
Am J Cancer Res 2021;11(4):1226-1246
www.ajcr.us /ISSN:2156-6976/ajcr0127301

Original Article
Comprehensive analysis of multi-omics data of  
recurrent gliomas identifies a recurrence-related  
signature as a novel prognostic marker

Qiang-Wei Wang1,2, Zheng Zhao2,3, Zhao-Shi Bao2,4, Tao Jiang2,3,4, Yong-Jian Zhu1

1Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 
310009, China; 2Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), 
Beijing 100070, China; 3Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China; 4De-
partment of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China

Received November 30, 2020; Accepted February 1, 2021; Epub April 15, 2021; Published April 30, 2021

Abstract: Tumor recurrence is a common clinical dilemma in diffuse gliomas. We aimed to identify a recurrence-re-
lated signature to predict the prognosis for glioma patients. In the public Chinese Glioma Genome Atlas dataset, we 
enrolled multi-omics data including genome, epigenome and transcriptome across primary and recurrent gliomas. 
We included RNA sequencing data from the batch 1 patients (325 patients) as the training set, while RNA sequenc-
ing data from the batch 2 patients (693 patients) were selected as the validation set. The R language was used 
for subsequent analysis. Compared with primary gliomas, more somatic mutations and copy number alterations 
were revealed in recurrent gliomas. In recurrent gliomas, we identified 113 genes whose methylation levels were 
significantly different from those of the primary glioma. Through differential expression analysis between primary 
and recurrent gliomas, we screened 121 recurrence-related genes. Based on these 121 gene expression profiles, 
consensus clustering of 325 patients yielded two robust groups with different molecular and prognostic features. 
We developed a recurrence-related risk signature with the lasso regression algorithm. High-risk group had shorter 
survival and earlier tumor recurrence than the low-risk group. Compared with traditional indicators, the signature 
showed better prognostic value. In addition, we constructed a nomogram model to predict glioma survival. Function-
al characteristics analysis found that the signature was associated with cell division and cell cycle. Immune analysis 
suggested that immunosuppressive status and macrophages might promote glioma recurrence. We demonstrated 
a novel 18-gene signature that could effectively predict recurrence and prognosis for glioma patients.
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Introduction

Gliomas are one of the most refractory diseas-
es in the world, accounting for the highest pro-
portion of primary malignancies in the central 
nervous system. Compared with lower grade 
glioma (LGG, WHO II-III), glioblastoma (GBM, 
WHO Grade IV) has the highest fatality rate [1]. 
The current maximum surgical resection com-
bined with standard chemoradiotherapy only 
prolongs the median survival of patients with 
GBM to 14.6 months [2, 3]. In 2016, the con-
cept of molecular classification was included 
for the first time in WHO tumor classification  
of central nervous system [4]. Combined tradi-
tional histopathology with the alteration of IDH 

and chromosome 1p/19q, diffuse gliomas were 
classified into 5 subtypes: LGG with IDH-mutant 
and 1p/19q-codeleted, LGG with IDH-mutant 
and 1p/19q-intact, LGG with IDH-wildtype, GBM 
with IDH-mutant, GBM with IDH-wildtype. Each 
subtype shows specific clinical and prognostic 
characteristics [5].

Due to tumor invasion, heterogeneity and treat-
ment resistance, tumor recurrence has become 
the ultimate dilemma for glioma patients. And 
most LGG generally progress to aggressive 
GBM within 10 years, leading to treatment fail-
ure and poor prognosis [4, 6]. Genomic altera-
tions that drive glioma recurrence are different 
from those in the initial tumor and increasing 
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studies have focused on the evolving genetic 
landscape of glioma from primary to recur-
rence. With whole exome sequencing, Johnson 
et al. detected that more than half of the muta-
tions in the initial tumor disappeared when the 
43% of tumor recurred [7]. Through genetic 
analysis of matched primary and recurrent 
GBM, Kim et al. observed that recurrent glio-
blastoma had more genetic variation in the 
core driver pathway than primary glioblastoma 
[8]. Meanwhile, changes in gene expression 
levels are also observed in recurrent gliomas 
compared to primary tumors. Through immuno-
histochemical analysis in recurrent GBM, Stark 
et al. revealed that MLH1 expression was sig-
nificantly down-regulated [9]. Moreover, recur-
rent glioblastomas were characterized by down-
regulation of p53 and MSH2 [10]. Increasing 
studies have begun to identify key genes as 
recurrence biomarkers. Deng et al. identified 
10 key genes and underlying molecular mecha-
nisms in recurrent LGGs [11]. Jun et al. found 
that WWP2 could potentially predict recurrence 
in glioma patients [12]. Genomic variation is 
closely related to glioma recurrence, but recur-
rence-related genes have not been systemati-
cally analyzed.

Our study integrated multi-omics data including 
genome, epigenome and transcriptome across 
primary and recurrent gliomas. And we scre- 
ened differentially expressed genes between 
primary and recurrent gliomas and found that 
these genes could cluster glioma patients into 
groups with distinct clinical and molecular char-
acteristics. Next, we built a recurrence-related 
signature with the CGGA_325 dataset and 
used CGGA_693 as the validation dataset. 
Then we verified recurrence-related signature 
as an independent prognostic indicator with 
good predictive power. An individualized nomo-
gram model, integrating signature, grade and 
1p/19q codeletion, was constructed to predict 
1-year, 3-year and 5-year OS survival for glioma 
patients. By analyzing the biological functions 
with DAVID and GSEA method, we found that 
the signature was closely related to the malig-
nancy of cancer, covering cell division and 
cycle. Finally, immune microenvironment analy-
sis suggested that immunosuppressive status 
and macrophages might promote glioma recur-
rence. To summarize, our research might con-
tribute to the understanding of glioma recur-
rence and personalized precision treatment.

