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Abstract

Pavlov’s pioneering work established that sham-feeding induced by sight or smell of food or 

feeding in dogs with permanent esophagostomy stimulates gastric acid secretion through vagal 

pathways. Brain circuitries and transmitters involved in the central vagal regulation of gastric 

function have recently been unraveled. Neurons in the dorsal vagal complex including the dorsal 

motor nucleus of the vagus (DMN) express thyrotropin-releasing hormone (TRH) receptor and are 

innervated by TRH fibers originating from TRH synthesizing neurons in the raphe pallidus, raphe 

obscurus and the parapyramidal regions. TRH injected into the DMN or cisterna magna increases 

the firing of DMN neurons and gastric vagal efferent discharge, activates cholinergic neurons in 

gastric submucosal and myenteric plexuses and induces a vagal-dependent, atropine-sensitive 

stimulation of gastric secretory (acid, pepsin) and motor functions. TRH antibody or TRH-R1 

receptor oligodeoxynucleotide antisense pretreatment in the cisterna magna or DMN abolished 

vagal-dependent gastric secretory and motor responses to sham-feeding, 2-deoxy-D-glucose, cold 

exposure and chemical activation of cell bodies in medullary raphe nuclei. TRH excitatory action 

in the DMN is potentiated by co-released prepro-TRH-(160–169) flanking peptide, Ps4 and 5-HT, 

and inhibited by a number of peptides involved in the stress/immune response and inhibition of 

food-intake. These neuroanatomical, electrophysiological and neuropharmacological data are 

consistent with a physiological role of brainstem TRH in the central vagal stimulation of gastric 

myenteric cholinergic neurons in response to several vagal dependent stimuli including sham-

feeding.
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1. Introduction

At the beginning of last century, Ivan Pavlov’s pioneer discovery of the “psychic phase” of 

gastric acid secretion provided one of the first experimental evidence of brain–gut axis. He 

established a model of sham-feeding in dogs with permanent esophagostomy, and 

demonstrated that the anticipation of eating and the sight and smell of food were powerful 

stimulants of both gastric acid and pepsin secretion, and the gastric response required the 

vagal innervation (Pavlov, 1910). In humans, Cushing reported in 1932 that patients with 

intracranial lesions had gastric hypersecretion and developed ulcers (Cushing, 1932). 

Thereafter, a number of experiments using electrical stimulations and lesions of various 

brain areas defined specific nuclei responsible for influencing gastric acid secretion through 

vagal pathways (reviewed in Taché, 1987). Despite this auspicious beginning establishing 

that gastric acid secretion is stimulated by central vagal pathways, it has only been in the 

past few decades that brain circuitries and chemical messengers involved in vagal regulation 

of gut function have been unraveled (Taché, 1987; Hornby et al., 1991).

The present review will focus on convergent sets of evidence illustrating that brain 

medullary thyrotropin-releasing hormone (TRH) is involved in the neuronal cascade 

mediating the vagal cholinergic-dependent stimulation of gastric function in response to 

various stimuli including sham-feeding.

2. Brain medullary TRH is a physiological vagal stimulant of gastric 

secretion: neuroanatomical and electrophysiological evidence

TRH was originally isolated from mammalian hypothalami and named after its property to 

stimulate the release of thyroid-stimulating hormone (TSH) from the pituitary (review in 

Guillemin, 2005). However, the widespread distribution of TRH in the brain (Hokfelt et al., 

1975; Yarbrough, 1979; Jackson and Lechan, 1983; Horita et al., 1986; Lechan and 

Segerson, 1989) and its neuropharmacological effects (Taché et al., 1977;Yarbrough, 1979) 

suggested that TRH may exert biological functions that expand far beyond its pivotal 

hypophysiotrophic role (Metcalf and Dettmar, 1981). In particular, we initially showed that 

TRH injected intracisternally (i.c.) acts in the brain to induce a vagally mediated and 

atropine-sensitive stimulation of gastric acid secretion (Taché et al., 1980). This report 

provided the first evidence that a peptide increased gastric acid secretion through central 

vagal pathways (Taché et al., 1980). Further studies uncovered neuroanatomical, 

electrophysiological and neuropharmacological evidence implicating the brain medullary 

TRH pathway in the central vagal regulation of gastric secretory and motor function to 

various stimuli (Taché et al., 1993).

