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ABSTRACT We present RNA sequencing data sets and their genome sequence as-
sembly for dengue virus that was isolated from a patient with dengue hemorrhagic
fever and serially propagated in Vero cells. RNA sequencing data obtained from the
first, third, and fifth passages and their corresponding whole-genome sequences are
provided in this work.

Dengue virus (DENV) belongs to the family Flaviviridae, genus Flavivirus. DENV con-
sists of four serotypes, DENV1 to DENV4. All four serotypes are the cause of den-

gue fever (DF), dengue hemorrhagic fever (DHF), and dengue shock syndrome (DSS).
DENV is an RNA virus that uses RNA-dependent RNA polymerase (RdRp) for replication.
RdRp has poor proofreading capability, which results in high error rates during replica-
tion (1). Therefore, DENV populations rapidly mutate during propagation in the host
cells. Here, we present DENV genome assemblies from raw reads of three serial pas-
sages of DENV in Vero cells (African green monkey kidney epithelial cells), which are
commonly used for DENV isolation, titration, and propagation (2).

EDTA-treated plasma was collected in 2005 in southern Thailand from a patient
with grade 2 DHF who was infected with DENV1. The patient was enrolled in a cohort
study that had been approved by the ethical committee of the Faculty of Medicine
Siriraj Hospital, Mahidol University, and the Ministry of Public Health in Thailand. The
disease severity was classified according to the 1997 WHO guidelines (3). The DENV
serotype was identified by reverse transcription-PCR (4). The virus was isolated by
applying 150ml of EDTA-treated plasma directly to the Vero cells. The inoculated Vero
cells were maintained in growth medium for 5 days. On day 5, the supernatant was col-
lected, centrifuged to remove cell debris, and aliquoted for storage as passage 1 (P1)
samples. To start P2, 150ml of P1 samples was inoculated in triplicate to fresh Vero
cells. These processes were repeated to generate P3 to P5. The inoculations after virus
isolation were performed in triplicate; therefore, three independent sets of samples
were available for P2 to P5 but not for P1.

For DENV RNA sequencing, 1 ml of supernatant aliquot was centrifuged at 120,000 � g
for 1.5 h at 4°C. The supernatant was carefully removed. The pellet was resuspended in
140ml of 1� phosphate-buffered saline (5). The DENV RNA was extracted by using a
QIAamp viral RNA minikit according to the manufacturer’s instructions. Samples from P1
(n = 1), P3 (n = 3), and P5 (n = 3) were selected for sequencing. The samples were sent to
Macrogen (Seoul, South Korea) for the sequencing process. Briefly, each sample was used
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for library preparation with the TruSeq RNA sample preparation kit version 2. Then, each
library was sequenced on the Illumina NovaSeq platform with 151-bp paired-end reads.
The quality of the sequencing data was explored using FastQC version 0.11.8 (6). Low-qual-
ity bases (mean Phred quality score, ,20) and adaptor sequences were trimmed from the
end of each read using Trimmomatic version 0.36 (7). The whole-genome sequence of
each sample was de novo assembled from cleaned sequencing data using IVA version
1.0.3 (8). The cleaned data were mapped to the corresponding assembled genome using
BWA-MEM version 0.7.17 (9). All tools were run with default parameters. Assembly errors
were explored by displaying the alignment result in the Integrative Genomics Viewer (IGV)
tool version 2.4.14 (10, 11). The assembly errors in the form of substitutions were corrected,
and indels were removed from the assembled genome sequences. The details of sequenc-
ing coverage, number of reads, GC content, and GenBank accession numbers are provided
in Table 1. The coding regions of all seven genome sequences are identical except for the
59 and 39 untranslated regions, with the lengths varying from 86 to 94 bases and from 446
to 465 bases, respectively. These genome sequence data and raw read data for DENV seri-
ally cultured in Vero cells provide information on DENV evolution under selective pressure
during continuous propagation in cell culture.

Data availability. The RNA sequencing data for the seven samples were deposited
in the Sequence Read Archive (SRA) database under the BioProject accession number
PRJNA669806. The genome sequences were deposited in the GenBank database. The
SRA and GenBank accession numbers are listed in Table 1.
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TABLE 1 Assembly metrics and accession numbers for each sample

Passage
no.

Replicate
no.

Sequence
coverage (×)

GC
content (%)

Total no.
of reads

Genome coverage
(nucleotide
position)a

SRA
accession no.

GenBank
accession no.
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5.2 132,483 46.16 21,663,268 9–10716 SRR12832835 MW362476
5.3 146,317 47.97 30,241,236 1–10716 SRR12832834 MW362477

aComparison between the assembled genome sequences and a DENV1 reference sequence from the GenBank database (accession number NC_001477).
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