. reported an EBT of 3.8 ng E2Eq/L for drinking water 

using a similar bioassay, ER-CALUX. Although relative potency factors of ER ligands vary 

between T47D-KBluc and ER-CALUX (Brand et al., 2013; Conley et al., 2016; Houtman et 

al., 2009; Sonneveld et al., 2005), the WFP treated water pre- and post- distribution likely do 

not contain levels of estrogenic compounds that would be predicted to cause adverse effects 

assuming standard rates of ingestion (WHO, 2000).

All estrogenic activity was detected in the intake water samples, but no environmental EBT 

has been developed for the T47D-KBluc. Escher et al. used environmental quality standards 

to derive EBT for several estrogen receptor agonist bioassays, which ranged from 0.1 (ER-

CALUX) to 1.07 ng E2Eq/L (ISO-LYES) (Escher et al., 2018a). Given the variability in 

ecological EBTs, a conservative approach may be to use the predicted no effect 

concentration (PNEC) for long-term exposure to 17α-ethinyl estradiol (EE2; potent 

environmental ER agonist), 0.2 ng E2Eq/L (corrected for EE2 potency in the T47D-KBluc 

bioassay), presented by Caldwell et al (Caldwell et al., 2012; Conley et al., 2017a). 

Considering the Caldwell et al. PNEC, all samples with estrogenic activity above MDL 
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contain levels likely to adversely affect aquatic species. A major contributor of the 

estrogenic activity detected in the Lake Michigan intake water samples is likely effluent 

from municipal wastewater treatment plants (WWTP) from the densely populated 

surrounding metropolitan area. WWTPs with standard activated sludge treatment may not be 

sufficient to remove the all estrogenic activity (Kibambe et al., 2020), however advanced 

wastewater treatment technologies including ozonation and sand filtration have been shown 

to completely remove all estrogenic activity from WWTP influent (Gehrmann et al., 2018).

We applied the CV1-chAR bioassay, originally created for screening environmental 

compounds (Hartig et al., 2002; Hartig et al., 2007), to water quality screening of each water 

sample extract. The CV1-chAR bioassay contains the chimpanzee androgen receptor (AR) 

that has 99.7% overall sequence similarity to the human AR ortholog and 100% sequence 

similarity in the ligand- and DNA-binding domains (Choong et al., 1998). The 

transcriptional activation bioassay was originally designed with the non-human primate 

receptor due to patent limitations on the use of the human AR (Hartig et al., 2007). We 

previously showed that the dihydrotestosterone-mediated transcriptional activation of both 

AR orthologs were statistically the same (Hartig et al., 2007).

Since the Chicago area water samples were concentrated during extraction and subsequently 

re-diluted 1000-fold in assay media we were able to seamlessly adapt the tool to 

environmental sample evaluation with no cytotoxicity issues. Of the 49 screened samples 

(including field and lab blanks), four produced androgenic activity (median: 0.93 ng 

DHTEq/L) and were comparable to androgenic activity previously detected in the US (4.7 ng 

DHTEq/L) (Conley et al., 2017a). The androgenic activity reported by Conley et al. was 

detected in US surface waters that were historically impacted by a variety of anthropogenic 

sources (e.g. industrial, municipal, agricultural). In studies aiming to optimize effects-

directed analysis protocols, a limited number of surface water sites in the Netherlands (0.2 

ng DHTEq/L) (Zwart et al., 2020), and several surface water sites across Europe (2.7 ng 

DHTEq/L) (Tousova et al., 2017) also resulted in androgenic activity comparable to activity 

detected in the Chicago pre-distribution samples.

Despite the 10 androgen receptor agonists included in the HPLC/MS-MS analysis (Table 

S7), no androgen analytes were detected above MDLs to account for the measured in vitro 
AR activity. Similar are results presented by Tousova et al. assessing European surface and 

wastewaters. AR activity ranged 0.93–2.7 DHTEqMDA-KB2/L, but AR agonists 

concentrations were negligible leaving the bioactivity entirely unexplained (Tousova et al., 

2017). In our previous assessment of US impacted surface waters, up to 96% of the in vitro 
AR activity (MDA-KB2) was accounted for by measured testosterone, androstenedione, 

androsterone, and dihydrotestosterone environmental concentrations (Conley et al., 2017a).