2.1. TRH and TRH receptor localization in the brainstem

The dorsal vagal complex (DVC) encompasses the dorsal motor nucleus of the vagus 

(DMN) and the nucleus tractus solitarius (NTS). Tracing studies by Powley et al. (1991) 

established that the DMN is the source of vagal efferent fibers innervating the gut, and more 

prominently, the stomach. In particular, the medial parts of the right and left DMN contain 

neurons that project ipsilaterally to form the anterior and posterior branches of the gastric 
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vagus, respectively (Fox and Powley, 1985). There is also evidence that dendrites of DMN 

neurons reached the overlying NTS more densely in the subnucleus gelatinosus of the dorsal 

medial NTS just rostral to the obex where gastric vagal afferent fibers project (Rinaman and 

Miselis, 1990). TRH-immunoreactive (IR) fibers are densely present in the DVC (Fig. 1A) 

and TRH-containing nerve terminals make synaptic contacts with dendrites of DMN 

neurons projecting to the stomach in rodents (Rinaman et al., 1989; Rinaman and Miselis, 

1990). In humans, TRH-IR fibers innervating the DMN also constitute the most prominent 

network compared with that of twelve other neuropeptides (Fodor et al., 1994). TRH-IR 

fibers in the DVC do not originate from TRH-expressing neurons in the paraventricular 

nucleus of the hypothalamus but from direct projections from TRH synthetizing neurons 

located exclusively in brainstem nuclei, namely the raphe pallidus, raphe obscurus and 

parapyramidal regions, as delineated by knife cut and tracing methods (Palkovits et al., 

1986; Segerson et al., 1987; Lynn et al., 1991; Bayliss et al., 1994) (Fig. 1B, C).

Consistent with a physiological role of TRH terminals in the DVC to regulate gastric 

function, the highest density of TRH binding sites detected by autoradiography is found in 

the medial column of the DMN (Manaker and Rizio, 1989) (Fig. 1D) where the majority of 

preganglionic motor neurons contribute to the vagal efferent innervation of the stomach 

(Powley et al., 1991). So far the two cloned TRH receptor subtypes, TRH-R1 and TRH-R2, 

are membrane proteins belonging to the family of G-protein coupled receptors (Gershengorn 

and Osman, 1996; Cao et al., 1998). Mapping of TRH-R1 and TRH-R2 gene expression in 

the rat brainstem revealed that TRH-R1 is the only subtype present in the DMN and NTS, 

while TRH-R2 is mainly located in the reticular formation, dorsal tegmental nucleus and 

spinal trigeminal nucleus which are areas processing sensory information (Heuer et al., 

2000).

2.2. Activation of preganglionic vagal motor neurons and vagal efferent fibers

The expression of TRH receptors on preganglionic vagal motor neurons is indicative of a 

TRH modulatory action on parasympathetic outflow. Several reports showed that TRH 

induces an immediate and long acting excitation of individual DMN units identified 

electrophysiologically in urethane-anesthetized rats and in guinea pig or rat brainstem slice 

preparations (McCann et al., 1989; Raggenbass et al., 1990; Travagli et al., 1992; Livingston 

and Berger, 1993). The responsiveness to TRH observed in DMN neurons located rostral or 

caudal to the obex is no longer observed or decreased after repeated injections indicating 

that there is a sensitization or tachyphylaxis to TRH (Travagli et al., 1992; Livingston and 

Berger, 1993). TRH acts directly on DMN neurons since the excitatory response was still 

observed after synaptic blockade and was not affected by glutamate or muscarinic 

antagonists ruling out an action through presynaptic release of glutamate and acetylcholine 

(McCann et al., 1989; Raggenbass et al., 1990; Travagli et al., 1992; Livingston and Berger, 

1993). The mechanisms underlying the excitatory effect involve an increase in excitatory 

postsynaptic currents and a reduction of fast transient A-type potassium current and 

calcium-dependent slow after-hyperpolarization (Travagli et al., 1992).

