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Abstract

Deficiency of ASM (acid sphingomyelinase) causes the lysosomal
storage Niemann-Pick disease (NPD). Patients with NPD type B
may develop progressive interstitial lung disease with frequent
respiratory infections. Although several investigations using the
ASM-deficient (ASMKO)mouseNPDmodel revealed inflammation
and foamy macrophages, there is little insight into the pathogenesis
of NPD-associated lung disease. Using ASMKO mice, we report
that ASM deficiency is associated with a complex inflammatory
phenotype characterized by marked accumulation of monocyte-
derived CD11b1 macrophages and expansion of airspace/alveolar
CD11c1 CD11b2 macrophages, both with increased size,
granularity, and foaminess. Both the alternative and classical
pathways were activated, with decreased in situ phagocytosis of
opsonized (Fc-coated) targets, preserved clearance of apoptotic
cells (efferocytosis), secretion of Th2 cytokines, increased
CD11c1/CD11b1 cells, and more than a twofold increase in lung
and plasma proinflammatory cytokines. Macrophages, neutrophils,
eosinophils, and noninflammatory lung cells of ASMKO lungs also
exhibited marked accumulation of chitinase-like protein Ym1/2,
which formed large eosinophilic polygonal Charcot-Leyden–like
crystals. In addition to providing insight into novel features of lung

inflammation that may be associated with NPD, our report provides
a novel connection between ASM and the development of crystal-
associated lung inflammation with alterations in macrophage
biology.
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Clinical Relevance

Using a model of the lysosomal storage Niemann-Pick disease,
the mouse knockout for acid sphingomyelinase, we found a
lung crystalopathy with Ym1 protein accumulation analogous
to Charcot-Leyden crystals. This was associated with markers
of lung and systemic Th2 and Th1 inflammation and with
marked complex macrophage inflammatory activation with
decreased Fc-mediated phagocytosis but preserved apoptotic
cell clearance. Our findings may provide insight into the
pathogenesis of respiratory dysfunction in Niemann-Pick
disease type B, which is driven by progressive interstitial
lung disease and frequent respiratory infections.
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ASM (acid sphingomyelinase; encoded by
SMPD1) is a ubiquitous enzyme that, by
hydrolyzing sphingomyelin to ceramide,
plays an essential role in the sphingolipid
metabolism. Genetic deficiency of
ASM causes Niemann-Pick disease
(NPD), a lysosomal lipid storage disorder
with an early onset of progressive
neurodegeneration culminating in death
during childhood (NPD type A) or a later
onset that causes limited neuropathy but
may involve multiple organs (NPD type B).
Patients with NPD type B may manifest a
progressive interstitial lung disease with
frequent respiratory infections (1–3). The
mechanism of lung disease in NPD remains
poorly understood. The lungs of patients
with NPD harbor foamy lipid-laden
macrophages in multiple compartments,
including airspaces, walls of alveoli and
airways, and pleura (1, 2, 4, 5). A similar
accumulation of macrophages, together
with increased inflammation, was described
in the lungs of transgenic ASM-deficient
mice (Smpd12/2 or ASMKO), an
established model of NPD (6–8). However,
it remains unknown what types of
macrophages accumulate in NPD lungs
and what their functional status is.

Lung macrophages play an important
role in the innate immune responses, tissue
remodeling, and resolution of inflammation.
To exert these that require proper
endosomal and lysosomal function.
Whereas the secreted form of ASM (9) is
rapidly activated at the plasma membrane
in response to cellular stress (10–13) and
triggers apoptosis (10, 14–16), the
lysosomal ASM has been involved in the
regulation of endocytosis, phagocytosis,
and autophagy (12, 13, 17, 18). It is
therefore expected that ASM plays an
important role in lung macrophage
function during both homeostatic
conditions and acute and chronic lung
diseases. However, which macrophage
subset will be regulated by ASM is not
readily predictable. Resident alveolar
(airspace) macrophages (CD11c1/CD11b2

cells) are the predominant immune cells in
the airspace during homeostatic conditions.
Expressing mannose receptor and Ym1 at
baseline, previously considered “M2
markers” (19–21), resident airspace
macrophages play a key role in lung
tissue homeostasis and in host defense,
including surfactant turnover, apoptotic cell
removal (efferocytosis), and phagocytosis
of antibody-opsonized pathogens (22).

