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A B S T R A C T   

In this paper, we compare and evaluate different testing protocols used for automatic COVID-19 diagnosis from 
X-Ray images in the recent literature. We show that similar results can be obtained using X-Ray images that do 
not contain most of the lungs. We are able to remove the lungs from the images by turning to black the center of 
the X-Ray scan and training our classifiers only on the outer part of the images. Hence, we deduce that several 
testing protocols for the recognition are not fair and that the neural networks are learning patterns in the dataset 
that are not correlated to the presence of COVID-19. Finally, we show that creating a fair testing protocol is a 
challenging task, and we provide a method to measure how fair a specific testing protocol is. In the future 
research we suggest to check the fairness of a testing protocol using our tools and we encourage researchers to 
look for better techniques than the ones that we propose.   

1. Introduction 

COVID-19 is a new coronavirus that spread in China and then in the 
rest of the world in 2020 and became a serious health problem world
wide [1–3]. This virus infects the lungs and causes potentially deadly 
respiratory syndromes [4]. The diagnosis of COVID-19 is usually per
formed by Real Time Polymerase Chain Reaction (RT-PCR) [5]. 
Recently, many researchers attempted to automatically diagnose 
COVID-19 using x-ray images [6]. Chest x-ray image classification is not 
a new problem in artificial intelligence. Convolutional neural networks 
have already reached very high performances in the diagnosis of lung 
diseases [7]. The recent publication of new small dataset of COVID-19 
x-ray and CT images encouraged many researchers to apply the same 
techniques using these new data [8–11]. Medical research already 
showed that pneumonia caused by COVID-19 seems to be different from 
a radiologist perspective [12]. Most of the papers dealing with 
COVID-19 classification report very high performances in this task. 
However, Cohen et al. [13] experimented the limits of the generalization 
of x-ray images classification, due to the fact that the network might 
learn features that are specific of the dataset more than the ones that are 
specific of the disease. 

In this paper, we test if this is the case for most of the testing pro
tocols used for COVID-19 classification at the moment. We downloaded 
four chest x-ray datasets and ran multiple tests to see whether a neural 

network could predict the source dataset of an image. This would be a 
serious problem in this case, since all COVID-19 samples come from only 
one dataset in most papers, hence a classifier trained to distinguish 
COVID-19 might actually have learnt to classify the source dataset. In 
order to do this, we trained AlexNet [14] to detect the source dataset of 
an image whose center was turned to black. In this way, we delete the 
lungs from the image, or at least most of the lungs, hence it is impossible 
for the network to learn anything on the disease detection task. We find 
that, if the training and the test set contain images that come from the 
same dataset, AlexNet can distinguish them with a confidence that is 
much higher than the one reported in tasks like pneumonia detection. 
Hence, if one does not pay enough attention to the testing protocol, the 
reported results might be very misleading. 

To sum up, we show that every result dealing with the COVID-19 
dataset in [15] should also contain a baseline model that detects the 
source dataset, to understand the amount of information that actually 
come from the lungs area. Our consideration actually do not only apply 
to this particular case. One must always be careful at merging more 
dataset and using different labels for each one of those datasets. 

The structure of the paper is the following: first of all, we summarize 
some of the papers dealing with COVID-19 classification. After that, we 
describe the datasets that we use in our experiments and explain the 
details of our testing protocols. Finally, we run the experiments and 
show which testing protocols are the most suitable for COVID-19 
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classification. 

2. Related work 

Chest x-ray classification is not new in deep learning. Many datasets 
have been released [7,16] and neural networks trained on those dataset 
report high performances. As an example, Pranav et al. [7] report a 0.76 
ROC-AUC for the pneumonia vs. healthy classification task on [16]. 

We are not the first to report potential biases in chest x-ray image 
classification [17,18]. Recently, Cohen et al. [13] expressed some con
cerns on the real world applications of the automatic classification of 
x-ray images. They tried to train Densenet [19] on different chest x-ray 
datasets and showed that the network performance dropped when it was 
trained on a dataset and tested on a another one. 