In line with the activation of preganglionic vagal motor neurons, i.c. or 

intracerebroventricular (i.c.v.) injection of TRH or the stable TRH analog, RX 77368 results 
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in a doserelated sustained stimulation of efferent discharges recorded in the cervical or 

ventral gastric branch of the vagus in anesthetized rats (Somiya and Tonoue, 1984; Taché et 

al., 1985; O-Lee et al., 1997) (Fig. 2).

2.3. Activation of gastric myenteric cholinergic neurons

Earlier electrophysiological studies by Schemann and Grundy (1992) revealed that a high 

percentage of myenteric neurons in guinea pig stomach receives direct fast excitatory 

postsynaptic potential input from vagal efferent fibers. Anatomical support for these 

observations came from elegant tracing studies depicting direct input of vagal efferent fibers 

on gastric myenteric neurons (Berthoud, 1995; Holst et al., 1997). In the stomach, vagal 

efferent terminals were found to encircle or make putative contacts with all gastric myenteric 

and submucosal neurons (Berthoud, 1995; Holst et al., 1997). The i.c. injection of TRH 

provided a relevant tool to assess the activation of gastric myenteric neurons by central vagal 

activation in conscious rats using double labeling with Fos as a nuclear marker of neuronal 

synaptic activation (Krukoff, 1993) and PGP 9.5 as a neuronal marker (Krammer et al., 

1993). We showed that the TRH analog, RX 77368 injected i.c., at a dose that activates 

gastric vagal efferent discharge (O-Lee et al., 1997), induced Fos expression in the majority 

(90%) of neuronal cell bodies located in the corpus and antral submucosal and myenteric 

ganglia (Miampamba et al., 2001; Yuan et al., 2005) (Fig. 3). Fos expression was observed 

in neurons densely surrounded with cholinergic fibers identified by the vesicular 

acetylcholine transporter (Miampamba et al., 2001). The Fos response to i.c. RX 77368 was 

90% abolished by hexamethonium, but not altered by atropine (Miampamba et al., 2001). 

Using selective vagal denervation in the rat stomach, Fos expression in response to electrical 

vagal stimulation occurs in gastric myenteric neurons except in the vagally denervated area, 

arguing against a role of interneuronal spreading of the activation, but rather a direct 

cholinergic input (Zheng and Berthoud, 2000). It is well established electrophysiologically 

that acetylcholine acting at nicotinic acetylcholine receptors mediates most of the fast 

excitatory postsynaptic potentials in the enteric nervous system (Galligan, 2002). Taken 

together these data support that central vagal cholinergic activation-induced widespread Fos 

expression in gastric myenteric neurons occurs through acetylcholine acting at nicotinic 

acetylcholine receptors located on myenteric neurons (Kirchgessner and Liu, 1998; 

Galligan, 2002) although their distribution in rats myenteric neurons is still to be established.

The neurochemical phenotype of myenteric neurons activated by central vagal stimulation 

was identified to include over 90% of gastric intrinsic cholinergic neurons that represent 

two-thirds of total submucosal and myenteric immunoreactive neurons (Nakajima et al., 

2000; Yuan et al., 2005) (Fig. 3). This was established using immunostaining with peripheral 

choline acetyltransferase (pChAT), a splice variant of ChAT that is expressed only in the 

peripheral nervous system (Tooyama and Kimura, 2000; Yuan et al., 2005). These 

observations provided anatomical and functional support to the vagal dependent and 

hexamethonium and atropine sensitive gastric acid response to i.c. injection of TRH or TRH 

analog in rats or medullary raphe activation in cats (Taché et al., 1980, 1984; Yanagisawa et 

al., 1990; White et al., 1991).
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3. Involvement of medullary TRH signaling in the vagal stimulation of 

gastric function

The blockade of receptors by selective antagonists is a commonly used approach to assess 

the physiological role of endogenous transmitters and peptides. However, with regard to 

TRH, no specific receptor antagonists have yet been developed. Alternative strategies relied 

on the TRH-R1 antisense oligodeoxynucleotides to inhibit in vivo TRH-R1 expressed in the 

DVC (Suzuki et al., 1995; Sivarao et al., 1997) and polyclonal TRH antibody to 

immunoneutralize endogenous TRH localized and released in the DVC (Rinaman et al., 

1989; Rinaman and Miselis, 1990).

