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Abstract: Percutaneous renal access is the critical initial step in many medical settings. In
order to obtain the best surgical outcome with minimum patient morbidity, an improved method
for access to the renal calyx is needed. In our study, we built a forward-view optical coherence
tomography (OCT) endoscopic system for percutaneous nephrostomy (PCN) guidance. Porcine
kidneys were imaged in our experiment to demonstrate the feasibility of the imaging system. Three
tissue types of porcine kidneys (renal cortex, medulla, and calyx) can be clearly distinguished due
to the morphological and tissue differences from the OCT endoscopic images. To further improve
the guidance efficacy and reduce the learning burden of the clinical doctors, a deep-learning-based
computer aided diagnosis platform was developed to automatically classify the OCT images by
the renal tissue types. Convolutional neural networks (CNN) were developed with labeled OCT
images based on the ResNet34, MobileNetv2 and ResNet50 architectures. Nested cross-validation
and testing was used to benchmark the classification performance with uncertainty quantification
over 10 kidneys, which demonstrated robust performance over substantial biological variability
among kidneys. ResNet50-based CNN models achieved an average classification accuracy of
82.6%±3.0%. The classification precisions were 79%±4% for cortex, 85%±6% for medulla,
and 91%±5% for calyx and the classification recalls were 68%±11% for cortex, 91%±4% for
medulla, and 89%±3% for calyx. Interpretation of the CNN predictions showed the discriminative
characteristics in the OCT images of the three renal tissue types. The results validated the
technical feasibility of using this novel imaging platform to automatically recognize the images
of renal tissue structures ahead of the PCN needle in PCN surgery.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Percutaneous nephrostomy (PCN) was first described in 1955 as a minimally invasive, x-ray
guided procedure in patients with hydronephrosis [1]. PCN needle placement has since become
a valuable medical resource for minimally invasive access to the renal collecting system for
drainage, urine diversion, the first step for percutaneous nephrolithotomy (PCNL) surgery and
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other therapeutic intervention, especially when the transurethral access of surgical tools into
the urological system is difficult or impossible [1–7]. Despite being a common urological
procedure, it remains technically challenging to insert the PCN needle correctly in the right place.
During PCN, a needle penetrates the cortex and medulla of the kidney to reach the renal pelvis.
Conventional imaging modalities have been used in PCN puncture. Ultrasound technique, as
a commonly used medical diagnostic imaging method, has been utilized in PCN surgery for
decades [8–11]. Additionally, fluoroscopy and computed tomography (CT) are also employed
in PCN guidance and sometimes they are used with ultrasonography simultaneously [10–14].
However, due to the limited spatial resolution, these standard imaging modalities have proven
to be inadequate for accurately locating the needle tip position [15,16]. The failure rate of
PCN needle placement is up to 18%, especially in nondilated systems or for complex stone
diseases [17,18]. Failure of inserting the needle into the targeted location in the kidney through a
suitable route might result in severe complications [19–21]. Moreover, fluoroscopy has no soft
tissue contrast and, therefore, cannot differentiate critical tissues, such as blood vessels, which
are important to avoid during the needle insertion. Rupture of renal blood vessels by needle
penetrations can cause bleeding. Temporary bleeding after PCN placement occurs in ∼95% of
cases [2,17]. Retroperitoneal hematomas have been found in 13% [17]. When PCNL is followed,
hemorrhage requiring transfusion has increased to 12-14% of the patients [22]. Additionally,
needle punctures during PCN can lead to infectious complications such as fever or sepsis, thoracic
complications like pneumothorax and hydrothorax, and other complications like urine leak or
rupture of pelvicalyceal system [23,24].

Therefore, the selection of position and route of the puncture is important in PCN needle
placement. It is recommended to insert the needle into the renal calyx through calyx papilla
because fewer blood vessels are distributed on this route, leading to lower possibility of vascular
injury [23,24]. Nevertheless, it is always difficult to precisely identify this preferred inserting
route in complicated clinical setting even for experienced urologists [25]. If PCN puncture was
executed for multiple times, the likelihood of renal injury will increase and the operational time
will lengthen, resulting in higher risks of complications [26].

