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Abstract

In utero exposure to the ubiquitous plasticizer, bisphenol A (BPA) is associated with offspring 

obesity. As food intake/appetite is one of the critical elements contributing to obesity, we 

determined the effects of in vivo maternal BPA and in vitro BPA exposure on newborn 

hypothalamic stem cells which form the arcuate nucleus appetite center. For in vivo studies, 

female rats received BPA prior to and during pregnancy via drinking water, and newborn offspring 

primary hypothalamic neuroprogenitor (NPCs) were obtained and cultured. For in vitro BPA 

exposure, primary hypothalamic NPCs from healthy newborns were utilized. In both cases, we 

studied the effects of BPA on NPC proliferation and differentiation, including putative signal and 

appetite factors. Maternal BPA increased hypothalamic NPC proliferation and differentiation in 

newborns, in conjunction with increased neuroproliferative (Hes1) and proneurogenic (Ngn3) 

protein expression. With NPC differentiation, BPA exposure increased appetite peptide and 

reduced satiety peptide expression. In vitro BPA-treated control NPCs showed results that were 

consistent with in vivo data (increase appetite vs satiety peptide expression) and further showed a 

shift towards neuronal versus glial fate as well as an increase in the epigenetic regulator lysine-

specific histone demethylase1 (LSD1). These findings emphasize the vulnerability of stem-cell 

populations that are involved in life-long regulation of metabolic homeostasis to epigenetically-

mediated endocrine disruption by BPA during early life.
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INTRODUCTION

Bisphenol A (BPA) is a monomer plasticizer used in the manufacture of common household 

goods including polycarbonate plastics (e.g. food and drink containers), paints and 

adhesives(Vandenberg et al., 2007). As an estrogen endocrine disrupter chemical, BPA has 

been associated with a range of adverse perinatal, childhood, and adult health outcomes 

(Rochester, 2013), including reproductive and developmental effects (Kim et al., 2011), 

neurogenesis (Kim et al., 2009), neurological behaviour (Palanza et al., 2008), and metabolic 

disease (Teppala et al., 2012). BPA exposure has been linked to childhood and adult obesity 

and likely contributes to the on-going obesity epidemic (Di Ciaula and Portincasa, 2017; 

Janesick and Blumberg, 2012). In rodents, maternal BPA exposure increases postnatal body 

weights and growth rates, with some studies showing greater susceptibility to BPA-increased 

adiposity in female as compared to male offspring (Richter et al., 2007; Rubin and Soto, 

2009; Somm et al., 2009). Critically, fetal exposures to BPA at levels equivalent to, or below 

the established daily human safe-dose (50μg BPA/kg body weight/day) not only increase 

body weight and postnatal growth rate, but also alter body composition in later life (Alonso-

Magdalena et al., 2006; Alonso-Magdalena et al., 2010; Richter et al., 2007; Rubin and Soto, 

2009; vom Saal et al., 2012)

One of the critical determinants of energy balance include energy (calorie) intake (Hill et al., 

2012). The arcuate nucleus (ARC) of the hypothalamus is the key regulator of appetite, 

containing both orexigenic (neuropeptide Y, NPY; agouti-related peptide, AgRP) and 

anorexigenic (pro-opiomelanocortin, POMC) neurons involved in central regulation of food 

intake (Blevins et al., 2002). Orexigenic and anorexigenic neurons develop before birth, in 

preparation for extra-uterine life, (Kagotani et al., 1989) however functional projections are 

established during the early postnatal period in rodents (Grove et al., 2001; Nilsson et al., 

2005; Padilla et al., 2010; Walsh and Brawer, 1979). Studies including those by our 

laboratory have shown prenatal nutrition-mediated effects on ARC neurogenesis resulting in 

a shift from satiety to appetite neurons in association with offspring hyperphagia and obesity 

(Staples et al., 2017; Val-Laillet et al., 2017). We have further shown that hypothalamic 

neuroprogenitor cell (NPC) proliferation (self-renewal) and differentiation (generation of 

neurons/glial cells) are vulnerable to endocrine disruption, with potential long-term 

consequences for appetite regulation and energy balance (Desai et al., 2011a; Desai et al., 

2011b). Notably, BPA has been shown to influence neurogenesis in humans (Preciados et al., 

2016) and animal models (Kim et al., 2009). In mice, prenatal exposure to BPA increases 

neurogenesis and neuronal migration (Nakamura et al., 2006) resulting in altered brain 

structure (Nakamura et al., 2007) and function (Nakamura et al., 2012).