3.1. Gastric stimulation induced by activation of TRH synthetizing neurons

Convergent reports showed that the chemical activation of TRH synthesizing cell bodies by 

microinjection of kainic acid into the Rpa, Rob and parapyramidal regions that project to the 

DVC (Lynn et al., 1991; Taché et al., 1995a) results in a vagal-dependent, atropine-sensitive 

stimulation of gastric acid and pepsin secretion, motility and mucosal blood flow and 

alterations of the resistance of the gastric mucosa to injury; these changes mimicked the 

gastric responses elicited by TRH or its stable analog microinjected directly into the DMN 

in rats and cats (Taché et al., 1984; White et al., 1991; Yang et al., 1993, 1999b, 2000a,b; 

Garrick et al., 1994; Kaneko et al., 1995, 1998; Kaneko and Taché, 1995). In addition, TRH 

antibody injected into the cisterna magna or selectively microinjected bilaterally into the 

DVC, or i.c. pretreatment with TRH-R1 oligodeoxynucleotide antisense prevented the 

stimulation of gastric acid secretion, motility and blood flow, and changes in the resistance 

of the gastric mucosa to injury induced by microinjection of kainic acid into the raphe 

obscurus or raphe pallidus (Yang et al., 1993, 2000b; Garrick et al., 1994; Kaneko et al., 

1995, 1998; Kaneko and Taché, 1995; Sivarao et al., 1997). Collectively these results 

indicate that the excitation of TRH-synthesizing raphe medullary neurons activates 

endogenous TRH–TRH-R1 signaling cascade within the DMN and thereby elicits vagal 

cholinergic myenteric stimulation of gastric acid secretory and motor function and mucosal 

blood flow.

3.2. Gastric responses to acute cold exposure

Early reports established cold exposure as a model to induce vagal-dependent atropine 

sensitive development of gastric lesions in fasted rats (Senay and Levine, 1967). Since then, 

convincing data support the involvement of brain medullary TRH as part of the mechanisms 

underlying gastric alterations induced by cold exposure (Taché et al., 1995b). First, brain 

medullary proTRH mRNA expression is increased in a time-related manner by cold 

exposure for 1 to 3 h and in situ hybridization histochemistry revealed that this occurs 

exclusively in the raphe pallidus and raphe obscurus (Yang et al., 1994). Second, cold 

exposure activates TRH synthesizing neurons in the raphe pallidus, raphe obscurus and 

parapyramidal region as shown by Fos and prepro-TRH double staining (Bonaz and Taché, 

1994; Wang et al., 1996; Yang et al., 2000b). Cold exposure also activates DMN neurons 

(Bonaz and Taché, 1994; Wang et al., 1996), vagal efferent discharge (Cho et al., 1996) and 

over 90% of antral and corpus submucosal and myenteric cholinergic neurons (Yuan et al., 

Taché et al. Page 5

Auton Neurosci. Author manuscript; available in PMC 2021 April 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2001, 2005) (Fig. 3). Third, acute cold exposure mimics the functional gastric responses 

evoked by i.c. or DMN injection of TRH or TRH analogs and induces a vagally mediated 

atropine-sensitive stimulation of gastric acid and pepsin secretion, motility and hemorrhagic 

lesion formations (Goto and Taché, 1985; Taché et al., 1988; Hernandez and Emerick, 1988; 

Yang et al., 1994; Okumura et al., 1994). Lastly, TRH antibody microinjected into the DVC 

or cisterna magna or i.c. pretreatment with the TRH-R1 oligodeoxynucleotide antisense 

prevents acute cold exposure-induced stimulation of gastric acid secretion, emptying, 

motility and lesion formation (Basso et al., 1988; Hernandez et al., 1990; Niida et al., 1991; 

Martinez et al., 1998).