To better guide PCN needle placement, substantive research work has been done to improve the
current guidance practice [9,17,27–30]. Ultrasound with technical improvements in many aspects
has been utilized. For instance, contrast-enhanced ultrasound has been proved to be a potential
modality in the guidance of PCN puncture [31,32]. Tracked ultrasonography snapshot is also a
promising method to improve the needle guidance [32]. In order to resolve the bleeding during
needle puncture, combined B-mode and color Doppler ultrasonography has been applied in PCN
surgeries and it provides promising efficiency in decreasing the major hemorrhage incidence
[33]. Moreover, developments in other techniques such as cone-beam CT [34], retrograde
ureteroscopy [35] and magnetic field-based navigation device [36] have been utilized to improve
the guidance of PCN needle access. On the other hand, endoscope is an effective device that
can be assembled within PCN needle [37,38]. It can effectively improve the precision of PCN
needle punctures, resulting in lower risks of complications and fewer times of insertions [38].
However, most of the conventional endoscopic techniques involving charge coupled device (CCD)
cameras can only provide two-dimensional information and cannot detect subsurface tissue (in
other words, visualize the tissue before the needle tip damage it) [39]. Thus, there is a critical
need to develop new guiding techniques which have depth-resolved capability for PCN. Optical
coherence tomography (OCT) is a well-established non-invasive biomedical imaging modality
which can image subsurface tissue with the penetration depth of several millimeters [40–44].
By obtaining and processing the coherent infrared lights backscattered from reference arm and
sample arm, OCT can provide two-dimensional (2D) cross-sectional images with high axial
resolution (∼10 µm), which is 10–100 times higher than conventional medical imaging modalities
(e.g., CT and MRI) [45–47]. Owing to the high speed of laser scanning and data processing,
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three-dimensional (3D) images of the detected sample formed by numerous cross-sectional
images can be obtained in real time [46,48]. Because of the differences in tissue structures
among renal cortex, medulla and calyx, OCT has the potential to distinguish different renal
tissue types. Due to the penetration limitation in biological tissues (1-2 mm), studies in kidney
using OCT have mainly focused on renal cortex [44,45,49–51]. OCT can be integrated with
fiber-optic catheters and endoscopes for internal imaging applications [52–54]. For example,
endoscopic OCT imaging has been demonstrated in the human GI tract [55–58] to detect Barrett’s
esophagus (BE) [59,60], dysplasia [61] and colon cancer [62–64]. In the previous study, our lab
has developed a portable hand-held forward-imaging endoscopic OCT needle device for real-time
epidural anesthesia surgery guidance [65]. This endoscopic OCT setup holds the promise in PCN
guidance.

Given enormous accumulation of images and inter- and intra-observer variation from subjective
interpretation, computer-aided automatic methods have been utilized to accurately and efficiently
classify these data [66,67]. In automated OCT image analysis, convolutional neural networks
(CNN) [66,68,69] has been demonstrated to be promising in various applications, such as
hemorrhage detection of retina versus cerebrum and tumor tissue segmentation [67,68,70–73].

Herein we demonstrated a forward OCT endoscope system to image the kidney tissues lying
ahead of PCN needle during PCN surgery. Images of renal cortex, medulla and calyx were
obtained from ten porcine kidneys using our system. A tissue type classifier was developed using
the ResNet34, ResNet50, and MobileNetv2 CNN architectures. Nested cross-validation and
testing [74–76] was used for model selection and performance benchmarking to account for the
large biological variability among kidney through uncertainty quantification. The predictions
from the CNN models were interpreted to identify the important regions in the representative
OCT images used by CNN for the classification.

2. Materials and methods

2.1. Experimental setup

In our project, the OCT endoscope was built based on the swept-source OCT (SS-OCT) system.
Figure 1 shows the schematic of our forward endoscopic OCT system. The light source of
the SS-OCT system has the center wavelength of 1300 nm and bandwidth of 100 nm [39].
The wavelength-swept frequency (A-scan) rate is 200 kHz with ∼25 mW output power. As
demonstrated in Fig. 1, laser provided by the light source was first split by a fiber coupler (FC)
into two paths with 3% and 97% of the whole laser power, respectively. The 3% of the laser power
was delivered into the Mach-Zehnder interferometer (MZI), which generated a frequency-clock
signal for triggering the OCT sampling procedure and provided it to data acquisition (DAQ)
board. The remaining 97% laser transmitted through a circulator in which the light runs only
in one direction. Therefore, the light entering port 1 only emitted out from port 2, and then it
was evenly split to the reference arm and sample arm of a fiber-based Michelson interferometer.
Backscattered light from both arms formed interference fringes at the FC and transmitted to the
balanced detector (BD). The interference fringes from different depths received by the BD were
encoded with different frequencies. The output signal from BD was further transmitted to the
DAQ board and computer for processing. Cross-sectional information can be obtained through
Fourier transform of interference fringes [65].