Since the publication of the COVID-19 dataset [15] by Cohen et al., 
many researchers tried to classify those images and created a test by 
merging this dataset with other chest x-ray image datasets. We shall now 
describe some of them and report their testing protocols. 

Narin et al. [9] created a small dataset with 50 COVID-19 cases 
coming from Cohen repository and 50 heathy cases coming from Kaggle 
(https://www.kaggle.com/paultimothymooney/chest-xray-pneumo
nia). They used a 5 fold cross validation to train and test ResNet-50 [20] 
and obtained an accuracy of 98%. Apostolopoulos et al. [11] combined 
Cohen repository and many other sources to create a larger dataset 
containing 224 images of COVID-19, 700 of pneumonia and 504 nega
tive. They tested VGG [21] on these data using 10 fold cross validation 
and obtained 93.48% accuracy, although on an unbalanced dataset. 
Wang et al. [22] trained Covid-Net, a new architecture introduced in 
their paper. They used a large dataset with 183 cases of COVID-19: 5538 
of Pneumonia and 8066 are healthy subjects. They included several 
sources for their data. They extracted a test set with 100 images of 
pneumonia and of healthy lungs, and only 31 of COVID-19. In their code 
they explicitly mention that there is no patient overlap between the test 
and the training set, which is very important in problems like this. They 
reach a 92% accuracy. Hemdan et al. [23] trained Covidx-Net, a VGG19 
[21] network on a dataset made by 50 images, half of which came from 
the Cohen repository. Their testing protocol was 5 fold cross validation. 
Pereira et al. [8] trained their model on a dataset created by merging 
different datasets. From every dataset, they only extracted images 
belonging to specific classes (one source dataset for COVID-19, one for 
healthy lungs, one for pneumonia,…). In their work they introduced the 
idea of a hierarchical classification and reached a 0.89 F1-Score. 

Karim et al. [23] proposed a method to classify COVID-19 based on 
an explainable neural network. They used an enlarged version of the 
dataset used in [22], but they also add new images due to the fact that in 
the original dataset the healthy samples were pediatric scans. This might 
have led the network in [22] to learn how to classify the age of a patient 
more than its health status, and highlights once again the need for a fair 
testing protocol. An interesting protocol was tested in [24], where the 
authors managed to collect COVID-19 images that did not belong to the 
Cohen repository and used them as the test set. 

Castiglioni et al. [25] proposed a completely different protocol using 
a dataset that they collected and that is not public. They used 250 
COVID-19 and 250 healthy images for training, and used an independent 
test set of 74 positive and 36 negative samples. They trained an 
ensemble of 10 ResNets and achieved a ROC-AUC of 0.80 for the clas
sification task. Its performance is much worse than the other ones re
ported in the literature, however, they used both anteroposterior and 
posteroanterior projections and they do not suffer of the dataset recog
nition problem that we highlight in this paper. 

Tabik et al. [26] proposed the COVID Smart Data based Network 
(COVID-SDNet) methodology, which classifies COVID-19 Images ac
cording to the severity of the disease. Besides, they also show that high 
performances reported in the literature might be biased and propose a 
new and independent dataset that might help to design better 
experiments. 

In order to understand the relevant features in COVID-19 classifi
cation, Karim et al. [27] proposed a method that highlights 
class-discriminating regions using gradient-guided class activation maps 
(Grad-CAM++) and layer-wise relevance propagation(LRP), helping to 
understand whether the context of a scan was useful for classification. 

3. Datasets 

In this paper we used four different datasets which are publicly 
available online. We shall now describe them. In Table 1, we report the 
main traits of the various datasets. 