Methods

Data collection

We downloaded RNA sequencing data and clini-
copathological information of two batches of 
glioma samples from the public Chinese Glioma 
Genome Atlas (CGGA) dataset (http://www.
cgga.org.cn) [13, 14]. The batch 1 (CGGA_325) 
included 325 gliomas as the training set, and 
the batch 2 (CGGA_693) included 693 gliomas 
as the validation set. Whole exome sequencing 
(WEseq) data of 286 glioma samples were col-
lected from the CGGA dataset, including 180 
primary gliomas and 106 recurrent gliomas. 
SAVI2 software was used to identify somatic 
mutations as previously mentioned [6] and 
CNVkit software was used to call copy number 
alterations [15]. Genome-wide DNA methyla-
tion microarray (methyl-array) data of 151 glio-
ma samples from CGGA dataset were enrolled 
in our study, including 133 primary gliomas and 
18 recurrent gliomas. Two neuropathologists 
jointly confirmed and issued the pathological 
reports according to the WHO classification of 
CNS tumors in 2016. Overall survival (OS) was 
defined from surgery to death or last follow-up. 
Progression-free survival (PFS) was calculated 
from surgery to tumor recurrence or last follow-
up date on which the patient was known to be 
progression-free [16]. The CGGA dataset was 
approved by the Beijing Tiantan Hospital Capital 
Medical University Institutional Review Board 
(IRB KY2013-017-01), and all patients signed 
the informed consent [17].

IDH1/2 mutations

IDH1/2 mutations of patients from CGGA data-
sets were detected by pyrosequencing tech-
nique or whole exome sequencing technique 
(WES) [18, 19].

Screening of differential expressed genes and 
consensus clustering

Using RNA sequencing data from CGGA_325 
dataset, we screened 121 differentially ex- 
pressed genes (fold change > 2 or < 0.5 and  
p value of Student’s t test < 0.05) between pri-
mary and recurrent gliomas. These genes are 
used for subsequent consensus clustering with 
R package “ConsensusClusterPlus”. The opti-
mal number of unsupervised classes in 325 
patients from the CGGA_325 dataset was 
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determined by cumulative distribution function 
(CDF) and consensus matrices [20].

Signature development

We performed univariate Cox regression analy-
sis with 121 genes and screened 108 genes 
related to prognosis (P < 0.05). Our signature 
was developed from the Least Absolute Sh- 
rinkage and Selection Operator (LASSO) regr- 
ession algorithm [21]. Based on 10-fold cross-
validation within the CGGA_325 dataset, the 
penalty parameter λ was chosen to produce the 
minimum mean cross-validated error for the 
Cox model. Thus we obtained 18 genes with 
corresponding regression coefficients. The risk 
score of each patient in CGGA_325 validation 
set was calculated using a linear combination 
of signature gene expression weighted by their 
regression coefficients. Risk score = (exprgene1 × 
coefficientgene1) + (exprgene2 × coefficientgene2) + 
… + (exprgene18 × coefficientgene18). In the 
CGGA_693 validation set, we used regression 
coefficients from CGGA_325 dataset to calcu-
late the risk score. We divided patients into 
high- and low-risk groups using the median risk 
score.

DAVID functional annotation and gene set en-
richment analysis (GSEA)

We filtered genes that were significantly associ-
ated with risk scores (Pearson |R| > 0.5, P < 
0.05) in CGGA_325 dataset. And then we per-
formed Gene ontology (GO) analysis and KEGG 
pathway analysis with positively or negatively 
associated genes in DAVID (https://david.ncif-
crf.gov/) [22]. We performed Gene set enri- 
chment analysis (GSEA) to find enriched func-
tions with GSEA 4.0.1 software (http://www.
broadinstitute.org/gsea/index.jsp) [23]. Gene 
sets ranged from 15 to 500 in size and the 
number of permutations was 1000. Generally, 
the enrichment is significant when |NES| > 1 
and NOM p-value < 0.05.

Single-cell RNA sequencing (scRNA-seq)

Two IDH-wild glioblastoma samples were col-
lected from Beijing Tiantan Hospital, Capital 
Medical University and fresh tumor samples 
were digested with trypsin to obtain cell sus-
pension. The cell viability reached 80% and the 
cell number reached 5 × 105 for the next step 
of library construction. The Chromium Single 

Cell 3’ Library and Gel Bead kit v2 (120267, 10 
× Genomics) were used to construct cDNA 
libraries. Single-cell RNA sequencing was per-
formed on Illumina HiSeq platform and data 
output was processed with Cell Ranger (v3.0.2, 
10 × Genomics). UMAP (Uniform Manifold Ap- 
proximation and Projection) was used for 
dimension reduction and cell subtypes were 
identified by cell-specific markers. InferCNV 
was performed to access chromosomal copy 
number variation with single-cell RNA expres-
sion data by exploring the intensity of gene 
expression in the tumor genome compared to 
reference “normal” cells.