There are many existing options for screening in vitro (anti)androgen activity (e.g. MDA-

KB2, GeneBLAzer, CALUX, etc.). However, the CV1-chAR bioassay had a superior Z-

factor (a simple statistic to evaluate the quality of high throughput screening assays) 

compared to androgenic activity detection methods we have used previously (Conley et al., 

2017a; Medlock Kakaley et al., 2020). On a scale of 0–1, where 0 is an unacceptable assay 

and 1 is an ideal assay (Zhang et al., 1999), the Z-factor for the CV1-chAR is 0.76, while a 

Kakaley et al. Page 12

Sci Total Environ. Author manuscript; available in PMC 2022 May 10.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



comparable assay (which uses the same mechanism of action) we have previously used for 

water quality screening was 0.32 (MDA-KB2) (Conley et al., 2019).

Although no glucocorticoid activity was detected in the WFP intake, pre-, or post-

distribution water samples, others have detected glucocorticoid receptor activity in 

wastewater effluent (Chang et al., 2007; Jia et al., 2016; Medlock Kakaley et al., 2020; 

Schriks et al., 2010; Suzuki et al., 2015; Tousova et al., 2017) and impacted surface waters 

(Tousova et al., 2017). Previously, we quantified glucocorticoid activity (above MDL) 

ranging 6.0–43 ng DexEqCV1-hGR/L in impacted surface and wastewater effluent specifically 

using the CV1-hGR bioassay (Conley et al., 2017a; Medlock Kakaley et al., 2020), although 

known glucocorticoid receptor ligands targeted in the complementary chemical analysis 

were not detected. In the comprehensive “budget balancing” exercise by Jia et al. 
triamcinolone acetonide, fluocinolone acetonide, clobetasol propionate, and fluticasone 

propionate were responsible for the majority of the detected GR activity (Jia et al., 2016). 

Discernibly all Chicago area samples fell below previously reported human health (drinking 

water) EBT of 21 (Brand et al., 2013) and 150 (Escher et al., 2015) ng DexEq/L, generated 

using the GR-CALUX bioassay.

5. Conclusions

We present a model that can expedite future testing of low activity samples (treated 

tapwater) without jeopardizing statistical stringency. Few detections of biological activity 

were identified in pre-distribution samples, but as we anticipated WFP treated post-

distribution water samples did not produce any positive detections for endocrine activity 

above MDLs, and therefore likely do not contain any estrogenic, androgenic or 

glucocorticoid active compounds at concentrations that have the potential to cause adverse 

effects in humans.
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Highlights

• Corresponding pre- and post-distribution treated water samples were assessed

• We applied a screening model for low level biological activity in water 

samples

• Inaugural use of an (anti)androgenic bioassay for water quality screening

• Estrogen and androgen activity were detected in untreated water

• No biological activity detected in tapwater above method detection limits
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Figure 1. Water sampling scheme
Three sample types were taken from sites around the Greater Chicago metropolitan area 

including untreated Lake Michigan source water (red circle), water filtration plant (WFP)-

treated pre-distribution water (green “x”), and post-distribution residential tapwater (blue 

triangle). Untreated intake and WFP-treated water was sampled at two WFPs in East 

Chicago, IN, one WFP in North Chicago, IL and one WFP in South Chicago. Residental 

post-distribution tapwater samples representing the North (n = 14) and South Chicago (n = 

16) WFPs distribution areas were also sampled.
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Figure 2. Tiered screening and statistical analysis model
for bioassays that measure endocrine activity in tapwater sample extracts. Here the model is 

presented using the CV1-chAR bioassay and Chicago area tapwater samples results. In tier 

one: Is there activity? all samples are screened with minimal dilutions and statistically 

compared to vehicle control (p > 0.05) using general linear model (GLM) and multiple 

comparison procedure (MCP). In tier two: How much activity? only active samples from tier 

one were screened again using a dilution-response to determine biological equivalency 

values (BioEq). Each sample BioEq is then compared to the bioassay method detection limit 

(MDL) and relevant trigger value.
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Figure 3. Estrogenic activity
was measured in extract samples from untreated Lake Michigan intakes, WFP treated pre-

distribution waters, and post-distribution waters using the A) T47D-KBluc (biological 

replicate data is shown as mean ± standard deviation) and B) BLYES bioassays. Method 

detection limit (MDL) for T47D-KBluc was 0.0044ng E2Eq/L and 0.1 ng E2Eq/L for 

BLYES assay.
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Figure 4. Estrogenic bioassay comparison
using estrogenic activity detected in water sample extracts. T47D-KBluc and BLYES 

bioassays are compared through linear regression analysis where y = 0.0439x + 0.0640 and 

R2 = 0.82.
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Figure 5. Androgenic activity
was measured in extract samples from untreated Lake Michigan, WFP treated pre-

distribution, and post-distribution waters using a CV1-chAR bioassay. Biological replicate 

data is shown as mean ± standard deviation and method detection limit (MDL) was 0.30 ng 

DHTEq/L.
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Table 1.