Neurogenesis is regulated, in part, by basic-helix-loop-helix (bHLH) genes including 

differentiation repressor genes (e.g., Hes1) that maintain the NPC population, and activator 

genes (e.g. Math3; Mash1; Neurogenin, Ngn), which accelerate neurogenesis and 
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differentiation (Kageyama et al., 2008; Masica et al., 1971; Ohtsuka et al., 2001). Maternal 

BPA up-regulates Math3 and Ngn2 in mouse embryos, (Nakamura et al., 2006) and 

accelerated neurogenesis due to BPA exposure may reduce the population of NPCs in fetal 

(e14.5) mice (Komada et al., 2012; Nakamura et al., 2006). However, the effects of perinatal 

BPA on rat hypothalamic NPC cell proliferation and differentiation have not been 

determined.

We studied the effects of maternal BPA exposure during pregnancy on cultured 

hypothalamic NPCs from 1 day old newborns and examined development of appetite/satiety 

neurons (Desai et al., 2014). To more fully explore the mechanisms of BPA-mediated 

effects, we then utilized established models of newborn rat primary hypothalamic NPCs 

(which ultimately form appetite/satiety neurons), exploring both proliferative (i.e., trophic) 

and differentiation effects of BPA (Desai et al., 2011a; Desai et al., 2011b). We further 

explored putative signal factors which explain, in part, NPC responses, and underlying 

epigenetic mechanisms mediated by BPA. Our results demonstrate marked effects of BPA on 

hypothalamic progenitor cell proliferation as well as differentiation. These findings 

emphasize the vulnerability of stem-cell populations that are involved in life-long regulation 

of metabolic homeostasis to endocrine disruption by BPA during early life.

MATERIALS AND METHODS

BPA Models

In Vivo Maternal BPA Exposure: Studies were approved by the Animal Care 

Committee at the Los Angeles Biomedical Research Institute at Harbor-UCLA and were in 

accordance with the American Accreditation Association of Laboratory Care. All animals 

were treated humanely and with regard for alleviation of suffering. Virgin Sprague Dawley 

female rats (Charles River Laboratories, Hollister, CA) were housed in an animal facility 

with controlled 12/12 hour light/dark cycles, constant temperature and humidity conditions 

and ad libitum access to chow diet (Lab Diet 5001; Brentwood, Missouri). To avoid potential 

BPA contamination, polypropylene cages and purified water in glass bottles were utilized. 

Female rats were randomly assigned to Control (n=6) or BPA (n=6) group. Control rats had 

access to purified drinking water, whereas the BPA group received purified drinking water 

containing BPA (5mg/L; BPA Sigma-Aldrich, purity ≥ 99%, CAS no. 80-05-7) for two 

weeks prior to mating and throughout pregnancy (Table 1). Among studies administering 

BPA to pregnant rodents via drinking water, a concentration of 10 mg/l water (consumption 

of ~1.2 mg/kg BW/day) (Mendoza-Rodriguez et al., 2011) produced BPA tissue 

concentrations of 10-25 ng/g tissue (Kabuto et al., 2004; Nakajima et al., 2012) consistent 

with that of human samples (Schonfelder et al., 2002). A gavage dose five-fold higher (6 

mg/kg BW/day) achieved a significant increase in maternal serum BPA concentration 

(Yoshida et al., 2004), whereas a water concentration of only 1 mg/l resulted in low maternal 

plasma free BPA levels (0.84 ng/ml) (Patisaul et al., 2012). Our dose was selected based 

upon our confirmation (pilot study) of maternal and newborn serum levels within the lower 

range of demonstrated human levels with normal BPA exposure.