However, their responsiveness to
inflammatory stimuli is weak (21). During
inflammatory conditions, monocyte-
derived airspace macrophages (CD11bhi)
can be recruited to the airspace, often
driving an increase in total macrophage
numbers (23–25). Recruited macrophages
are more responsive to inflammatory
stimuli (21, 26). Additional macrophage
subsets exist within the lung tissue and
are termed “interstitial macrophages.”

Using ASMKO mice, we report novel
features of lung inflammation associated
with ASM deficiency that implicate ASM
in lung macrophage function and
programming. We show that ASM
deficiency increases recruitment of
monocyte-derived CD11b1 macrophages
in the airspaces and is associated with
marked accumulation of chitinase-like
protein Ym1 in the lung, forming large
eosinophilic polygonal amorphous
structures, which are analogous to
Charcot-Leyden crystals. In addition,
ASM-deficient lung macrophages are
less apt at clearing opsonized (Fc-coated)
targets but have a heightened ability to clear
apoptotic targets.

Methods

Animal Studies
The animal studies were approved by
the institutional animal care and use
committees at Indiana University and at
National Jewish Health. ASMKO mice,
originally obtained from Dr. Edward
Schuchman (Mount Sinai, New York) (7),
of both sexes were studied with wild-type
(WT) or heterozygous (ASM-HT)
littermates when they reached at least
9 weeks of age. Lungs were processed
as described (27). BAL fluid (BALF)
was collected via serial lavages with
PBS containing EDTA. Preparation
of lung single-cell suspension used
Liberase (Roche/Sigma) and filtration
through a 100-mm nylon filter. Peritoneal
macrophages were obtained by standard
protocol (28).

Flow Cytometry
Analysis of BALF was performed using
blocking antibodies CD16/CD32 (clone
93, #14–0161–85; eBioscience) and labeling
with Ly6G (1A8, #127612; Biolegend),
CD11b (clone M1/70, #45–0112–8;
eBioscience), CD11c (clone N418,

#47–0114–82; eBioscience), CD64
(clone X54–5/7.1, #558539; BD Bioscience),
F4/80 (clone BM8, #25–4801–82;
Invitrogen), CD45 (clone 30-F11, #564279;
BD Bioscience), or Siglec F (clone
E50–2440, #5652757; BD Bioscience)
antibodies. Flow cytometry of lung single-
cell suspension used blocking with
CD16/CD32 and labeling with CD45-
BUV395 (clone 30-F11, #564279; BD
Bioscience), Ly6C-FITC (clone HK1.4,
#128006; Biolegend), CD11b-PerCP-Cy5.5
(clone M1/70, #45–0112–82; Invitrogen),
MerTK-PE (clone 2B10C42, #151505;
Biolegend), SiglecF-PE-CF594, Ly6G-
Pacific Blue (clone 1A8, #127612;
Biolegend), Ly6G-PE-Cy7 (clone 1A8,
#127617; Biolegend), CD64-AlexaFluor 647
(clone X54–5/7.1, #558539; BD Bioscience),
or CD11c-APC-eFluor780 (clone N418,
#47–0114–82; Invitrogen) antibodies.
For intracellular staining, cells were
permeabilized using FOXP3/Transcription
Factor Staining Buffer Set (#00–5523–00;
eBioscience) and incubated with Ym1-
biotin antibody (1:100, #BAF2446; R&D)
and Streptavidin-PE-Cy7 (1:500, #B300682;
Biolegend) or Straptavidin-Qdot605 (1:500,
#Q10103MP; Invitrogen). Analysis used the
LSR II cytometer (BD Bioscience) and
FlowJo. The gating strategy is shown in
Figure E1.

Cytospins
Cells were counted, spun onto slides, and
stained with Three-Step Stain Set (#3300;
Richard Allan Scientific).

