Table 4.
Performance of different methods on the real datasets
| Scenario | Dataset | MSE (Method)/MSE (Mean Imputation) | ||||
|---|---|---|---|---|---|---|
| SLR | kNN | SLRM | RF | DMU | ||
| 1 | I | 0.36 | 1.05 | 0.37 | 2.41 | 0.16 |
| 2 | I | 0.34 | 1.08 | 0.43 | 1.56 | 0.15 |
| 3 | I | 0.43 | 0.95 | 0.74 | 1.11 | 0.07 |
| 4 | I | – | – | 1.69 | 1.42 | 0.71 |
| 5 | I | – | – | 0.91 | 1.27 | 0.19 |
| 6 | I | – | – | 1.18 | 1.51 | 0.05 |
| 7 | II | 0.84 | 0.96 | 0.84 | 1.00 | 0.84 |
| 8 | II | 0.33 | 0.99 | 0.38 | 0.62 | 0.32 |
| 9 | II | 0.25 | 0.88 | 0.31 | 0.57 | 0.24 |
| 10 | II | – | – | 0.44 | 0.85 | 0.35 |
| 11 | II | – | – | 0.87 | 0.58 | 0.33 |
| 12 | II | – | – | 0.69 | 0.50 | 0.36 |
SLR Simple Linear Regression, KNN k Nearest Neighbors based Imputation, SLRM Simple Linear Regression combined with imputation, RF Random Forest-based Imputation, DMU Dynamic Model Updating