3.3. Gastric responses to 2-deoxy-D-glucose

Glucodeprivation induced by 2-deoxy-D-glucose, which impairs glucose utilization, is a 

well-established pharmacological tool to induce food intake and central vagal-dependent 

stimulation of gastric acid secretion, emptying and experimental ulcers in rats and dogs 

(Hirschowitz and Sachs, 1965; Smith and Epstein, 1969; Maeda-Hagiwara and Watanabe, 

1983; Okumura et al., 1995b). Brain nuclei influenced by peripheral administration of 2-

deoxy-D-glucose include neurons in the DMN as shown by induction of Fos expression 

which is indicative of activation of preganglionic vagal motor neurons (Ritter and Dinh, 

1994). It is likely that brain medullary TRH plays a role in these DMN and gastric responses 

since i.c. injection of TRH antibody prevents the acceleration of gastric emptying and 

erosion formation induced by intravenous injection of 2-deoxy-D-glucose in conscious rats 

(Okumura et al., 1995a,b).

3.4. Gastric acid responses to sham-feeding

The peripheral mechanisms of the cephalic phase of gastric acid secretion has been 

extensively studied in dogs and in humans, however, little is known on brain circuits and 

transmitters involved in this vagally mediated response (Richardson et al., 1977; Feldman 

and Richardson, 1986; Konturek et al., 1987). In an effort to gain understanding on central 

mechanisms, Martinez et al. (2002) developed a rat model to study the cephalic phase of 

acid secretion in rats. Olfactory and visual sensory inputs of food resulted in the stimulation 

of gastric acid secretion in fasted rats with chronic gastric cannula and constant perfusion 

and titration of acid (Fig. 4A). Under these conditions, the basal acid secretion averages 22.0 

±1.6 μmol/10 min and increased within 10 min after the onset of sham-feeding to reach a 3-

fold increase at 20 min, and declined to basal levels thereafter (Martinez et al., 2002) (Fig. 

4B). The acid response to sham-feeding in rats is mediated by the activation of TRH–TRH-

R1 signaling pathways in the brain medulla. This was established by the blockade of the acid 

response to sham-feeding and i.c. TRH by i.c. pretreatment with TRH-R1 antisense 

oligodeoxynucleotides, while TRH-R1-mismatched oligodeoxynucleotide pretreatment 

under similar conditions had no effect (Martinez et al., 2002) (Fig. 4B, C). Lastly, both 

sham-feeding and central injection of TRH, in addition to stimulate acid secretion, induce a 

vagal stimulation of gastroduodenal blood flow and motor function and pancreatic exocrine 

and endocrine secretion in experimental animals (Giduck et al., 1987; Taché et al., 1989b; 

Okumura et al., 1995c; Kiraly et al., 1998; Katschinski, 2000; Yang et al., 2002). Although 

to be further established, these data would suggest that the activation of medullary TRH and 

TRH-R1 in the DMN may also contribute to other digestive components of the cephalic 
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phase of digestion that subserve optimizing the digestive (acid pepsin, propulsive motility) 

and metabolic processes under conditions of impending meal ingestion (Nicolaidis, 1969).

However, activation of medullary TRH–TRH-R1 signaling does not represent a common 

final pathway of vagally mediated gastric response since the i.c. injection of somatostatin 

analog, peptide YY (PYY) or pancreatic polypeptide that induces a vagal atropine-sensitive 

stimulation of gastric motor function and resistance of the mucosa to ethanol injury are not 

blocked by TRH-R1 antisense oligodeoxynucleotide pretreatment (Okumura et al., 1995b; 

Martinez et al., 1998; Yang et al., 1999a). In addition, this brain TRH pathway is not 

involved in the basal regulation of gastric function in the experimental models investigated 

since the i.c. pretreatment with the TRH antibody or TRH-R1 antisense 

oligodeoxynucleotides did not significantly influence basal gastric emptying or acid 

secretion (Okumura et al., 1995b; Martinez et al., 1998, 2002).

4. Modulation of medullary TRH action by other brain peptides

There is growing evidence that TRH excitatory action on DMN neurons does occur in 

concert with other potentiating influences. These modulatory effects are exerted by 

neuropeptides or neurotransmitters co-localized with TRH in raphe nuclei and co-released in 

the DVC, and through input from direct peptidergic projections to the DVC from other brain 

areas (Taché et al., 1995a).