Greater Chicago Area Sampling Site Locations, Dates, and Descriptions

Site Identifier Sample Date Site Location/Description

CN-WFP-UT July 2017 Lake Michigan Intake

CN-WFP-UT November 2017 Lake Michigan Intake

CN-WFP-TW July 2017 Water Filtration Plant Pre-Distribution Effluent

CN-WFP-TW November 2017 Water Filtration Plant Pre-Distribution Effluent

CN-TW-1 December 2017 Residential Treated Tapwater

CN-TW-2 November 2017 Residential Treated Tapwater

CN-TW-3 November 2017 Residential Treated Tapwater

CN-TW-4 December 2017 Residential Treated Tapwater

CN-TW-5 November 2017 Residential Treated Tapwater

CN-TW-6 November 2017 Residential Treated Tapwater

CN-TW-7 November 2017 Residential Treated Tapwater

CN-TW-8 December 2017 Residential Treated Tapwater

CN-TW-9 November 2017 Residential Treated Tapwater

CN-TW-10 November 2017 Residential Treated Tapwater

CN-TW-11 November 2017 Residential Treated Tapwater

CN-TW-12 November 2017 Residential Treated Tapwater

CN-TW-13 November 2017 Residential Treated Tapwater

CN-TW-14 December 2017 Residential Treated Tapwater

CS-WFP-UT July 2017 Lake Michigan Intake

CS-WFP-TW July 2017 Water Filtration Plant Pre-Distribution Effluent (Field Blank)

CS-WFP-TW July 2017 Water Filtration Plant Pre-Distribution Effluent

CS-WFP-TW November 2017 Water Filtration Plant Pre-Distribution Effluent

CS-TW-1 December 2017 Residential Treated Tapwater

CS-TW-2 December 2017 Residential Treated Tapwater

CS-TW-3 December 2017 Residential Treated Tapwater

CS-TW-3 December 2017 Residential Treated Tapwater

CS-TW-4 December 2017 Residential Treated Tapwater

CS-TW-5 December 2017 Residential Treated Tapwater

CS-TW-6 December 2017 Residential Treated Tapwater

CS-TW-7 December 2017 Residential Treated Tapwater

CS-TW-8 December 2017 Residential Treated Tapwater

CS-TW-9 December 2017 Residential Treated Tapwater

CS-TW-10 December 2017 Residential Treated Tapwater

CS-TW-11 December 2017 Residential Treated Tapwater

CS-TW-12 November 2017 Residential Treated Tapwater

CS-TW-13 November 2017 Residential Treated Tapwater

CS-TW-14 November 2017 Residential Treated Tapwater

CS-TW-15 November 2017 Residential Treated Tapwater

CS-TW-16 November 2017 Residential Treated Tapwater
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Site Identifier Sample Date Site Location/Description

EC-WFP-UT1 August 2018 Lake Michigan Intake

EC-WFP-UT1 September 2017 Lake Michigan Intake

EC-WFP-UT1 September 2017 Lake Michigan Intake (Field Blank)

EC-WFP-TW1 August 2018 Water Filtration Plant Pre-Distribution Effluent

EC-WFP-TW1 August 2018 Water Filtration Plant Pre-Distribution Effluent (Field Blank)

EC-WFP-TW1 September 2017 Water Filtration Plant Pre-Distribution Effluent

EC-WFP-UT2 August 2018 Lake Michigan Intake

EC-WFP-UT2 September 2017 Lake Michigan Intake

EC-WFP-TW2 August 2018 Water Filtration Plant Pre-Distribution Effluent

EC-WFP-TW2 September 2017 Water Filtration Plant Pre-Distribution Effluent

Each sampling event is identified with a three alpha-numeric element identifier; where the first element represents the geographical location (CN: 
Chicago North; CS: Chicago South; and EC: East Chicago, Indiana), the second indicates if the sample was collected pre-distribution (WFP: Water 
Filtration Plant) or post-distribution (TW), and the third indicates if the samples was untreated intake water (UT), or treated water (TW, or 
residence-specific numeric identifier). Two East Chicago WFPs were sampled and each East Chicago sample ends in a 1 or 2 indicating which 
plant was sampled.
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