A gradient-index (GRIN) rod lens with a diameter of 1.3 mm was stabilized in front of the
galvanometer scanning mirror (GSM). The endoscope we used has the diameter of 1.3 mm, the
length of 138.0 mm and the view angle of 11.0°. The total outer diameter (O.D.) including the
GRIN rod lens and the protective steel tubing is around 1.65 mm. The proximal GRIN lens
entrance of the endoscope was placed close to the focal plane of the objective lens. The GRIN
lens can preserve the spatial relationship between the entrance and the output (distal end) and
further to the sample. Therefore, one or two directional scanning can be readily performed on
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Fig. 1. Schematic of endoscopic OCT system. MZI: Mach-Zehnder interferometer; FC: fiber
coupler; PC: polarization controller; GSM: galvonometer scanning mirror; BD: balanced
detector; DAQ: data acquisition board.

the proximal GRIN lenses surface to create 2D or 3D images. In addition, the same GRIN rod
lens was put in the light path of reference arm for the purpose of compensating light dispersion
and expanding the length of reference arm. Polarization controllers (PCs) were put in both
arms to decrease the background noise. The system had the axial resolution of ∼11 µm and
lateral resolution of ∼20 µm in tissue. The lateral imaging field-of-view (FOV) was around
1.25 mm. The sensitivity of system was optimized to 92 dB, calculated using a silver mirror with
a calibrated attenuator.

2.2. Data acquisition

Ten fresh porcine kidneys were obtained from a local slaughterhouse. The cortex, medulla and
calyx of the porcine kidneys were exposed and imaged in the experiment. Renal tissue types can
be identified from the anatomic appearance. The OCT endoscope was placed against different
renal tissues for image acquisition. To mimic the clinical situation, we applied some force
during imaging the ex-vivo kidney tissues to generate tissue compression. The 3D images of
320×320×480 pixels on X, Y and Z axes (Z presents the depth direction) were obtained with
the pixel size of 6.25 µm on all three axes. Therefore, the size of the original 3D images is
2.00 mm×2.00 mm×3.00 mm. For every kidney sample, we obtained at least 30 original 3D OCT
images for each tissue type and each 3D tissue scanning took no more than 2 seconds. Afterwards,
the original 3D images were separated to 2D cross-sectional images as shown in Fig. 2. Since
the GRIN lens is cylindrical, the 3D OCT images obtained were also in the cylindrical shape.
Therefore, not all the 2D cross-sectional images contained the same structural signal of the
kidney. Only the 2D images with sufficient tissue structural information (cross-sectional images
that close to the center of the 3D cylindrical structures) were subsequently selected and utilized
for the image preprocessing. At the end of imaging, tissues of cortex, medulla and calyx of the
porcine kidneys were excised and processed for histology to compare with corresponding OCT
results. The tissues were fixed with 10% formalin, embedded in paraffin, sectioned (4 µm thick)
and stained with hematoxylin and eosin (H & E) for histological analysis. Images were taken by
Keyence Microscope BZ-X800. Sectioning and H & E staining was carried out by the Tissue
Pathology Shared Resource, Stephenson Cancer Center (SCC), University of Oklahoma Health
Sciences Center. The Hematoxylin (cat#3801571) and Eosin (cat# 3801616) were purchased from
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Leica biosystems and the staining was performed utilizing Leica ST5020 Automated Multistainer
following the HE staining protocol at the SCC Tissue Pathology core.

Fig. 2. Illustration of data acquisition and processing steps

Although the three tissue types showed different imaging features for visual recognition, it will
take time and expertise for doctors to differentiate them during surgeries. In order to improve the
efficiency, we developed deep learning methods for automatic tissue classification based on the
imaging data. Figure 2 shows the overall process of the data acquisition and processing. In total,
ten porcine kidneys were imaged in this study. For each kidney, 1,000 2D cross-sectional images
were obtained for cortex, medulla, and calyx, respectively. For the purpose of convenient analysis
and increasing the speed of deep-learning process of the OCT images, a custom MATLAB
algorithm was designed to recognize the surface of the kidney tissue on the 2D cross-sectional
images. It automatically cropped the images from the size of 320×480 to 235×301. Therefore,
all the 2D cross-sectional images have the same dimensions and cover the same FOV before
deep-learning processing.