4.1. Potentiation of TRH action in the dorsal vagal complex by Ps4 and 5-HT

The proteolytic cleavage of TRH prohormone generates five copies of TRH and the 

connecting peptides, including prepro-TRH-(160–169) (Ps4), which is co-released with 

TRH (Ladram et al., 1994). When Ps4 is co-injected into the DMN with TRH, the peptide 

potentiates the stimulation of gastric acid secretion in response to TRH, while having no 

effect by itself (Yang and Taché, 1994).

Serotonin (5-HT) is a neurotransmitter that is co-localized in neurons synthesizing TRH in 

medullary raphe nuclei and parapyramidal regions (Helke et al., 1989; Kachidian et al., 

1991), and released in the DVC in response to excitation of medullary raphe neurons 

(Mohammed et al., 1995). Functional studies showed that 5-HT potentiates exogenous or 

endogenous TRH action in the DVC to stimulate gastric acid secretion and motility while 5-

HT microinjected alone into the DMN did not alter basal gastric function (McCann et al., 

1988; McTigue et al., 1992; Yoneda and Taché, 1995; Chi et al., 1996). Likewise, fluoxetine, 

a 5-HT reuptake inhibitor that enhanced extraneuronal 5-HT levels in the brain, injected i.c. 

potentiates i.c. RX 77368-induced increase in gastric acid secretion (Shockley et al., 1992). 

Pharmacologic studies using selective 5-HT receptor agonists and antagonists suggest that 5-

HT action in the DVC involved interaction with 5-HT2 receptors (Yoneda and Taché, 1995; 

Varanasi et al., 1997).

4.2. Inhibition of TRH action in the dorsal vagal complex by peptides

Several peptides innervating the DVC exert an inhibitory influence on TRH-induced 

stimulation of gastric function. Substance P (SP) is expressed in TRH-containing neurons in 

the raphe pallidus, raphe obscurus and parapyramidal regions projecting to the DVC 
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(Kachidian et al., 1991; Taché et al., 1995a). Retrograde labeling studies showed that DMN 

neurons projecting to the stomach are in contact with SP terminals and express neurokinin-1 

receptors (NK1) (Ladic and Buchan, 1996). The activation of NK1 receptors in the DMN 

reduces the gastric secretory and motor stimulatory responses to exogenous TRH 

microinjected into the DVC or endogenously released by stimulation of Rpa or Rob (Yang 

and Taché, 1997; Krowicki and Hornby, 2000). Therefore, SP co-released with TRH in the 

DVC dampens the excitatory action of TRH.

A number of other brain peptides co-injected with TRH into the DMN or cerebrospinal fluid 

inhibit the vagal-dependent stimulation of gastric secretory and motor function induced by 

TRH. Among them are those that are involved in the stress/immune response, including 

corticotrophin-releasing factor (CRF), urocortin 1, opioid peptides, interleukin-1 and tumor 

necrosis factor-α (Morley et al., 1981; Taché et al., 1983; Garrick et al., 1988; Saperas et al., 

1990; Heymann-Mönnikes et al., 1991; Taché and Saperas, 1992; Hermann and Rogers, 

1995; Hermann et al., 1999; Yang et al., 2000a; Chen et al., 2002), as well as peptides or 

conditions inhibiting food intake such as gastrin-releasing peptide/bombesin, PYY, Y2 

agonist, calcitonin gene-related peptide, adrenomedullin and i.v. glucose (Hughes et al., 

1984; Chen et al., 1997; Martinez and Taché, 2000; Yuan and Yang, 2002; Doong and Yang, 

2003).

These pharmacological observations may have relevance in the context of known inhibition 

of vagally mediated digestive function including acid, pepsin or upper gastrointestinal 

motility under stress conditions (Taché et al., 1989a). However, additional studies are still 

needed to establish the physiological relevance and mechanisms of actions that modulate 

TRH–TRH-R1-induced activation of DMN preganglionic neurons.
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Fig. 1. 
Neuroanatomical evidence for a physiological role of brain medullary TRH. (A) Drawing of 

TRH-IR fibers in rats dorsal vagal complex (DVC) rostrocaudal to the obex. Dense 

distribution in the dorsal motor nucleus of the vagus (DMN or X); cen: subnucleus centralis 

of the medial (MED) nucleus tractus solitarius (NTS); gel: subnucleus gelatinosus; adapted 

from Rinaman et al. (1989). (B) Dark field microscopy of cells in the raphe obscurus (Rob), 

raphe pallidus (Rpa) and parapyramidal area (PaPy) hydrized with the labeled antisense pro-