Maternal blood prior to mating was obtained via tail bleed and newborn blood was collected 

in BPA-free tubes for BPA analysis. We did not obtain blood samples during pregnancy as 
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blood collection via tail vein is known to induce stress, resulting in fetal resorption 

(Weinstock, 2017). Further, maternal stress has been demonstrated to be an independent risk 

factor for offspring obesity and for impacting brain development (Hohwu et al., 2014; Moog 

et al., 2018; Mueller and Bale, 2006). Free (unconjugated) BPA levels were measured using 

GC/MS (NMS Labs, PA) with assay sensitivity of 0.25 ng/ml. Insufficient plasma volume 

from maternal and newborns necessitated pooling of samples and hence only mean values 

are reported.

Dams gave birth spontaneously and at 1 day of age, four males from one litter were 

sacrificed, hypothalamus dissected and samples pooled (representing N=1) for primary NPC 

culture studies (described below). A total of 6 litters of Control and 6 litters of BPA group 

were studied.

In Vitro BPA Exposure: An additional four control litters were studied for in vitro effects 

of exogenous BPA on NPCs. From each litter, hypothalamus was dissected from 1 day old 

Control males (four pooled samples representing N=1) for cell culture studies (Table 1). 

Passage 2 NPCs cultured in complete medium were treated with DMSO (control) or BPA (1, 

10, 20 μM) for 5 days. For NPC differentiation studies, passage 2 cells were treated with 

10μM BPA (see below). The total number studied for NPC cultures was N=4 from 4 litters.

Primary Cultures

Hypothalamic NPC Cultures: NPCs were isolated and grown as neurospheres, as 

described previously in detail (Desai et al., 2011a). Briefly, hypothalamus was dissected in 

DMEM/F12 medium, cells dissociated by trypsin, centrifuged and cells seeded (~5×104 

cells/ml) in complete medium [NeurobasalTM Medium containing 1% anti-anti (Invitrogen), 

2% B27 (GIBCO, Cat# 17504-044), 20ng/ml FGF2 (Sigma), 20ng/ml EGF (Sigma), 1μg/ml 

heparin (Lylli), and 2.5μg/ml L-glutamine (Invitrogen)]. After 8 days in culture (passage 0), 

centrifuged neurospheres were dissociated into single-cell by trypsinization and reseeded 

(passage 1) in complete medium. For induction of differentiation, dissociated cells were re-

suspended in differentiating medium (in absence of FGF2, EGF and heparin) and seeded in 

culture dishes pre-coated with 0.01% poly-L-lysine (Sigma). Cells in complete and 

differentiated medium were harvested and protein extracted for analysis as described under 

Western Blot.

Analysis

NPC Proliferation Assay: NPC (complete medium) proliferation was determined as 

previously reported (Desai et al., 2011a) using MTT colorimetric assay (Mosmann, 1983).

Western Blot: Protein was extracted and Western Blotting performed as described 

previously (Desai et al., 2008). For NPCs, protein expression analysis included NPC marker 

(Nestin, Sigma); neuroproliferative and (Hes1, 35 kDa, Santa Cruz), proneurogenic (Mash1, 

30 kDa, Santa Cruz; Ngn3, 23 kDa, abcam) factors; markers of neuron (Tuj1, 50 kDa) and 

astrocyte (GFAP, 46 kDa, Dako), orexigenic (AgRP, 14 kDa, Santa Cruz; NPY) and 

anorexigenic (POMC, 30 kDa, Santa Cruz) neuropeptides, and; epigenetic regulators DNA 
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methyltransferase 3a (DNMT3a, 120 kDa, Santa Cruz) and lysine (K)-specific histone 

demethylase 1A (LSD1, 110 kDa, Cell Signaling).

Immunostaining: Staining of cultured NPC has been previously described (Desai et al., 

2011a; Desai et al., 2011b). Briefly, disassociated neurosphere cells in complete or 

differentiating medium were fixed in 4% paraformaldehyde in PBS and stained with rabbit 

anti-nestin (Sigma), anti-Hes1(Santa Cruz) or anti-Ngn3 (abcam). Secondary antibodies 

were donkey anti-rabbit IgG-Alexa 488 or donkey anti-mouse IgG-Alexa 568.

