Skip to main content
. 2021 Apr 8;19:2070–2083. doi: 10.1016/j.csbj.2021.04.016

Table 3.

Tools to analyze Hi-C data at different structural levels.

Tool Function/algorithm/download link Resolution Reference
loop Detection loop detection 1 ~ 10 kb
HiCCUPS [18]
HOMER [115]
GOTHiC [116]
Fit-Hi-C [117]
HiC-DC [118]
SIP [119]
cLoops/cDBSCAN [120]
Mustache [121]
Chicago [122]
PSYCHIC [123]
diffHiC differential analysis [124]
FIND [125]
HICcompare [126]
TADs Detection ~40 kb
HMM Directionality Index [127]
DP Dynamic programming [128]
HicSeg Two-dimensional segmentation [129]
Arrowhead Arrow matrix [18]
insulation score Insulation Square Analysis [130]
DHDF Cluster-based [131]
TopDom IdentifyTD, evaluate quality [132]
TADtree hierarchical TADs [133]
TADs_Identification Spectral identification [134]
IC-Finder Hierarchical clustering [135]
MrTADFinder network modularity based [136]
3DNetMod network modularity based [137]
HiTAD domain-based alignment [138]
rGAMP Gaussian Mixture model and Proportion test [139]
HiCDB local relative, insulation metric [140]
deDoc graph structural entropy [141]
tadbit breakpoint detection algorithm
TADBoundaryDectector deepLearning-based [142]
EAST Haar-based algorithm [143]
TADBD Haar-based algorithm [144]
TADCompare Differential TADs [145]
TADpole hierarchy of TADs in intra-chromosomal interaction matrices [146]
SpectralTAD Spectral cluster [147]
ClusterTAD an unsupervised machine learning approach [148]
Matryoshka cluster [149]
A/B compartment
PCA A/B compartment 100 kb
HOMER [115]
juicebox [87]
CscoreTools https://github.com/scoutzxb/CscoreTool
HiCPro http://github.com/nservant/HiC-Pro [151]
3D structure
contact-based
Gen3D adaptation, simulated annealing, and genetic algorithm 200 kb [152]
MOGEN Gradient ascent 200 kb-1 Mb [153]
GEM manifold learning 1 Mb [114]
GEM-FISH polymer model 5 kb [154]
SuperRec multidimensional scaling 100 kb [155]
distance-based
AutoChrom3D considering the sequencing depth 8 kb [73]
ChromSDE semi-definite embedding approach 500 kb-1 Mb [103]
ShRec3D Short-path algorithm 3–150 kb [156]
FisHiCal SMACOF algorithm 1 Mb [100]
MBO manifold optimization unknow [107]
InfMod3DGen Gradient ascent unknow [104]
3D-GNOME Markov chain, Simulated annealing 1–2 Mb [93]
Chromosome3D Simulated annealing 500 kb-1 Mb [97]
LorDG lorentzian objective function 500 kb-1 Mb [111]
HSA Multi-track modeling, Markov chain, Simulated annealing 25 kb-1 Mb [157]
miniMDS Hierarchical modeling 10–100 kb [108]
TADbit https://github.com/3DGenomes/tadbit unknow [94]
mdsga genetic algorithm unknow [95]
ShRec3+ two-step algorithm 1 Mb [112]
3DMax maximum likelihood algorithm 1 Mb [88]
Hierarchical3DGenome Hierarchical modeling 1–5 kb [101]
EVR Error-Vector Resultant unknow [99]
ShNeigh Gaussian formula unknow [158]
Probability-Based
BAC, BACH-MIX Bayesian Inference 40 kb [159]
pastis multidimensional scaling 100 kb-1 Mb [90]
tRex Monte Carlo sampling etc. 1 Mb [92]
PGS simulated annealing 50 kb-1 Mb [159]
SIMBA3D Bayesian Estimation [160]
CHROMSTRUCT 4 Monte Carlo sampling [161]
online tools
NDB https://ndb.rice.edu/ [162]
Csynth https://csynth.org [163]
GSDB sysbio.rnet.missouri.edu/3dgenome/GSDB [164]
3D-GNOME 2.0 3dgnome.cent.uw.edu.pl/ [165]
3DGD http://3dgd. biosino.org/ [166]
3DIV http://3div.kr/ [167]
3DGB http://3dgb.cs.mcgill.ca/ [168]

aEach column denotes the key properties of available tools to analyze Hi-C data at different structural levels. ‘Tools’ denotes availability of open-source software for a method. ‘Function/algorithm/download link’ column denotes Function, algorithms used by a method or download link for access,’ Resolution’ column denotes the resolution of Hi-C data described in the published method’s, ‘Reference’ column denotes the references where the methods were published.