3.1. NIH dataset 

The Chestx-ray8 dataset [16] was released by the National Institute 
of Health and is one of the largest public labelled datasets in this field, 
which contains 108,948 images of 32,717 different patients, classified 
into 8 different categories, potentially overlapping. It was labelled using 
natural language processing techniques on the radiologists annotations. 
We refer to this dataset as NIH. We plot some samples in Fig 1. 

3.2. CHE dataset 

Irvin et al. collected and labelled Chexpert [28], a large dataset 
containing 224,316 chest radiographs of 65,240 patients divided into 14 
classes. The strength of this new dataset is that the labeling tool based on 
natural language processing obtains higher performances than the one 
in Chestx-ray8. However, its test set is not publicly available, hence we 
use the validation set instead. For our purposes, this makes no differ
ence, since we are not comparing our work to any previous papers. We 
refer to this dataset as CHE. We show some of the scans in Fig. 2. 

3.3. KAG dataset 

In 2017 Dr. Paul Mooney started a competition on Kaggle on viral 
and bacterial pneumonia classification (https://www.kaggle.com/ 
paultimothymooney/chest-xray-pneumonia/version/2). 

It contained 5863 pediatric images, hence it is very different from the 
other datasets. We refer to this dataset as KAG. Some samples can be 
seen in Fig. 3. 

3.4. COV dataset 

Our source of COVID-19 images is the repository made available by 
Cohen et al. [15], which is the main source of most papers dealing with 
COVID-19. In the moment we are writing, it contains 144 images of 
frontal x-ray images of patients potentially positive to COVID-19. Met
adata are available for every sample, containing the patient ID and, most 
of the times, the location and other notes that contain the reference to 
the doctor that uploaded the images. We refer to this dataset as COV. 
Some of the samples are in Fig. 4. 

4. Methods 

We made two different experiments. In both cases our training and 
test sets consist in combinations of the four datasets that we introduced 
in the previous section. The images were preprocessed by resizing them 
so that their smallest dimension was equal to 360, then a square of fixed 

Table 1 
Summary of the 4 Datasets.  

Dataset COV NIH CHE KAG 

Covid Samples 144 0 0 0 
Healthy Samples 0 84,312 16,627 1583 
Images Resolution Not Fixed 1024 × 1024 Not Fixed Not Fixed  
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size was turned to black in the center of the image. In our experiments 
we used a size of 240, 270 and 300. To give an intuition, if we the input 
image is a square, a 270 black square would cover the 56% of the pixels, 

while, if the largest dimension is the 50% larger than the shortest, which 
is quite an upper bound to the difference between dimensions, it would 
cover the 37% of the pixels. This preprocessing is made in order to create 

Fig. 1. Samples from the NIH dataset.  

Fig. 2. Samples from the CHE dataset.  

Fig. 3. Samples from the KAG dataset.  
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a square as small as possible, that still covers most of the lungs. The 
images in the dataset are more or less centered, especially in the hori
zontal axis. Besides, the two dimensions of the lungs are often compa
rable, hence they more or less fit in a square. From this observation it 
follows that, most of the times, the side pixels of the larger dimension do 
not usually contain part of the lungs, hence they can be kept in the 
preprocessed image. However, that is just our hypothesis, hence we shall 
also try a different image preprocessing later. Scans were always resized 
to squares of size 227 to be fed into AlexNet. The original and the 
transformed samples can be seen in Fig. 5. It is clear that most of the 
lungs are hidden in our datasets, hence we can assume that we removed 
nearly all the information about the health status of the patient. We only 
considered the samples whose labels were Pneumonia, No Finding and 
COVID-19, except for the test set of Chexpert, since it was too small. We 
applied this preprocessing to all test and training images. 