Statistical analysis

R software (version 3.6.1, https://www.r-proje- 
ct.org/) was mainly used for statistical analy-
sis. We evaluated the prognostic significance 
with Kaplan-Meier survival curve and two-sid- 
ed log-rank test. Clinicopathological differenc-
es were accessed by Student’s t-test or Chi-
square test. We used coxph function in “sur-
vival” package for univariate and multivariate 
cox regression analysis. Time-dependent ROC 
curve (timeROC) was drawn with an R pack- 
age “timeROC” to predict one-, three- and five-
year survival time of patients [24, 25]. The 
nomogram model we constructed was obtain- 
ed by integrating signature and pathological 
indicators using R package “rms”. CIBERSORT 
[26] was performed to assess the abundance 
of cell types and “macrophages” were the sum 
of M0, M1 and M2 macrophages. Other figures 
were drawn with R packages, including Com- 
plexHeatmap, gglpot2, pheatmap, Hmisc and 
circlize. Values of P < 0.05 were considered 
significant.

Results

Different patterns of genomic alterations be-
tween primary and recurrent gliomas

To investigate the genetic heterogeneity be- 
tween primary and recurrent gliomas, we ana-
lyzed somatic mutations and copy number 
alterations from CGGA dataset. By comparing 
the frequency of mutations in primary and 
recurrent gliomas, more somatic mutations 
were found in recurrent gliomas (primary vs. 
recurrent, 33 vs. 92 mutations per person). In 
Figure 1A, we showed the genes which was 
most commonly mutated in gliomas, like IDH1, 
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Figure 1. Genomic alterations and methylation differences in primary and recurrent gliomas. A. Somatic mutations and copy number alterations analysis in primary 
and recurrent gliomas of CGGA dataset. Chi-square test, *P < 0.05. B. Genes in recurrent gliomas with different DNA methylation compared to primary gliomas. C. 
RNA expression of 5 genes was significantly negatively correlated with methylation level by the Pearson correlation coefficient.
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TP53, ATRX, CIC, NOTCH1, EGFR, FUBP1, PD- 
GFRA, PTEN, PIK3CA, PIK3CG, PIK3R1, NF1, 
MET, LTBP4, CDKN2A, RB1 and PTPN11. And 
most of these genes show an increased ten-
dency of mutation in recurrent gliomas. Mu- 
tations in EGFR were significantly enriched in 
recurrent gliomas (Chi-square test, p value < 
0.05). EGFR was a transmembrane protein, 
which could transmit important extracellular 
growth factor signals into cells. Mutation or 
amplification in EGFR promoted the develop-
ment of tumors, especially in lung cancer and 
gliomas [27, 28].

In addition to somatic mutations, we also ana-
lyzed copy number alterations in primary and 
recurrent gliomas. More copy number altera-
tions were revealed in recurrent gliomas (pri-
mary vs. recurrent, 2025 vs. 2135 CNAs per 
person). In the bottom half of Figure 1, we 
showed the most common copy number altera-
tions in gliomas. Deleted or amplified regions 
were the most frequently identified in recurrent 
gliomas, such as CDKN2A, CDKN2B, MLLT3, 
RB1, LCP1, CACNA1D and RAD21 (Chi-square 
test, P < 0.05).

Differences in DNA methylation between pri-
mary and recurrent gliomas

To investigate the changes of DNA methylation 
in recurrent gliomas, we analyzed gene methyl-
ation profiles. In recurrent gliomas, we screened 
88 genes whose methylation levels were down-
regulated (Fold change < 1, P < 0.01) and 25 
genes whose methylation levels were up-regu-
lated (Fold change > 1, P < 0.01, Figure 1B). 
Among them, the RNA expression and methyla-
tion level of 5 genes were significantly nega-
tively correlated (Figure 1C), including AHR (Cor 
= -0.28, P = 0.002), BAZ1A (Cor = -0.26, P = 
0.003), DDA1 (Cor = -0.24, P = 0.008), IFI16 
(Cor = -0.24, P = 0.007), CD48 (Cor = -0.21, P = 
0.024).

Gliomas were stratified based on a set of 
recurrence-related genes

To understand the RNA expression level in 
recurrent gliomas, we collected RNA sequenc-
ing data of 325 gliomas from CGGA dataset 
(CGGA_325, batch 1). CGGA_325 dataset in- 
cluded 229 primary gliomas and 92 recurrent 
gliomas (4 unknown). Based on the threshold of 
fold change > 2 or < 0.5 and p value of Student’s 

t test < 0.05, 121 differentially expressed gen- 
es between primary and recurrent gliomas 
were screened, including 70 down-regulated 
genes and 51 up-regulated genes (Figure 2A). 
Between k = 2 and k = 10, consensus cluster-
ing of 325 glioma patients identified two stable 
subgroups (Figures 2B-D and S1). Figure 2E 
showed a heatmap of two subgroups defined by 
121 differentially expressed genes. The surviv-
al curve revealed that Group 2 lived significant-
ly longer than Group 1 (P < 0.0001, Figure 2F). 
We also observed significant clinicopathologi-
cal differences in two groups of glioma patients 
(Table 1). More patients in Group 1 were linked 
with recurrent status, older age at diagnosis, 
mesenchymal or classical subtypes, GBM, IDH 
wild-type and 1p/19q non-codeletion (P < 
0.001), while more patients in Group 2 were pri-
mary, younger, proneural or neural subtypes, 
lower grade, IDH mutant, 1p/19q co-deleted (P 
< 0.001). These results suggested a correlation 
between recurrence-related genes expression 
and prognosis, as well as clinicopathology of 
glioma patients.