Western Blotting
Western blotting was performed with
vinculin (ab18058; Abcam), LC3B (L7543;
Sigma), SQSTM1/p62 (H00008878-M01;
Abnova), and LAMP2 (sc-8100; Santa Cruz)
antibodies. Images were taken with a
ChemiDoc XRS with Image Lab software
(Bio-Rad), and densitometry was performed
with ImageJ.

Immunofluorescence Microscopy
Lung tissue sections were probed with
Ly-6G (#127610; Biolegend), CD68
(KP1) (#ab955; Abcam), CD11b (M1/70)
(#ab8878; Abcam), CD11c (3.9) (#ab11029;
Abcam), or Ym1/2 (EPR15263) (#ab205490;
Abcam) antibodies. Imaging was performed
using a Zeiss LSM 700 confocal microscope
with Zen Black version 14 software, and
postimaging processing was performed with
ImageJ.
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Sphingolipid Measurement
Lipid quantification was performed using
liquid chromatography tandem mass
spectrometry, as previously described (29) on
AB Sciex 6500 QTRAP triple quadrupole
ion trap mass spectrometer interfaced with
Agilent 1290 LC System.

Lung and Plasma Cytokine
Measurement
Lysates were prepared from snap-frozen and
pulverized lung. Cytokine concentrations
were measured with a customizedMeso Scale
Discovery (MSD) Electrochemiluminescence
multispot assay (V-PLEX Custom Mouse
Cytokine kit, #K152A0H-1) with the
following antibodies (all from MSD):
IFN-g (#D22QO), IL-1b (#D22QP), IL-4
(#D22QR), IL-5 (#D22QS), IL-6 (#D22QX),
KC/GRO (#D22QT), IL-10 (#D22QV), and
TNF-a (#D22QW) using the manufacturer’s
protocol, on an MSD instrument using
Discovery Workbench Software (MSD) for
analysis.

Statistical Analyses
Statistical Analyses were performed with
Prism GraphPad Software as indicated.
Statistical significance was set at P, 0.05.

Results

Lungs of ASMKO Mice Exhibit Ym1
Crystals
We analyzed hematoxylin and eosin–
stained fixed lung tissue sections of
homozygous Smpd12/2 mice (ASMKO)
and heterozygous Smpd11/2 mice (ASM-
HT) in comparison with WT littermates.
Consistent with previous reports (6–8), the
lungs of ASMKO mice displayed enlarged,
lipid-laden macrophages, thickened
alveolar walls, and overall increased
cellularity in the airspaces (Figure 1A).
Strikingly, lung sections revealed
eosinophilic orthogonal crystals within
the lungs of ASMKO mice but not in
WT littermates or in ASM-HT mice
(Figure 1A). Cytospins of BALF stained
with Giemsa also showed the exclusive
presence of large foamy macrophages, as
well as orthogonal crystals, in ASMKO
mice (Figure 1B). These crystals resembled
eosinophilic crystals formed by the Ym1
protein (chitinase 3-like 3), which have
been reported in several mouse models
(30–32) but, to our knowledge, not
previously described in ASM deficiency.

We noted that this phenomenon was not
exclusively limited to the lung because
peritoneal lavage fluid also contained
crystals (Figure E2A), albeit with less
frequency (z30% of mice) and in lesser
abundance. The histology and BALF
cytospins of ASM-HT mice were similar to
those of WT mice. In concordance with
histological findings, the Western blot
analysis of whole lung lysates demonstrated
markedly increased Ym1/2 protein in
ASMKO lungs compared with WT lungs
(Figure 1C).