Statistical Analyses:

In vivo responses between BPA and control offspring were compared by unpaired t-test. In 
vitro responses between BPA exposed and untreated (DMSO) Control cells were compared 

by unpaired t-test or analysis of variance (ANOVA) with Dunnett’s post-hoc test, as 

appropriate. P values ≤ 0.05 were considered significant.

RESULTS

Maternal BPA Effects

Plasma BPA Levels: The average water consumption over the course of pregnancy was 

similar in BPA and Control dams (BPA=47.4±3.0 ml/day; Control = 46.4±3.7 ml/day). Prior 

to BPA administration, the pooled maternal plasma BPA value was 0.46 ng/ml. The amount 

of BPA consumed by dams via drinking water was approximately 500-900 μg/kg/day during 

pregnancy. Newborns of BPA dams had higher plasma BPA levels (0.62 ng/ml) as compared 

to undetectable levels in newborns of Control dams.

Maternal BPA Effects on Offspring Hypothalamic NPCs: At 1 day of age, 

neurospheres from BPA males cultured in complete media had increased NPC proliferation 

and increased expression of the NPC marker (Nestin). The bHLH proliferative factor Hes1 

was increased in BPA-exposed as compared to Control NPCs (Figure 1). In differentiation 

media, BPA NPCs showed increased expression of the pro-differentiation neurogenic factor 

Ngn3 by both immunostaining and protein expression as compared to Controls (Figures 2A, 

B). Importantly, BPA NPCs exhibited enhanced differentiation toward appetite as compared 

to satiety neurons, as evident by increased protein expression of AgRP and decreased 

expression of POMC (Figure 2C).

In Vitro BPA Effects

NPCs: We also examined the effects of in vitro exposure to BPA on cultures from Control 

hypothalamic tissue. Control hypothalamic NPCs cultured in complete media with BPA 

showed dose-dependent increased NPC proliferation (Figure 3A), consistent with increased 

expression of the NPC marker Nestin and the proliferation bHLH factor Hes1 (Figure 3B), 

confirmed by double immunostaining (Figure 3C). In differentiation media, BPA promoted 

NPC differentiation toward increased neuronal (Tuj1) as compared to glial (GFAP) cell fate 

(Figure 4A), in conjunction with increased expression of the differentiation bHLH factors 

Mash1 and Ngn3. Consistent with the in vivo results (above), BPA enhanced differentiation 
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toward appetite as compared to satiety neurons, as evident by increased protein expression of 

AgRP/NPY and decreased expression of POMC (Figure 4B).

Epigenetic Factors: BPA treated NPCs in complete media demonstrated no change in 

DNMT3, but significantly increased LSD1 (Figure 5).

DISCUSSION

The effects of prenatal BPA exposure on offspring hypothalamic NPC proliferation and 

differentiation, and the potential underlying mechanism involving regulatory transcription 

factors have not been previously explored. The results of the present study suggest that BPA-

induced dysregulation of hypothalamic NPC proliferation and differentiation may influence 

appetite regulation and contribute to obesity.

Measurable BPA levels are seen in adults and children, including breast milk (1.1 ng/ml), 

maternal (0.2- >10 ng/ml) and fetal/newborn serum (0.2-9.2 ng/ml). More importantly, the 

higher levels reported in amniotic fluid (8.3-8.7 ng/ml) and placental tissues (1.0-104.9 

ng/ml) (Kosarac et al., 2012; Padmanabhan et al., 2008), suggest the continued exposure of 

the fetus to BPA throughout development. BPA levels are higher in infants and children than 

in adults (Welshons et al., 2006) and notably, are associated with increased adiposity (Harley 

et al., 2013; Rochester, 2013). Animal studies confirm the association of BPA with adiposity 

and note that it is low (≤500 μg/kg/day) rather than high dose (>5,000 μg/kg/day) of 

maternal BPA that is effective in promoting offspring weight gain (Angle et al., 2013; Somm 

et al., 2009). Increased male and female postnatal growth is seen at maternal BPA doses 

between 2.4-500 μg/kg/day (Richter et al., 2007; van Esterik et al., 2014; Wei et al., 2011) 

with sex-specific effects seen in food intake. Males though not females exhibit age-related 

increased food intake (Angle et al., 2013).