Identification of a recurrence-related prognos-
tic signature in gliomas

Since recurrence-related genes expression we- 
re closely associated with patient prognosis, 
we intended to construct a recurrence-related 
signature for prognosis prediction. First, we 
screened 108 prognostic genes out of the dif-
ferential genes with univariate regression anal-
ysis in the CGGA_325 dataset (P < 0.05). Then, 
we screened 18 genes as active covariables 
through LASSO algorithm (Figure 3A) and 
regression coefficients of 18 genes were shown 
in Figure 3B. We then built an 18-gene risk sig-
nature with gene expression level and regres-
sion coefficients. The algorithm was as follows: 
signature risk score = (HOXA10 * 0.092) + 
(HOXD9 * 0.075) + (OR2I1P * 0.072) + (RP11-
277P 12.20 * 0.056) + (ZNF560 * 0.053) + 
(FOXM1 * 0.030) + (TRH * 0.027) + (RP11-
93B14.5 * 0.019) + (SNORD3B-2 * 0.018) + 
(AC062021.1 * -0.039) + (KCNJ11 * -0.042) + 
(AC053503.11 * -0.044) + (GS1-18A18.1 * 
-0.071) + (RP11-47I22.1 * -0.094) + (PRLHR * 
-0.125) + (CD8BP * -0.136) + (KSR2 * -0.206) 
+ (INHBA-AS1 * -0.314). Then we divided 
patients into high- and low-risk groups accord-
ing to the median risk score, and found signifi-
cant differences in clinicopathological features 
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(Figure 3C and Table 2). Compared to the low-
risk group (16%), more recurrent patients were 

found in high-risk group (42%, P < 0.001). 
Patients were older in high-risk group (mean 

Figure 2. Recurrence-related genes classified glioma patients with distinct prognostic and clinical characteristics. A. 
The volcano plot showed the differentially expressed genes between primary and recurrent gliomas in CGGA_325 
dataset (fold change > 2 or < 0.5 and p value of Student’s t test < 0.05). Red dots, up-regulated genes; blue dots, 
down-regulated genes. B. Consensus clustering matrix of samples from CGGA_325 dataset for k = 2 and 3. C. CDF 
value of consensus clustering for k from 2 to 10. D. The relative change in the area under CDF curve for k from 2 to 
10. E. Heatmap of the two subgroups defined by 121 recurrence-related genes. F. Kaplan-Meier survival curve of 
patients from Group 1 and Group 2.
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age = 45) than in low-risk group (mean age = 
41, P = 0.006). Compared with low-risk group 
(17%), a large number of patients with GBM 
(WHO IV) were found in the high-risk group 
(71%, P < 0.001). Furthermore, classical and 
mesenchymal subtypes were found in 72% of 
high-risk patients and 15% of low-risk patients 
(P < 0.001). Moreover, IDH mutation appeared 
in 32% of high-risk patients and 76% of low-risk 

value. Survival curve showed that the low-risk 
patients had significantly longer overall surviv- 
al than high-risk patients (P < 0.0001, Figure 
5A). Then we observed that the survival differ-
ence was also significant in lower grade glioma 
(LGG) or GBM (P < 0.001). In 2016, the latest 
classification of the CNS tumor combined tradi-
tional histopathology with the status of IDH and 
1p/19q, gliomas were divided into five sub-

Table 1. Characteristics of patients in group 1 and group 
2 in CGGA_325 dataset
Characteristics n G1 G2 P-value
Total Cases 325 190 135
PR_type
    Primary 229 116 113 < 0.001
    Recurrent 92 70 22
    NA 4 4 0
Age
    Mean (range) 43 (8-79) 45 (8-79) 40 (17-61) < 0.001
Gender
    Female 122 65 57 0.176
    Male 203 125 78
TCGA subtype
    Proneural 102 41 61 < 0.001
    Neural 81 15 66
    Classical 74 68 6
    Mesenchymal 68 66 2
Grade
    II 103 13 90 < 0.001
    III 79 48 31
    IV 139 125 14
    NA 4 4 0
IDH status
    Mutant 175 59 116 < 0.001
    Wildtype 149 131 18
    NA 1 0 1
1p/19q status
    Codel 67 4 63 < 0.001
    Noncodel 250 180 70
    NA 8 6 2
Radio_status
    Yes 258 143 115 0.035
    No 51 37 14
    NA 16 10 6
Chemo_status
    Yes 178 119 59 0.001
    No 124 59 65
    NA 23 12 11

patients (P < 0.001), while 1p/19q 
codeletion appeared in 2% and 39% of 
high-risk and low-risk patients (P < 
0.001).

Correlation between recurrence-relat-
ed signature and pathological features 
in gliomas

Next, we compared the risk scores of 
patients with distinct pathological fea-
tures (Figure 4A). As the WHO grade 
increased, the risk score increased sig-
nificantly (P < 0.0001). Moreover, risk 
score was higher in patients with wild 
IDH or 1p/19q non-codeletion signifi-
cantly (P < 0.0001). For CGGA_693 
validation dataset, we also built the risk 
score for each patient with 18-gene 
regression coefficients from the train-
ing set. The results of the validation  
set were consistent with the above 
results (Figure S2, Table 2 and Figure 
4B). Then, ROC curve was used to ana-
lyze the specificity and sensitivity of 
recurrence-related signature to predict 
pathological features in two datasets 
(Figure 4C and 4D). Our signature risk 
score could well predict glioma grade 
(AUC 0.801 or 0.807 in CGGA_325 or 
CGGA_693), IDH mutation status (AUC 
0.750 or 0.763) and 1p/19q co-dele-
tion status (AUC 0.930 or 0.841), whi- 
ch was better than age and gender. 
Briefly, these findings showed that the 
recurrence-related signature was clo- 
sely associated with pathological fea-
tures in gliomas.