TRH probe; adapted from Segerson et al. (1987). (C) Schematic representation of Rob, Rpa 

and PaPy direct projections to DMN (X) that provide TRH-IR, substance P (SP) and 5-HT 

innervation in the DVC. (D) Concentration of TRH receptors in the DVC; the DMN (X) is 

subdivided in medial (m), central (c) and lateral (l) and NTS in ge: gelatinosus, ce: central; 

med (medial: r, rostra; a, adjacent; and c, caudal to the area postrema); adapted from 

Manaker and Rizio (1989).
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Fig. 2. 
TRH analog, RX 77368 injected intracisternally (i.c.) stimulates gastric vagal efferent 

discharges (multi-unit activity) while i.c. saline had no effect in urethane anesthetized rats. 

Adapted from O-Lee et al. (1997).
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Fig. 3. 
Cold exposure or intracisternal (i.c.) injection of TRH analog activates gastric myenteric 

cholinergic neurons in conscious rats. (A) Photomicrographs of whole mount preparations of 

myenteric plexus showing double staining of Fos and pChAT in the gastric corpus of 

conscious rats semi-restrained either at room temperature or at 4 °C for 2 h or injected i.c. 

with saline or RX 77368 (50 ng/rat) and euthanized 60 min later. Fos immunoreactivity was 

revealed as the dark blue staining in the cell nuclei and pChAT immunoreactivity appeared 

as brown staining in the cytoplasm. Scale bar, 100 μm. (B) Cell counts of Fos-positive and 

double-labeled Fos/pChAT neurons expressed in percentage of total Fos positive neurons 

and total pChAT neurons induced by cold exposure for 2 h or i.c. injection of RX 77368. 

Each column represents the mean±S.E.M. of 3 rats. *P <0.05 compared with the values of 

rats at room temperature or injected i.c. with saline. Adapted from Yuan et al. (2005).
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Fig. 4. 
Activation of TRH–TRH-R1 signaling pathways mediates sham-feeding-induced gastric 

acid secretion in conscious rats. (A) Representative trace of increased gastric acid secretion 

induced by sham-feeding in conscious rats with chronic gastric fistula and constant 

perfusion with warm saline and constant recording of acid secretion while rats were 

maintained in a Bollman cage. Sham-feeding was induced by exposing fasted rats to the 

smell and sight of standard Purina chow for 30 min. (B) TRH-R1 antisense 

oligodeoxynucleotide pretreatment (100 μg twice, −48 and −24 h) prevents sham-feeding-
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stimulated gastric aid secretion, while similar pretreatment with TRH-R1 mismatch 

oligodeoxynucleotides did not; time course study of gastric acid output/10 min with each 

point representing the mean±S.E.M. of 4 rats. (C) TRH-R1 antisense oligodeoxynucleotide 

pretreatment (100 μg twice, −48 and −24 h) prevents i.c. TRH-induced stimulation of gastric 

acid secretion, while similar pretreatment with TRH-R1 mismatch oligodeoxynucleotides 

did not; time course study of gastric acid output/10 min with each point representing the 

mean±S.E.M. of 4 rats. Adapted from Martinez et al. (2002).

Taché et al. Page 19

Auton Neurosci. Author manuscript; available in PMC 2021 April 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Brain medullary TRH is a physiological vagal stimulant of gastric secretion: neuroanatomical and electrophysiological evidence
	TRH and TRH receptor localization in the brainstem
	Activation of preganglionic vagal motor neurons and vagal efferent fibers
	Activation of gastric myenteric cholinergic neurons

	Involvement of medullary TRH signaling in the vagal stimulation of gastric function
	Gastric stimulation induced by activation of TRH synthetizing neurons
	Gastric responses to acute cold exposure
	Gastric responses to 2-deoxy-D-glucose
	Gastric acid responses to sham-feeding

	Modulation of medullary TRH action by other brain peptides
	Potentiation of TRH action in the dorsal vagal complex by Ps4 and 5-HT
	Inhibition of TRH action in the dorsal vagal complex by peptides

	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.