As BPA-mediated adiposity is dependent, in part, on enhanced food intake (suckling) (Dyer 

and Rosenfeld, 2011; Garza and Butte, 1990; Ojha et al., 2013), we investigated the effects 

of in vivo and in vitro BPA exposure on hypothalamic NPCs that ultimately produce appetite 

and satiety neurons (Miller and Gauthier, 2007; Sousa-Ferreira et al., 2011). Exposure to 

BPA in vivo and in vitro increased both the proliferation and differentiation of hypothalamic 

NPCs, consistent with previous studies of BPA-effects on rat embryonic neural stem cell 

cultures (Okada et al., 2008; Tiwari et al., 2014), and murine neurogenesis in vivo (Itoh et 

al., 2012; Kim et al., 2009; Komada et al., 2012; Nakamura et al., 2006). Specifically, 

maternal BPA exposure induced a marked trophic effect on the hypothalamic NPCs from 1 

day old offspring, as indicated by increased NPC proliferation index and increased NPC 

protein expression of the NPC marker, Nestin. Further, BPA increased the protein expression 

of the bHLH proliferation transcription factor Hes1, which suppresses neuronal 

differentiation by inhibiting proneurogenic bHLH factors Mash1 and Ngn3 (Kageyama et 

al., 2008). In differentiating medium, BPA exposure increased Ngn3, indicating increased 

neuronal differentiation. More importantly, Mash1 and Ngn3 are required for development 

of POMC/NPY neurons (McNay et al., 2006; Pelling et al., 2011) and notably, BPA NPCs 

showed increased appetite (AgRP) versus satiety (POMC) peptide expression.
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In vitro BPA exposure complemented the in vivo exposure findings and further demonstrated 

increased expression of Mash1 and Ngn3, indicating that there was increased neurogenesis 

as opposed to astrogliogenesis (increased Tuj1/GFAP ratio). These data are consistent with 

accelerated neurogenesis, consistent with BPA effects on murine neocortical and 

hippocampal structure (Jang et al., 2012; Komada et al., 2012; Kunz et al., 2011; Nakamura 

et al., 2007; Nakamura et al., 2006) synaptogenesis (Kagotani et al., 1989; Xu et al., 2013) 

and cerebellar granule neuron development (Mathisen et al., 2013). In addition, studies of 

embryonic zebrafish demonstrate that low dose BPA causes increased neurogenesis at birth 

(Kinch et al., 2015). Notably, endogenous neurodifferentiation factors may preferentially 

direct NPC differentiation towards neuronal (e.g., leptin) or astrocyte fate (e.g., insulin) 

(Desai et al., 2011a; Garza et al., 2008; Machida et al., 2012). Whether BPA exposure alters 

the relative expression of neuronal to glial cells in vivo (Okada et al., 2008) is unknown, but 

of concern. However, a recent study by MacKay et al (MacKay et al., 2017) demonstrates in 

vivo BPA effects on specific hypothalamic pathways involving melanocortin circuitry. 

Young adult offspring exposed to prenatal BPA exhibited a delayed postnatal leptin surge 

with leptin resistance, and showed a reduced density of POMC projections into the 

hypothalamic paraventricular nucleus (PVN). Notably daily injections of supplemental 

leptin in BPA exposed pups, rescued POMC projections into the PVN.