Prognostic analysis of the recurrence-
associated signature

Considering the correlation between 
signature and pathological features,  
we further evaluated its prognostic 
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types [4]. Due to different clinical outcome of 
five glioma subtypes, we further evaluated in 
the five various populations and found excel-
lent performance of our signature (P < 0.05). 
Similarly, we evaluated prognostic value of sig-
nature in the CGGA_693 validation group, and 
the survival curve showed consistent results (P 
< 0.05, Figure S3A).

Next, we further evaluated the predictive value 
of signature for glioma recurrence. We collect-
ed the progression-free survival (PFS) of pati- 

ents and the Kaplan-Meier curve indicated that 
the PFS of low-risk patients was significantly 
longer than that of high-risk patients (P < 
0.001, Figure 5B). Dividing patients into LGG or 
GBM, or subdividing them into five subtypes, 
we still got consistent results. Meanwhile, we 
validated in the CGGA_693 dataset (Figure 
S3B).

Subsequently, univariate and multivariate an- 
alyses showed that recurrence-related signa-
ture could serve as a prognostic indicator, in- 

Figure 3. Development of a recurrence-related signature by LASSO analysis. A. Partial likelihood deviance as func-
tion of regularization parameter λ in the CGGA_325 training dataset. B. 18 genes screened by LASSO and corre-
sponding regression coefficients. C. Heatmap and clinicopathological features of patients grouped by signature. 
**P < 0.01, ***P < 0.001, ****P < 0.0001. Abbreviations: RS, Risk Score; IDH, isocitrate dehydrogenase.
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dependent of age, gender, WHO grade, IDH mu- 
tation and 1p/19q codeletion in both CGGA_ 
325 and CGGA_693 datasets (P < 0.0001, 
Table 3).

A survival prediction model based on recur-
rence-related signature

Furthermore, we investigated the power of sig-
nature in predicting 1-year, 3-year and 5-year 
survival of glioma patients with the “timeROC” 
algorithm. We also included traditional indi- 
cators for comparison. The 1-year, 3-year and 
5-year AUC values of recurrence-related sig- 
nature were 0.8389, 0.8964 and 0.9234 (Fi- 
gure 6A), respectively, superior to age (0.6019, 
0.6551 and 0.6627) and grade (0.7648, 
0.8477 and 0.8557). In the CGGA_693 valida-

tion group, the 1-year, 3-year and 5-year AUC 
values of recurrence-related signature were 
0.7481, 0.8284 and 0.8401, superior to age 
(0.6102, 0.6277 and 0.5900) and grade 
(0.7466, 0.7766 and 0.7679) (Figure S4A). Th- 
ese results illustrated the power of our signa-
ture to predict prognosis of glioma patients.

Then a nomogram model was constructed 
using independent prognostic indicators (risk 
score, grade, 1p/19p) in Cox regression analy-
sis (Figures 6B and S4B). In CGGA_325 and 
CGGA_693 dataset, the C-indices of the model 
were 0.804 and 0.772 respectively. Moreover, 
the calibration curve for probability of survival 
also revealed satisfactory consistency with the 
predictions for 1-year, 3-year and 5-year OS in 
two datasets (Figure 6C).

Table 2. Correlation between 18-gene-based risk scores and clinicopathological factors of glioma 
patients in the two cohorts

Characteristics
Training set CGGA_325 cohort Validation set CGGA_693 cohort

Low-risk group 
(n = 163)

High-risk group 
(n = 162) P-Value Low-risk group 

(n = 347)
High-risk group 

(n = 346) P-Value

PR_type
    Primary 137 92 < 0.001 240 182 < 0.001
    Recurrent 26 66 107 164
    NA 0 4 0 0
Age
    Mean (range) 41 (17-74) 45 (8-79) 0.006 41 (11-69) 45 (13-76) < 0.001
Gender
    Female 66 56 0.323 156 139 0.232
    Male 97 106 191 207
TCGA subtype
    Proneural 65 37 < 0.001 NA NA
    Neural 73 8 NA NA
    Classical 16 58 NA NA
    Mesenchymal 9 59 NA NA
Grade
    II 93 10 < 0.001 150 38 < 0.001
    III 43 36 150 105
    IV 27 112 46 203
    NA 0 4 1 NA
IDH status
    Mutant 123 52 < 0.001 247 109 < 0.001
    Wildtype 39 110 61 225
    NA 1 0 39 12
1p/19q status
    Codel 64 3 < 0.001 129 16 < 0.001
    Noncodel 96 154 195 283
    NA 3 5 23 47
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Figure 4. Association between risk score (RS) and pathological characteristics (Grade, IDH mutation and 1p/19q 
codeletion). Differences in the distribution of risk score (RS) among patients with different pathological character-
istics in CGGA_325 dataset (A) and CGGA_693 dataset (B). ROC curves revealed the predictive value of risk score, 
age and gender for pathological characteristics (Grade, IDH mutation and 1p/19q codeletion) in CGGA_325 dataset 
(C) and CGGA_693 dataset (D). ****P < 0.0001.
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Functional annotation of recurrence-related 
signature

To reveal underlying functional characteristics 
of signature, we performed Gene Ontology (GO) 
analysis in DAVID with CGGA_325 dataset. 
First, we performed Pearson correlation and 
screened genes related to signature (1875  
positively and 951 negatively related genes, 
Pearson |R| > 0.5, P < 0.05). Positively related 
genes were linked to biological processes of 
tumor cell proliferation, covering “cell division”, 
“mitotic nuclear division”, “DNA replication”, 
“sister chromatid cohesion”, “G1/S transition 
of mitotic cell cycle” and so on (Figure 7A). And 
negatively related genes were enriched in the 
biological processes of normal neural function, 
such as “chemical synaptic transmission”, 
“neurotransmitter secretion”, “ion transmem-
brane transport”, “learning”, and “glutamate 
secretion” (Figure 7C).