Spontaneous Recruitment of
Inflammatory Cells to the ASMKO
Lungs
We next evaluated whether ASMKO mice
had alterations in macrophage subsets or
other cellular markers of lung inflammation.
We first examined BALF, and, as previously
reported (6, 33), we noted an overall
increased number of macrophages,
neutrophils, and lymphocytes in the BALF
cytospins of ASMKO compared with
WT mice (Figure 2A), suggestive of a
spontaneous inflammatory response. The
cell composition of BALF in ASM-HT mice
was similar to that in WT mice (Figure 2A).
Immunophenotyping of BALF by flow
cytometry indicated that in WT mice, lung
macrophages (CD451/Ly6G2/Ly6C2/
F4801/CD641) were comprised almost
exclusively of CD11c1/CD11b2 cells,
representing resident airspace (alveolar)
macrophages (Figures 2B and 2C). In
contrast, in the BALF from ASMKO mice,
we noted a new population (10% of total
macrophages) of CD11c1/2/CD11b1

monocyte-derived recruited macrophages
(Figures 2B and 2C). In ASMKO mice,
both CD11c1/CD11b2 macrophages and
CD11c1/2/CD11b1 macrophages exhibited
much broader light scatter than WT
macrophages (Figures 2C and E3),
consistent with the increased size and
granularity noted on histology.

We next studied cell suspensions from
whole lungs that were not subjected to BAL
to characterize the entire lung macrophage
population (CD451/CD641/MerTK1).
We used CD11c and Siglec F (SigF)
markers to define SigF1/CD11c1,
SigF2/CD11c1, and SigF2/CD11c2

macrophage populations (Figure 3A). As
expected, in WT mice, z93% of the lung
macrophages were SigF1/CD11c1 (Figures
3A and 3B), with the remaining 7% being
CD11b1 comprising SigF2/CD11c2 cells

with sparse SigF2/CD11c1 cells. The
macrophage populations in ASM-HT mice
closely resembled those in WT mice. In
contrast, the lung macrophages in ASMKO
mice comprised fewer SigF1/CD11c1

cells (z58%), with marked increases in
SigF2/CD11c2 (19%) and SigF2/CD11c1

(22%) cells, suggesting recruitment and
maturation of monocyte-derived
macrophages, respectively. The
CD11c2/SigF2 population was Ly6C2

(Figure E1D), indicating that these cells
are not monocytes. Moreover, the
SigF1/CD11c1 macrophages in ASMKO
mice had increased CD11b levels,
suggesting a proinflammatory phenotype.
The forward and side light scatter of all
three macrophage populations was
markedly increased in ASMKO mice
compared with WT mice (Figures 3C and
E4), consistent with increased size and
granularity also noted on lung histology.
Similar to findings noted in the BALF,
neutrophils tended to be increased in
ASMKO lungs (Figure E4).

Markers of Inflammation in ASMKO
Mice
We investigated whether the increased
inflammatory cells in ASMKO lungs
were associated with other inflammatory
biomarkers, and we used a customized MSD
panel assay to measure concentrations of
select cytokines in plasma and lung tissue.
Compared with WT or ASM-HT mice,
proinflammatory cytokines were increased
in ASMKO mice by approximately twofold
in the plasma and by an even higher
magnitude in the lung (TNF-a: 2.2-fold
plasma and 3.5-fold lung, IL-6: 2.7-fold
plasma and 5.6-fold lung, KC/GRO: 2.1-
fold plasma and 4.0-fold lung, IL-1b: not
detected in the plasma and 2.7-fold lung,
and IL-5: 1.9-fold plasma and 2.8-fold lung)
(Figure 4; absolute cytokine concentrations
in Figure E5). IL-4 concentrations were
below the detection limit in the plasma
of all animals but were detectable in the
lung tissue of z70% of ASMKO mice,
significantly more than in WT mice
(Figures 4 and Figures E5A and E5B).
There were no differences between ASMKO
and WT mice in the plasma and lungs
concentrations of the antiinflammatory
cytokine IL-10. These results indicate
that the absence of ASM leads to the
activation of several inflammatory
pathways not only in the lungs but also
systemically.
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Cellular Localization of Ym1 Protein in
ASMKO Lungs
Typically, Ym1 is expressed by resident
airspace macrophages and portends an
“M2”-like macrophage phenotype. Because
we found markedly elevated Ym1
concentrations concurrently with new
populations of macrophages in ASMKO
lungs, we next determined which
macrophage populations in ASMKO lungs
harbor Ym1. Using flow cytometry, we
found that in WT mice, Ym1 was present
exclusively in SigF1/CD11c1 macrophages
(Figure 5A), undetectable in interstitial
(SigF2/CD11c2) CD11b1 cells, and not
evaluable in SigF2/CD11c1 because of
their low number. In the ASMKO mice,
SigF1/CD11c1 macrophages also expressed
Ym1, but because of high cellular
autofluorescence, its quantification was
unreliable and therefore not directly
comparable with the Ym1 concentrations
in WT mice. However, in striking contrast
to WT mice, both SigF2/CD11c2 and
SigF1/CD11c1 macrophages in ASMKO
mice were highly positive for Ym1. Because
Ym1 may be produced by other cell types,
including neutrophils and eosinophils, we