As the test set of Chexpert, we use all the images belonging to all the 
classes in the validation set. Since we wanted to detect the dataset and 
we removed the lungs from the images, we considered this a safe pro
tocol. It is worth noticing that all datasets except COV have training data 
and test data, while COV does not have this distinction. Hence, we 
divided COV into 11 folds for cross validation. This number was not set 
in advance, but it was the result of the constraints that the folds must 

satisfy. We shall now describe those constraints. We randomly divided 
the COV dataset using two different protocols. The easiest one avoids 
patient overlap among folds. We refer to this protocol as PAT-OUT. The 
second one exploits the information in the metadata so that all the scans 
uploaded by the same doctor are in the same fold. We refer to this 
protocol as DOC–OUT. The information about the uploads is not com
plete and we cannot be 100% sure to do this. However, scans with no 
metadata about the location of the patient are in the same fold. How
ever, most scans have metadata about the location and the doctor. We 
choose to do this to avoid that a network learns to recognize a specific 
hospital or X-Ray machine. Although this does not ensure the protocol to 
be unbiased, this is what this paper is about: stating that it is very hard to 
create a fair protocol in this field, and trying to propose the best one 
based on our experiments. In the DOC–OUT protocol we also required 
that every fold contained more than 10 samples, except for the last one. 
The minimum number of samples for the PAT-OUT protocol was set to 
13 in order to obtain 11 folds as in the DOC–OUT protocol. 

In both experiments, we fine-tuned AlexNet with a learning rate of 
0.0001, except for the last fully connected layer, whose learning rate 
was 0.0002. We trained the network for 12 epochs with a mini-batch size 
of 64. We apply standard data augmentation applying random vertical 
flipping, random translations in [− 5,5] and random rotations in [− 5,5]. 

Fig. 4. Samples from the COV dataset.  

Fig. 5. Original and transformed samples from the 4 datasets, 300 sized black square (Left to right: COV, NIH, CHE, KAG).  
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Data augmentation was very important because there were not many 
samples in the COV dataset. We always train the networks using 10 folds 
of COV and subsets of NIH, CHE and KAG, since they are very large. In all 
the experiments, for every COV sample, there are two samples of the 
other training datasets. 

In our first experiment, we merge the training sets of NIH, CHE and 
KAG and 10 folds of COV and train AlexNet to recognize the source 
dataset of the images. Hence, we have 4 different labels. The test set is 
made by the test sets of NIH, CHE and KAG and the remaining fold of 
COV. We test this protocol 11 times, one for every fold of COV. We then 
merge the results obtained by every fold. This means that every sample 
not belonging to COV is tested 11 times, making the test set even more 
unbalanced than it already was. This is why the only metric we could use 
to test our models was class vs. class ROC-AUC over all the predictions of 
the 11 networks, since it is indifferent, on average, to the multiplicity of 
a sample in the test set. We only use the DOC–OUT protocol in this 
experiment. We ran this test three times. The first one with a black 
square of size 300. The second with a black square of size 270. In the 
third one we used a 240 sized square, but we also preprocess the image 
by applying contrast limited adaptive histogram equalization [29] and 
by cropping the image by cutting its upper and lower part so that the 

height of the new image is between the 90% and the 100% of its width. 
We use this preprocessing because the network could be able to deduce 
the original dataset by the proportion of the images. Besides, the 
contrast of the CHE dataset looks much larger than the contrast of the 
other images. In order to avoid confusion with the black square pre
processing, we called this procedure equalization. We show 4 equalized 
images in Fig. 6. We refer to this experiment as dataset recognition. 

In our second experiment, we implement a protocol which is similar 
to the one proposed by Cohen in [13]. We choose a dataset among NIH, 
CHE and KAG to be left out from the training set and to be used in the 
test set. Then, we train AlexNet on the training sets of two datasets 
among NIH, CHE and KAG and on 10 folds of COV, and we test it on the 
test set of the left-out dataset and on the remaining fold of COV. We 
repeat this for every fold of COV and using both PAT-OUT and DOC–
OUT protocols. The labels of the samples are COV and non-COV. Again, 
we evaluated the ROC-AUC of the classification task, as we did for 
dataset recognition. We repeat this experiment three times, one for 
every choice of the left-out dataset. We refer to this experiment as COV 
recognition. It is worth mentioning that also in this experiment we 
covered the images with the black square. 