The mechanism underlying BPA-induced enhanced NPC proliferation and differentiation 

may involve epigenetic modifications (Bastos et al., 2013; Kundakovic and Champagne, 

2011), particularly altered methylation of gene Hes1 (Lillycrop et al., 2015). Methylation 

and demethylation is catalyzed by enzymes DNMT (DNA methyltransferase) and LSD1 

(lysine (K)-specific histone demethylase), respectively, both of which have been implicated 

in determining stem cell proliferation (self-renewal) and differentiation (Adamo et al., 2011; 

Wu et al., 2012). For example, Dnmt3a or Lsd1 knockout mice demonstrate impaired 

neuronal production coupled with increased astrogliogenesis and reduced NPC proliferation, 

respectively (Sun et al., 2010; Wu et al., 2012). Although we demonstrated no change in 

DNMT3a, the increased protein expression of LSD1 in response to BPA is consistent with 

an epigenetically-mediated shift toward neurogenesis. Previous studies show that perinatal 

BPA exposure alters brain DNMT3a which is region specific with increased mRNA levels of 

Dnmt3a seen in the cerebral cortex and no changes evident in the hippocampus (Kumar and 

Thakur, 2017) Dnmt1 and Lsd1 are highly interrelated and rely mechanistically on each 

other for normal chromatin function in vivo. Targeted deletion of the gene encoding Lsd1 in 

embryonic stem cells induces progressive loss of DNA methylation. This loss correlates with 

a decrease in DNMT1 protein, as a result of reduced Dnmt1 stability (Wang et al., 2009). 

However, it is unclear whether the effects of Lsd1 deficiency are mediated through an 

inability of Dnmt3a to catalyse 5mC, or via direct effects on the maintenance 

methyltransferase Dnmt (Rose and Klose, 2014).

Notably, LSD1 interacts with Notch pathway (Lopez et al., 2016), which is involved in 

neurogenesis and regulation of Hes1 expression (Imayoshi et al., 2010), and shown to 

specifically target the expression of bHLH gene HEYL (Hirano and Namihira, 2016a; 

Hirano and Namihira, 2016b). While the current data suggest BPA alters transcriptional 

regulation of genes involved in proliferation and differentiation by demethylation within 
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hypothalamic NPCs, further studies of site-specific epigenetic modification of specific genes 

are required to fully elucidate BPA-induced changes in neurogenesis.

Developing brain is more vulnerable to BPA due to its lipophilic chemical structure that 

allows it to easily cross the blood-placental and blood-brain barriers, impacting neurogenesis 

and thereby brain physiology. Although BPA mimics estradiol effects (Rubin, 2011), it may 

exert its action via differing pathways. Estradiol upregulates neurogenesis (Barker and 

Galea, 2008; Tanapat et al., 1999) and exerts its actions primarily through the genomic 

pathway involving nuclear estrogen receptors (Quaedackers et al., 2001). In contrast, BPA 

has higher affinity for membrane-bound G protein-coupled estrogen receptors (Thomas and 

Dong, 2006). Thus, BPA may act through both pathways in promoting NPC (Okada et al., 

2008) proliferation. BPA interferes with the dimorphic development of the neuronal 

networks controlling brain functions (Delfosse et al., 2014; Wolstenholme et al., 2011) and 

alters dimorphic feeding behaviour (Liang et al., 2002; Negri-Cesi, 2015; Titolo et al., 

2006). Specifically, estrogen can modulate the production of NPY and AgRP (Titolo et al., 

2006) and mediate anorectic properties (Liang et al., 2002) by influencing POMC neurons in 

the ARC (Gao et al., 2007). The activity of this neuronal circuitry is gender specific, with 

females showing responsiveness to various anorectic inputs different from that of males 

(Mackay et al., 2013).

CONCLUSION

These data confirm that primary neuroprogenitor cells are vulnerable to endocrine disruption 

by BPA resulting in altered proliferation and differentiation, independent of systemic 

influences. Enhanced proliferation coupled with increased differentiation of NPCs to 

appetite as compared to satiety neurons indicate the potential for maternal/fetal BPA 

exposure to program an increased risk of offspring obesity (Ding et al., 2014; Miyawaki et 

al., 2007; Perreault et al., 2013; Somm et al., 2009). Of equal importance, the marked shift 

in NPC differentiation to neuronal versus glial fates may adversely impact cerebral 

development (e.g., cognition, behaviour) in regions beyond the appetite network. Future 

study that addresses long-term effect of altered neurogenesis and whether similar changes 

are evident in females should overcome the limitation of the present study
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ARC Arcuate nucleus

bHLH Basic-helix-loop-helix
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LSD1 Demethylase enzyme