evaluated Ym1 concentrations in
Ly6G1/CD11b1 (neutrophil markers)
and CD642/SigF1/CD11c2/CD11b1

(eosinophil markers) cells. In comparison
with WT mice, the Ym1 expression in
ASMKO mice was appreciably lower in
neutrophils and higher in eosinophils
(Figure 5A). Furthermore, nonhematopoietic,
CD452 cells, which lacked Ym1 staining
in WT mice, were highly Ym1-positive
in ASMKO mice. These data were
complemented by immunofluorescence
microscopy that showed that in WT mice,
only CD11c1 cells were positive for Ym1
(Figure 5B), whereas in ASMKO mice, both
CD11c1 and CD11b1 stained for Ym1
(Figure 5B). In addition, ASMKO lungs
harbored giant cells that stained positive for
Ym1, and rather than staining positive for
CD68, CD11b (Figure 5C), or CD11c (not
shown), they costained positive for Ly6G
(Figure 5C).

Macrophage Autophagy and
Phagocytic Function in ASMKO Mice
Given the cellular inflammatory changes
in the lungs of ASMKO mice, with
high concentrations of Ym1 and crystal

formation, we next evaluated the functional
status of lung macrophages in these mice.
ASMKO mice have a lysosomal storage
disease and evidence of lysosome
dysfunction. Indeed, we have recently
shown that ASM inhibition triggers
lysosomal autophagy and increase
autophagy markers in ASMKO lungs (18).
We recapitulated these results, using
Western blotting of whole lung lysates,
noting increased concentrations of
autophagy markers p62 and LC3B and
lysosomal marker LAMP2 in ASMKO
lungs when compared with WT lungs
(Figure 6A). Because there is an inverse
relationship between amounts of autophagy
and macrophage phagocytic function, in
particular engulfment of opsonized targets
(34), we focused our functional studies on
Fc receptor-mediated phagocytosis and
compared it with that of apoptotic cell
clearance (efferocytosis) by lung
macrophages in ASMKO mice. Because the
macrophages’ functional phenotype is
highly impacted by their environment,
we performed these assays in vivo by
instillation of tagged phagocytic or
efferocytosis targets into the lungs of mice,
allowing for phagocytosis to occur in situ,
followed by recovery and evaluation of lung
macrophages. To evaluate Fc-dependent
phagocytosis, we instilled Fc-coated
fluorescent beads into the lungs of WT or
ASMKO mice, recovered the macrophages
by BAL after 4 hours, and used flow
cytometry to assess the proportion of
macrophages that had engulfed fluorescent
beads. The phagocytic function in
macrophages was significantly reduced (by
75%) in ASMKO mice compared with WT
mice (Figure 6B). To evaluate macrophage
efferocytosis, we introduced fluorescently
labeled apoptotic thymocytes into the lungs
of WT or ASMKO mice, recovered the
macrophages by BAL after 1 hour, and
measured the proportion of macrophages
that had engulfed apoptotic cells using flow
cytometry. In contrast to the significant
reduction in phagocytosis of Fc-coated
beads, ASMKO macrophages retained
robust efferocytosis (Figure 6C).