5. Results 

In Table 1 we report the results of the dataset recognition with a 300 
square. Since the dataset is highly unbalanced, we only evaluate the 
ROC-AUC of the binary classifications and the confusion matrices. The 
best outcome would be to get a 0.5 ROC-AUC, which would mean that 
the two dataset cannot be distinguished by our model. However, one can 
see that AlexNet is very capable of recognizing the dataset without using 
the lungs. 

The lowest ROC-AUC value is reached for the COV vs. NIH classifi
cation, but it is still 0.92. This is not surprising if one looks at the Figs. 1- 
4. The samples in the different datasets seem to have very specific fea
tures. In particular, the images in the CHE dataset seem to have a strong 
contrast, which is probably recognized by the AlexNet even when the 
center of the images is set to black. In Table 2 we report the confusion 
matrix of the task. In a single row there are the samples belonging to the 
corresponding dataset, while on the columns there are the samples 
which are predicted to belong to that dataset. We can see that all 
datasets are accurately predicted. The only dataset that is not very well 
recognized is COV, and the large AUCs in the binary classifications in 
tasks involving COV seem to depend more on the fact that a dataset 
different from COV is hardly ever classified as COV. 

Fig. 6. Images form the four datasets (COV, NIH, CHE, KAG) after equalization.  

Fig. 7. t-SNE of the last hidden layer of a finetuned Alexnet. Red is NIH, green 
is CHE, yellow is KAG and blue is COV. 
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In Table 3, we report the result of the same experiments using a 
square of size 270. We can see that there is not much difference with the 
previous experiment. As it is expected, the larger amount of information 
allows AlexNet to perform even better than in the 300 sized square case. 
This can also be seen in the confusion matrix reported in Table 4. 

In Table 5 we report the results of the classification using equaliza
tion and a square of size 240. Although the square is smaller than in the 
previous cases, recall that the upper and lower parts of image are cut, 
hence there are as more black pixels than the ones on the square. Some 
examples can be seen in Fig. 6. In Table 6 we can see that the confusion 
matrix is more promising than in the previous cases. In particular, the 
COV dataset seems to be confused with the other datasets most of the 
times. 

In Table 7, we report the three ROC-AUCs of the COV recognition 
experiment. We can see that the values are much lower than the ones of 
the previous experiments. Besides, there is not much evidence that the 
DOC–OUT protocol performs better than the PAT-OUT protocol. It 
might seem unexpected that KAG vs. COV performs worse than random. 
Probably this is due to the fact that KAG is much different from NIH and 
CHE that were used as non COV samples in the training set. This can be 
seen in Fig. 7. 

We must also report that in this protocol nearly all samples are 
labelled as COV. 

Our hypothesis is that the COV dataset does not have particular 
features to be learnt, while the other datasets do. We show this in Fig. 7, 
where we plotted the output of the last hidden layer of AlexNet using t- 
distributed stochastic neighbor embedding (t-SNE) [30]. The network 
that we used is the one trained for dataset recognition with a 300 square. 
This might be due to the fact that COV is a repository of images uploaded 
by doctors from all over the world. 

We can see that COV is more similar to the other datasets than those 
datasets are among themselves. This also explains why the Leave-out 
KAG protocol performs worse than random. If a model is trained to 
recognize the red and green points as non-COV and the blue points as 
COV, it is clear that some blue points might be confused with a red or 
green point, but yellow points will always be classified as blue points. 

The objective of this paper is suggesting a fair testing protocol for 
COVID-19 classification. Our experiments show that the difference be
tween the datasets is so large that building a fair protocol with the 
dataset that we considered might be very hard. One solution would be to 
find a dataset whose features are similar to the ones in COV. Otherwise, 
one can find an effective preprocessing (hopefully better than our 
equalization) that deletes the dataset-dependent features. We showed 
that it is possible to delete some of them and making the dataset clas
sification harder, however we are far from an unbiased protocol. 