In addition, DAVID also showed the enrichment 
of KEGG pathway. We noticed positively related 
genes were mainly enriched in the KEGG path-
way including “cell cycle”, “protein processing 

in endoplasmic reticulum”, “focal adhesion”, 
and “ECM-receptor interaction” (Figure 7B). 
And negatively related genes were involved  
in “neuroactive ligand-receptor interaction”, 
“retrograde endocannabinoid signaling”, “GA- 
BAergic synapse”, and “glutamatergic synapse” 
(Figure 7D). We further verified the above 
results in CGGA_693 dataset (Figure S5).

Finally, GSEA analysis was performed to verify 
functional differences among different pati- 
ents. GO terms of cell cycle were found to be 
enriched in the high-risk group, including 
“mitotic cell cycle checkpoint” (NES = 1.958, 
Nominal P < 0.001), “regulation of cell cycle 
phase transition” (NES = 1.938, Nominal P < 
0.001), and “regulation of cell cycle G1 S phase 
transition” (NES = 1.933, Nominal P < 0.001, 
Figure 7E). Whereas in the low-risk group, GO 
terms including “regulation of postsynaptic 
membrane potential” (NES = -1.888, Nominal  
P = 0.002), “ligand gated ion channel activity” 
(NES = -1.825, Nominal P < 0.001), and “gluta-
mate receptor signaling pathway” (NES = 
-1.843, Nominal P < 0.001) were significantly 
enriched (Figure 7F).

Figure 5. Survival prediction of the recurrence-related signature in CGGA_325 dataset. A. Overall survival prediction 
of the signature in all grade gliomas, lower grade gliomas (LGG, grade II and III), glioblastoma (GBM, grade IV), LGG 
with IDH-mutant and 1p/19q-codeleted, LGG with IDH-mutant and 1p/19q-intact, LGG with IDH-wildtype, GBM with 
IDH-mutant, GBM with IDH-wildtype. B. Progression free survival prediction of the signature in all grade gliomas, 
lower grade gliomas (LGG, grade II and III), glioblastoma (GBM, grade IV), LGG with IDH-mutant and 1p/19q-codelet-
ed, LGG with IDH-mutant and 1p/19q-intact, LGG with IDH-wildtype, GBM with IDH-mutant, GBM with IDH-wildtype. 
Survival difference was determined by a log-rank test.

Table 3. Variables related to OS in gliomas: univariate and multivariate analysis

CGGA325
Univariate Cox Regression Multivariate Cox Regression

HR 95% CI p Value HR 95% CI p Value
Gender (male vs. female) 0.930 0.707-1.223 0.602
Age (≥45 vs. < 45) 1.990 1.518-2.610 6.39e-07* 1.316 0.971-1.784 0.076
Grade (GBM vs. LGG) 4.821 3.586-6.481 < 2e-16* 1.987 1.402-2.816 0.0001*
IDH (wild vs. mutant type) 2.848 2.155-3.765 1.89e-13* 0.8233 0.581-1.168 0.275
1p/19q (non-codel vs. codel) 5.978 3.663-9.755 8.28e-13* 3.0347 1.776-5.186 4.91e-05*
Risk score (high vs. low) 6.159 4.538-8.357 < 2e-16* 3.1822 2.179-4.647 2.09e-09*

CGGA693
Univariate Cox Regression Multivariate Cox Regression

HR 95% CI p Value HR 95% CI p Value
Gender (male vs. female) 1.012 0.826-1.241 0.907
Age (≥45 vs. < 45) 1.808 1.477-2.213 9.19e-09* 1.314 1.044-1.652 0.020*
Grade (GBM vs. LGG) 3.979 3.227-4.906 < 2e-16* 1.996 1.506-2.646 1.55e-06*
IDH (wild vs. mutant type) 3.238 2.616-4.009 < 2e-16* 1.326 1.006-1.747 0.045*
1p/19q (non-codel vs. codel) 3.806 2.713-5.339 1.02e-14* 1.742 1.180-2.572 0.005*
Risk score (high vs. low) 4.375 3.503-5.464 < 2e-16* 2.443 1.839-3.245 6.97e-10*
HR, hazard ratio; CI, confidence interval; *Significant.
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Recurrence-related signature was associated 
with the tumor immune microenvironment

Considering the association between tumor 
recurrence and immune microenvironment [29, 

30], we included immune checkpoint genes for 
analysis. In Figures 8A and S6A, circus plots 
showed recurrence-related signature was posi-
tively associated with immune checkpoint 
genes (LAG3, CTLA4, PD-L1, B7-H3, PD1, IDO1, 

Figure 6. A survival prediction model for glioma patients based on recurrence-related signature. A. 1-year, 3-year 
and 5-year ROC curves indicated the sensitivity and specificity of signature risk score, age and grade in CGGA_325 
dataset. B. A nomogram prediction model was developed by integrating the signature RS with the pathologic fea-
tures in the CGGA_325 dataset. C. Calibration curves of nomogram for predicting overall survival at 1-year (black 
line), 3-year (blue line) and 5-year (red line) in the CGGA_325 and CGGA_693 dataset.
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Figure 7. Functional annotation of recurrence-related signature in CGGA_325 dataset. With Gene Ontology (GO) 
analysis in DAVID, we analyzed biological processes of signature positively related genes (A) and negatively related 
genes (C). With KEGG pathway analysis in DAVID, we also revealed the enrichment pathways of genes that were 
positively (B) or negatively (D) associated with signature. Go terms enriched in high-risk patients (E) or low-risk pa-
tients (F) were revealed through Gene set enrichment analysis (GSEA).