Lipid Profiles in the Lungs of ASMKO
Mice
We have previously shown that increased
ceramide concentrations inhibit
efferocytosis in both peripheral blood
monocyte-derived and lung macrophages
(18, 35). In turn, decreased S1P

LUNG
WT HT ASMKO

A

BALF
WT HT ASMKO

B

LUNG
WT KO WT KOASM

Ym1

Vinculin

45kDa

114kDa

C

Figure 1. Lung histology in ASM (acid sphingomyelinase)-knockout (KO) homozygous (ASMKO;
Smpd2/2) mice. (A) Hematoxylin and eosin–stained sections of lungs. Arrows: enlarged, lipid-laden
macrophages (foamy cells) in ASMKO lung. Arrowheads: eosinophilic crystalline inclusions. Scale
bars, 100 mm. (B) BAL fluid (BALF) cytospins stained with Diff-Quick Stain (Wright-Giemsa).
Arrows: enlarged macrophages in ASMKO BALF. Arrowheads: polygonal crystals. Scale bars,
100 mm. (C) Western blot of Ym1 in lung tissue lysates; vinculin was used as loading control.
HT=ASM heterozygous (Smpd1/2); WT=wild type (Smpd1/1).
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(sphingosine-1-phosphate) concentrations
may stimulate efferocytosis of lung
neutrophils (36). We next determined
whether these lipid changes in ASMKO
mice are congruent with functional

alterations in phagocytosis and
efferocytosis. ASM deficiency is expected
to inhibit the hydrolysis of sphingomyelin
to ceramide, therefore increasing
sphingomyelin and decreasing ceramide

concentrations. However, changes in
sphingolipid metabolism can be rapidly
compensated by other enzymes in the
pathway, whereas the longstanding
accumulation of sphingomyelin may
itself alter cellular metabolism. Indeed,
compared with WT mice, sphingomyelin
concentrations were markedly increased
(by approximately threefold and z100-
fold) in both the lung tissue and the
BALF of ASMKO mice, respectively
(Figures 7A and 7B). However, ceramide
concentrations were unchanged in ASMKO
lungs (Figure 7A) and were unexpectedly
increased in the BALF (Figure 7B). In turn,
ASMKO mice had markedly reduced S1P
concentrations in the lung (Figure 7A).
To our surprise, the BALF contained
increased S1P concentrations in ASMKO
mice (Figure 7B). We therefore inquired
whether lipids are nonspecifically increased
in the BALF of ASMKO mice. That
appeared indeed to be the case, as
lysophosphatidylcholine concentrations
were also higher in the BALF of ASMKO
mice (Figure E6A), whereas its downstream
metabolite, lysophosphatidic acid (LPA),
was reduced in the lung tissue (Figure E6B).

Discussion

We report novel aspects of NPD-associated
lung pathology that, in addition to
recruitment of neutrophils and monocyte-
derived macrophages, include accumulation
of eosinophilic crystals and a complex pattern
of local and systemic inflammation. Both
resident and recruited macrophages found in
airspaces contained high concentrations of
Ym1, an enzymatically inactive chitinase-like
protein associated with “M2-” or alternative
activation of macrophages. Indeed, ASMKO
macrophages were deficient in Fc-mediated
phagocytosis but exhibited robust
efferocytosis and activation of autophagy.

We demonstrate for the first time that
ASM is implicated in the determination of
lung macrophage subset abundance and
function. Previous studies of ASMKO
mice demonstrated age-dependent
increased abundance of lung macrophages,
including enlarged, lipid-laden (foamy)
macrophages as well as neutrophil
recruitment associated with the secretion of
monocyte and neutrophil chemoattractant
cytokines MIP-1a andMIP-2 (6). We provide
a deeper phenotyping of lung macrophages in
these mice, demonstrating that in sharp
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Figure 2. Inflammatory cells in the BALF of ASMKO mice. (A) Dot plot with mean abundance
of inflammatory cell types in the BALF of WT, ASM-HT, and ASMKO mice determined by cell
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ASMKO mice, with the top panels showing CD11b versus CD11c and the bottom panels showing
CD11b versus FSC. FSC= forward scatter.
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distinction to WT and ASM-HT mice, in
which the majority population consists
of resident interstitial and airspace
macrophages (26, 37), the increased
number of macrophages in ASMKO mice
was largely accounted for by recruited
CD11b1 cells. These macrophages were
large and granular, and they exhibited a
continuum of CD11c expression and
included a subpopulation with Siglec F
positivity. Because CD11c expression
reflects lung residence, the wide range of
CD11c expression suggests ongoing
recruitment of monocyte-derived
macrophages to the lung. Macrophages
with the highest CD11c expression also
displayed Siglec F, a marker for self-
renewing embryonic airspace macrophages
that can also be progressively acquired by