NPY Neuropeptide Y

POMC Pro-opiomelanocortin

AgRP Agouti-related peptide

BPA Bisphenol A

Ngn Neurogenin

NPCs Neuroprogenitor cells
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Figure 1: Maternal BPA Effects on Offspring NPC Proliferation
Hypothalamic NPCs from Control and BPA 1 day old male newborns were cultured in 

complete media. (A) Double immunostained images of (x40; scale bar = 50μm) of DAPI 

(blue, nuclear stain) and Nestin (red, NPC marker). (B) Proliferative index measured at 570 

OD. (C) Protein expression of NPC marker (Nestin) and neuroproliferative factor (Hes1). 

Values are fold change (mean±SE) of n=6 of pooled hypothalami from each of 6 litters per 

group. * P< 0.05 BPA (□) vs. Control (■).
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Figure 2: Maternal BPA Effects on Offspring NPC Differentiation and Neuropeptides
Hypothalamic NPCs from Control and BPA 1 day old male newborns were cultured in 

differentiation media. (A) Double immunostained images of (x40; scale bar = 50μm) of 

DAPI (blue, nuclear stain) and Ngn3 (red, proneurogenic factor). (B) Protein expression of 

Ngn3. (C) Protein expression of appetite (AgRP) and satiety (POMC) neuropeptides. Values 

are fold change (mean±SE) of n=6 of pooled hypothalami from each of 6 litters per group. * 

P< 0.05 BPA (□) vs. Control (■).
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Figure 3: In Vitro BPA Effects on NPC Proliferation
Hypothalamic NPCs from 1 day old Control newborns were cultured in complete media and 

treated with DMSO (Control) or BPA (10 μM unless otherwise specified) for 5 days. (A) 

Images of NPCs (x20; scale bar = 50μm) and proliferative index measured at 570 OD of 

NPCs treated with BPA (1, 10, 20 μM). (B) Protein expression of Nestin (NPC marker) and 

bHLH proliferative (Hes1). (C) Immunostained images of (x40) Nestin (red), Hes1 (green) 

and DAPI (blue, nuclear stain). Values are fold change (mean±SE) of n=4 of pooled NPCs 

from each of 4 litters. * P< 0.05 BPA (□) vs. Control (■).
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Figure 4: In Vitro BPA Effects on NPC Differentiation
Hypothalamic NPCs from 1 day old Control newborns were cultured in differentiation 

media and treated with DMSO (Control) or BPA (10 μM,) for 5 days. (A) Protein expression 

of bHLH proneurogenic factors (Mash1, Ngn3) and neuronal (Tuj1) and astrocyte (GFAP) 

markers. (B) Protein expression of appetite (AgRP, NPY) and satiety (POMC) 

neuropeptides .Values are fold change (mean±SE) of n=4 of pooled NPCs from each of 4 

litters; * P< 0.05 BPA (□) vs. Control (■).

Desai et al. Page 17

Environ Res. Author manuscript; available in PMC 2021 April 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5: In Vitro BPA Effects on NPC Epigenetic Factors
Hypothalamic NPCs from 1 day old Control newborns were cultured in complete medium 

and treated with DMSO (Control) or BPA (10 μM,) for 5 days and protein expression of 

DNMT3a and LSD1 analyzed. Values are fold change (mean±SE) of of pooled cells n=4 

from each of 4 litters; * P< 0.05 BPA (□) vs. Control (■).
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Table 1:

Study Design of BPA Exposure

In Vivo Maternal BPA Exposure: Non-pregnant female rats at 9 weeks of age were allowed drinking water that was BPA-free (Control group) or 
contained BPA (BPA group). At 12 weeks of age, tail blood was obtained for BPA analysis and all females were mated and continued on same 
drinking water regimen throughout pregnancy. Brains were collected from their newborns for cultures of hypothalamic NPCs in BPA free media.

In Vitro BPA Exposure: Non-pregnant and pregnant dams had access to BPA-free drinking water. Brains were collected from their newborns for 
cultures of hypothalamic NPCs in media containing BPA.
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