CD80 and TIM-3) in two datasets, revealing 
immunosuppressive status in high-risk group. 

Next, we explored which immune cell types may 
play an important mechanism. By CIBERSORT 
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analysis, we found that macrophages were  
significantly upregulated in the high-risk group 
(P < 0.05, Figures 8B and S6B). We then per-
formed single-cell RNA sequencing (scRNA-
seq) on two IDH-wildtype glioblastoma samples 
(SC1 was RS-high and SC2 was RS-low) and all 
the cells were clustered into three subgroups: 
tumor cells, macrophages and lymphocytes 
(Figure 8C). By comparing normal cells, inferC-
NV showed significant copy number variation in 
malignant cells (Figure 8D). Separately, the pro-
portion of macrophages in SC1 (45.7%) was sig-
nificantly higher than that in SC2 (19.4%) (P < 
2.2e-16, Figure 8E and 8F).

Discussion

Currently, most glioma researches have fo- 
cused on primary newly diagnosed tumors, 
while the clinical and biological characteris- 
tics of recurrent gliomas are still poorly und- 
erstood. This is due to some unavoidable rea-
sons. A minority of patients with recurrent glio-
mas are eligible for surgical treatment, result-
ing in the slow collection of these samples and 
hindering the establishment of large sample 
banks [31]. Recurrent gliomas also contain 
large areas of necrotic tissue with a small per-
centage of tumor cells [32]. The low quality of 
the samples makes subsequent testing and 
analysis difficult and biased. Although the 
Cancer Genome Atlas (TCGA) database, now 
widely used in the world, contains a large 
amount of glioma with RNA-seq data (699 glio-
mas), the recurrent gliomas are rare (only 30 
gliomas). In our study, 1,018 samples with 
RNA-seq and clinical data have been collected 
from CGGA dataset, including 363 recurrent 
gliomas (92 gliomas from CGGA RNA-seq batch 
1 and 271 gliomas from CGGA RNA-seq batch 
2). This certainly helps us to delve into the dif-
ferences between primary and recurrent glio-
mas, especially at the molecular level.

There are some possible mechanisms for the 
recurrence and progression of gliomas. First, 
the characteristic of invasive growth of glioma 
restricts the complete resection of tumor by 
surgery [33]. In addition, postoperative adju-
vant therapy (radiotherapy, chemotherapy, etc.) 
cannot kill all tumor cells [34]. Meanwhile, che-
motherapy and radiotherapy might catalyze 
and accelerate tumor cell cloning revolution 
[35]. Finally, tumor cells adapt to the tumor 

microenvironment (TME), including resident 
cells, the blood-brain barrier and complex 
immunosuppressive environment [36]. To fur-
ther understand the mechanism of glioma 
recurrence, we collected multi-omics data of 
glioma across primary and recurrent patients. 
Genomic analysis revealed more somatic muta-
tions in recurrent gliomas and recurrent EGFR 
mutations were significantly enriched (Figure 
1A). Meanwhile, deleted or amplified regions 
were the most frequently identified in recurrent 
gliomas, such as CDKN2A, CDKN2B, MLLT3, 
RB1, LCP1, CACNA1D and RAD21. With meth-
ylation microarray data, we identified 113 
genes whose methylation levels were signifi-
cantly different between primary and recurrent 
glioma (Figure 1B). Among 113 genes, RNA 
expression and methylation level of 5 genes 
were significantly negatively correlated (Figure 
1C). Next, we analyzed gene expression profil- 
es of primary and recurrent gliomas and sc- 
reened differentially expressed genes. Based 
on the expression profiles of these 121 genes, 
consensus clustering identified two distinct 
clusters (k = 2) with significant differences in 
molecular and prognosis (Figure 2 and Table 
1).

Next, we screened 108 genes related to sur-
vival with COX univariate analysis. And LASSO 
regression COX model was performed to obtain 
genes with cumulative effect of survival predic-
tion. Finally, we constructed a recurrence-relat-
ed risk signatures of 18 genes in gliomas. We 
noticed that the high-risk patients tended to 
older, recurrent, higher grade, IDH wild and 
1p/19q intact (Figures 3C, S2 and Table 2), 
which suggested that signature might lead to 
poor prognosis for glioma patients.

We then analyzed the prognostic significance of 
the signature in gliomas, including in different 
grade gliomas and five subtypes of WHO 2016 
classification (Figures 5A and S3A). Of note, 
when analyzing the progression-free survival 
(PFS), we found that the recurrence time of 
high-risk patients was significantly shorter than 
that of the low-risk patients (Figures 5B and 
S3B), indicating the ability to predict the recur-
rence of glioma patients. Next, we demonstrat-
ed that recurrence-related signature was an 
independent prognostic factor after adjusting 
for clinical and pathological indicators with uni-
variate and multivariate analysis (Table 3). 
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Figure 8. Recurrence-related signature and immune microenvironment. A. Pearson correlation of eight immune 
checkpoint genes and signature in all grade gliomas, lower grade gliomas (LGG) and glioblastoma multiforme 
(GBM). B. Tumor-associated macrophages in high-risk patients compared to low-risk patients by CIBERSORT. C. Two 
single-cell RNA-sequencing samples (SC1 was RS-high and SC2 was RS-low) were integrated and cells from each 
sample were differently colored. All cells from two samples were clustered into three groups. D. The inferCNV heat-
map included reference normal cells (upper part) and malignant tumor cells (lower part). Red and blue represented 
chromosome amplification and deletion respectively. E. SC1 (left) and SC2 (right) in the UMAP plot. F. Macrophage 
quantitative results of single cell analysis (P < 2.2e-16 by chi-squared test).
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Meanwhile, ROC curve analysis for 1-year, 3- 
year and 5-year overall survival showed that  
the predictive power of signature (AUC 0.8389, 
0.8964 and 0.9234) was stronger than tradi-
tional indicators age (AUC 0.6019, 0.6551 and 
0.6627) and grade (AUC 0.7648, 0.8477 and 
0.8557) (Figure 6A). By combining recurrence-
related signature with pathological features, we 
could optimize the prediction effect of patients’ 
prognosis (Figures 6B, 6C and S4).