recruited macrophages that persist in the
lung environment (26, 38). Thus, in
ASMKO mice, the CD11c1/SigF1

macrophage population may comprise
monocyte-derived recruited macrophages
that have been reprogrammed to resident
airspace phenotype and the bona-fide
embryonic-derived resident airspace
macrophages. Absent lineage tracing,
the relative contribution of these two
populations cannot be precisely
determined.

The typical framing of macrophage
activation within the M1/M2 polarization
paradigm is more complex in vivo (39),
where lung macrophages coexpress M1
and M2 markers during health and
inflammation (26, 40). The functional
phenotype of the ASMKO lung

macrophages had features of M2 alternative
activation, given the presence of Ym1
among all subpopulations with robust
efferocytosis and decreased Fc-mediated
phagocytosis. However, proinflammatory
cytokines were also markedly increased in
the lungs, suggesting concomitant M1
classical activation. Although the lysosomal
storage defect in ASMKO mice may be
responsible for this complex macrophage
activation, a potential role for excessive
Ym1 accumulation and crystal formation is
intriguing. Ym1 is a lectin-like chitinase
devoid of enzymatic activity expressed
by resident airspace macrophages and
neutrophils (19–21). Transient elevations
of Ym1 expression in macrophages,
neutrophils, and Ly6CHi monocytes are
noted during injury repair (31, 41–43),
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whereas persistent lung elevations have
been noted in Th2 inflammatory conditions
(e.g., parasitic infections or allergic asthma)
(44–48). Excessive Ym1 and crystallization
similar to that in ASMKO mice have been

described during neutrophilic inflammation
in chronic granulomatous disease (31)
or eosinophilic crystalline pneumonia (32)
in mice. In the ASMKO mice, all
macrophage subsets expressed Ym1

protein, as did eosinophils, neutrophils, and
noninflammatory cells. However, given the
lack of granulomatous lung inflammation
and the modest lung amounts of
neutrophilic or eosinophilic inflammation,
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we speculate that the crystalopathy of
ASMKO mice may be driven by a defect in
macrophage phagocytosis and lysosomal
dysfunction that impairs the ability of lung

macrophages to engulf and clear Ym1/2
crystals despite increased autophagy. It
remains to be proven whether Ym1 crystals
in ASMKO mice are responsible for the

secretion of the Th2 (IL-4 and IL-5) or Th1
proinflammatory cytokines. Of note,
Charcot-Leyden crystals in human asthma,
which are similar in shape to the Ym1
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crystals but are composed from a different
protein (galectin-10), were sufficient to
drive a Th2 response (49).

As expected, ASM deficiency led to
sphingomyelin accumulation, which is
known to occur in all cell types, including
macrophages (3, 50). Furthermore, because
ASM and ceramidase activities are coupled
(18), the downstream production of
sphingosine, S1P, as well as that of other
bioactive lipids may be affected in ASMKO
mice. Indeed, ASMKO lungs exhibited
significantly reduced S1P and LPA
concentrations, which may impact a
multitude of biological activities, including
autophagy. In particular, the loss of the
stimulatory effect of S1P on mTOR (51,
52), combined with the autophagy
inhibitory effect of LPA, might provide a
permissive signaling environment for
autophagy noted in ASMKO mice.
Although autophagy may affect
macrophage engulfment, given the opposite
impact of ASM deficiency on Fc-mediated
efferocytosis and phagocytosis, it is likely
that the latter may involve other
mechanisms. Elucidation of these may also
help explain the defective receptor-
mediated uptake (53) and processing and
clearance of surfactant phospholipids by
macrophages (54) in ASMKO mice.