Other datasets are available for chest x-ray recognition, hence one 
can apply our techniques to validate the use of any other repository 
which is available to them. We must also point out that in our experi
ments we removed nearly all the information about the health status of 
the lungs, but we also removed a large portion of the information about 
the dataset in general. In other words, two datasets might be distin
guishable because of features that appear in the center of the images, but 
have nothing to do with the health status of the patient. Hence, our 
experiments set a minimum ability of a classifier to recognize the 
datasets. To the best of our knowledge, we are the first to address this 
problem for COVID-19 x-ray images. From the COV recognition exper
iment on might deduce that leaving a dataset out to be used a test set 
could be beneficial. However, this might be very hard in practice since 
the data cloud of the left-out dataset might be very far from the other 
non Covid datasets, as it happens in Fig. 7. 

6. Conclusion 

In this paper we discussed the validity of the usual testing protocols 
in most papers dealing with the automatic diagnosis of COVID-19. We 
showed that these protocols might be biased and learn to predict 

features that depend more on the source dataset than they do on the 
relevant medical information. We also suggested some solutions to find a 
new testing protocol and a method to evaluate its biasness. To the best of 
our knowledge, we are the first to provide such a metric. As future work, 
we plan to look for more efficient methods for dataset recognition and to 
create new experiments to test the biasness of testing protocols for X-Ray 
image classification. Besides, we plan to create new image processing 

Table 1a 
Roc-Auc of the Dataset Recognition Task – 300 – No Equalization.  

Dataset NIH CHE KAG 

COV 0.9212 0.9652 0.9898 
NIH —– 0.9956 0.9997 
CHE —– —– 0.9989  

Table 2 
Confusion Matrix of the Dataset Recognition Task – 300 – No Equalization.  

Dataset COV NIH CHE KAG 

COV 106,911 4197 3434 34 
NIH 9 342 11 1 
CHE 33 13 88 10 
KAG 53 131 206 6474  

Table 3 
Roc-Auc Of The Dataset Recognition Task – 270 – No Equalization.  

Dataset NIH CHE KAG 

COV 0.9283 0.9871 0.9937 
NIH —– 0.9995 0.9998 
CHE —– —– 0.9997  

Table 4 
Confusion Matrix of the Dataset Recognition Task – 270 – No Equalization.  

Dataset COV NIH CHE KAG 

COV 110,802 2111 1592 71 
NIH 1 353 9 0 
CHE 30 12 90 12 
KAG 46 87 108 6623  

Table 5 
Roc-Auc of the Dataset Recognition Task – 240 – With Equalization.  

Dataset NIH CHE KAG 

COV 0.9210 0.9565 0.9741 
NIH —– 0.9899 0.9905 
CHE —– —– 0.9974  

Table 6 
Confusion Matrix of the Dataset Recognition Task – 240 – With Equalization.  

Dataset COV NIH CHE KAG 

COV 94,564 13,422 5195 1395 
NIH 1 352 10 0 
CHE 32 40 59 13 
KAG 218 253 95 6298  

Table 7 
Roc-Auc of the Covid Dataset Recognition Task With Equalization.  

Protocol Leave-out NIH Leave-out CHE Leave-out KAG 

DOC–OUT 0.68 0.62 0.36 
PAT-OUT 0.68 0.62 0.42  
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techniques that might reduce the inter-dataset differences. 
Table 1a 
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[26] S. Tabik, A. Gómez-R\’\ios, J.L. Mart\’\in-Rodr\’\iguez, I. Sevillano-Garc\’\ia, M. 
Rey-Area, D. Charte, E. Guirado, J.L. Suárez, J. Luengo, M.A. Valero-González, 
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