In addition, through DAVID functional annota-
tion and Gene Set Enrichment Analysis, “cell 
division” and “cell cycle” were significantly cor-
related with the high-risk group (Figure 7). 
Dysregulation of cell cycle is common in tumor 
cells and is closely associated with tumor recur-
rence. Magbanua et al. found that neoadjuvant 
chemotherapy in breast cancer brought chang-
es to the tumor cell cycle, which are associated 
with tumor recurrence [37]. El-Gendi et al. dem-
onstrated the prognostic potential of cell cycle 
regulators p53, p63 and cyclinD1 in bladder 
cancer recurrence [38]. Kim et al. constructed 
a risk score model of the cell cycle profiling to 
predict the early recurrence of breast cancer 
[39]. And in gliomas, Zhang et al. found that 
gene mutations in cell cycle pathways were 
more common in recurrent glioma through ge- 
nomic analysis [40]. Therefore, the in-depth 
research on tumor cell cycle may contribute to 
the understanding of the recurrence of gliomas 
and provide new insight for individualized treat-
ment of gliomas.

As the tumor progressed at different stages, 
the components of immune invasion in the 
tumor also changed, which were associated 
with recurrence of the tumor [29]. We found 
that our recurrence-related signature in glio-
mas was positively correlated with the immune 
checkpoints, suggesting the immunosuppres-
sive status of high-risk patients. Immune cells 
are the main component of tumor microenvi-
ronment. Takashi Takeshita et al. found that 
immune cells were associated with late tumor 
recurrence in breast cancer [41]. Matteo Fa- 
ssan et al. found that compared to patients 
with low CD4+ T cell infiltration, all patients wi- 
th high CD4+ T cell infiltration recurred [42]. 
Andrea Walens et al. revealed that TNFα-CCL5-
macrophage axis could promote the recurrence 
of breast cancer by recruiting macrophages 
[43]. Lang Rao et al. reported that hybrid cell 

membrane nanovesicles blocked the polariza-
tion of tumor-associated macrophages from 
M1 phenotype to M2 phenotype, preventing 
recurrence and metastasis of malignant me- 
lanoma [44]. In our study, CIBERSORT and 
scRNA-seq analysis showed that macrophag- 
es were significantly upregulated in high-risk 
tumor, indicating the possible role of macro-
phages in the recurrence of glioma.

In summary, we comprehensively analyzed 
multi-omics data of gliomas across primary 
and recurrent patients and found the prognos-
tic significance of recurrence-related genes. 
We built a recurrence-related signature to strat-
ify patients with survival differences and pre-
dict the recurrence risk of glioma. However, the 
application of our signature to clinical diagno-
sis and treatment still needs further research 
and verification.
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Figure S1. Consensus clustering matrix of 309 CGGA samples for k = 4 to k = 10.
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Figure S2. Heatmap and clinicopathological features of low- and high-risk group based on recurrence-related signa-
ture in CGGA_693 dataset.
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Figure S3. Survival prediction of the recurrence-related signature in CGGA_693 dataset. A. Overall survival prediction of the signature in all grade gliomas, lower 
grade gliomas (LGG, grade II and III), glioblastoma (GBM, grade IV), LGG with IDH-mutant and 1p/19q-codeleted, LGG with IDH-mutant and 1p/19q-intact, LGG with 
IDH-wildtype, GBM with IDH-mutant, GBM with IDH-wildtype. B. Progression free survival prediction of the signature in all grade gliomas, lower grade gliomas (LGG, 
grade II and III), glioblastoma (GBM, grade IV), LGG with IDH-mutant and 1p/19q-codeleted, LGG with IDH-mutant and 1p/19q-intact, LGG with IDH-wildtype, GBM 
with IDH-mutant, GBM with IDH-wildtype. Survival difference was determined by a log-rank test.
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Figure S4. A survival prediction model for glioma patients based on recurrence-related signature. A. 1-year, 3-year 
and 5-year ROC curves indicated the sensitivity and specificity of signature risk score, age and grade in CGGA_693 
dataset. B. A nomogram prediction model was developed by integrating the signature RS with the pathologic fea-
tures in the CGGA_693 dataset. 
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Figure S5. Functional annotation of recurrence-related signature in CGGA_693 dataset. With Gene Ontology (GO) 
analysis in DAVID, we analyzed biological processes of signature positively related genes (A) and negatively related 
genes (C). With KEGG pathway analysis in DAVID, we also revealed the enrichment pathways of genes that were 
positively (B) or negatively (D) associated with signature. 

Figure S6. Recurrence-related signature and immune microenvironment in CGGA693 dataset. A. Pearson correla-
tion of eight immune checkpoint genes and signature in all grade gliomas, lower grade gliomas (LGG) and glioblas-
toma multiforme (GBM). B. Tumor-associated macrophages in high-risk patients compared to low-risk patients by 
CIBERSORT.