Although our focus here was on lung
macrophage function, the contribution of

structural cells abnormalities such as
epithelial and endothelial cells or
fibroblasts to NPD pathobiology cannot
be ignored. For example, ASM knockdown in
human lung epithelial cells was sufficient to
increase their secretion of proinflammatory
cytokines such as IL-8 (55). Injury or
activation of epithelial cells in ASM
deficiency could itself stimulate
inflammatory cell accumulation. In addition,
the functional changes in engulfment could
be due to a cell-autonomous phenotype
change in ASMKO resident alveolar
macrophages or could be a result of the
contribution of the recruited macrophages.
Elucidation of which cell type drives
inflammation in ASMKO mice will have to
be determined by future experiments using
cell-specific deletion or inhibition of Smpd1.

Respiratory involvement is present in
75% of patients with NPD and, together
with liver failure, represents the most
common cause of death (56–58). The
marked impairment of Fc-mediated
phagocytosis in ASMKO mice may provide
a mechanistic insight into the increased
frequency of respiratory infections reported
in patients with NPD (5, 59). Furthermore,
the Th2 and the M2 inflammatory
phenotypes in ASMKO mice are respective
drivers of asthma and lung fibrosis, known
manifestations of lung disease in NPD
(4, 60–62). However, there are limitations

of ASMKO mice as a model of NPD lung
disease, in that these animals do not
develop lung fibrosis. Also, human NPD
lungs have not been reported to feature
crystalopathy, although they do exhibit
proteinaceous material in the airspaces and
increased chitotriosidase activity, an
enzyme involved in chitin breakdown,
which was proposed as disease biomarker
(63–65). Therefore, even if the Ym1
crystalopathy is unique to the mouse
model, it would be interesting to query
whether equivalent lectin-like structures
may be present in human lungs. Finally, the
lack of inflammatory changes in the partial
ASM deficiency (ASM-HT) suggests the
possibility that restoring sphingomyelin
hydrolysis could prevent lung changes
noted herein.

In conclusion, genetic ASM
deficiency is associated with marked
changes in lung macrophage specification
and macrophage dysfunction, with
deficient Fc-mediated phagocytosis, crystal-
associated neutrophilic and monocyte
recruitment, and a mixed Th2 and Th1
response. These findings may have
importance in understanding the
pathogenesis of NPD- and other crystal-
associated lung diseases. n

Author disclosures are available with the text
of this article at www.atsjournals.org.
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pulmonary involvement in an adult male affected by type B Niemann-
Pick disease. Br J Radiol 2003;76:838–840.

62. Guillemot N, Troadec C, de Villemeur TB, Clément A, Fauroux B. Lung
disease in Niemann-Pick disease. Pediatr Pulmonol 2007;42:
1207–1214.

63. De Castro-Orós I, Irún P, Cebolla JJ, Rodriguez-Sureda V, Mallén M,
Pueyo MJ, et al.; Spanish NP-C Group. Assessment of plasma
chitotriosidase activity, CCL18/PARC concentration and NP-C
suspicion index in the diagnosis of Niemann-Pick disease type C: a
prospective observational study. J Transl Med 2017;15:43.

64. Degtyareva AV, Proshlyakova TY, Gautier MS, Degtyarev DN,
Kamenets EA, Baydakova GV, et al. Oxysterol/chitotriosidase based
selective screening for Niemann-Pick type C in infantile cholestasis
syndrome patients. BMC Med Genet 2019;20:123.

65. Voorink-Moret M, Goorden SMI, van Kuilenburg ABP, Wijburg FA,
Ghauharali-van der Vlugt JMM, Beers-Stet FS, et al. Rapid screening
for lipid storage disorders using biochemical markers: expert center
data and review of the literature. Mol Genet Metab 2018;123:76–84.

ORIGINAL RESEARCH

640 American Journal of Respiratory Cell and Molecular Biology Volume 64 Number 5 | May 2021


	link2external
	link2external
	link2external