2.3. Training of the convolutional neural networks

CNN was used to classify the images of renal cortex, medulla, and calyx. Three CNN architectures
were tested, including Residual Network 34 (ResNet34) [77], Residual Network 50 (ResNet50)
[77] and MobileNetv2 [78], using Tensorflow 2.3 [79] in open-ce version 0.1.

Pre-trained ResNet50 and MobileNetv2 models on the ImageNet dataset [80] were imported
from the Keras library [81]. The output layer of the models was changed to one containing 3
softmax output neurons for cortex, medulla, and calyx. The input images were preprocessed
by resizing to the 224× 224 resolution, replicating the input channel to 3 channels, and scaling
the pixel intensities to [-1, 1]. Model fine-tuning was conducted in two stages as described in
[82]. First, the output layer was trained with all the other layers frozen. The optimizer, stochastic
gradient descendent (SGD), was used with a learning rate of 0.2, a momentum of 0.3, and a decay
of 0.01. Then, the entire model was unfrozen and trained. The SGD with Nesterov momentum
optimizer was used with a learning rate of 0.01, a momentum of 0.9, and a decay of 0.001. Early
stopping with a patience of 10 and a maximum number of epochs 50 was used for the Pre-trained
ResNet50. Early stopping with a patience of 20 and a maximum number of epochs 100 was used
for MobileNetv2.

The ResNet34 and ResNet50 architectures were also trained using randomly initialized weights.
ResNet34 [77] was obtained from [82]. The mean pixel in the training dataset was used to center
the training, validation, and test datasets. The input layer was modified to accept only one input
channel in the OCT images and the output layer was changed for the classification of the three
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tissue types. For ResNet50, the optimizer SGD with Nesterov momentum with learning rate
0.01, momentum 0.9 and decay 0.01 was used. ResNet50 was trained with a maximum of 50
epochs, early stopping with a patience of 10, and a batch size of 32. For ResNet34, the Adam
optimizer was used with learning rate 0.001, beta1 0.9, beta2 0.9999 and epsilon 1E-7. ResNet34
was trained with a maximum of 200 epochs, early stopping with a patience of 10, and a batch
size of 512.

2.4. Nested cross-validation and testing

A nested cross-validation and testing procedure [74,76,83] was used to estimate the validation
performance and the test performance of the models across the 10 kidneys with uncertainty
quantification. The pseudo-code of the nested cross-validation and testing is shown below.

In the 10-fold cross-testing, one kidney was selected in turn as the test set. In the 9-fold
cross-validation, the remaining nine kidneys were partitioned 8:1 between the training set and
the validation set. Each kidney contained a total of 3000 images, including 1000 images for
each tissue type. The validation performance of a model was tracked based on its classification
accuracy on the validation kidney. The classification accuracy is the percentage of correctly
labeled images out of all 3000 images of a kidney.

The 9-fold cross-validation loop was used to compare the performance of ResNet34, ResNet50,
and MobileNetv2, and optimize the key hyperparameters of these models, such as pre-trained
versus randomly initialized weights, learning rates, and number of epochs. The model configura-
tion with the highest average validation accuracy was selected for the cross-testing loop. The
cross-testing loop enabled iterative benchmarking of the selected model across all 10 kidneys,
giving a better estimation of generalization error with uncertainty quantification.

Gradient-weighted Class Activation Mapping (Grad-CAM) [84] was used to explain the
predictions of a selected CNN model by highlighting the important regions in the image for the
prediction outcome. The interpretation implementation on ResNet50 was based on [85].

All the model development was performed on the Schooner supercomputer at the University of
Oklahoma and the Summit supercomputer at Oak Ridge National Laboratory. The computation
on Schooner used five computational nodes, each of which had 40 CPU cores (Intel Xeon Cascade
Lake) and 200 GB of RAM. The computation on Summited used up to 15 nodes, each of which
had 2 IBM POWER9 processors and 6 NVIDIA Volta Graphic cards. The source code of the
model training is available at https://github.com/thepanlab/FOCT_kidney.

3. Results

3.1. Forward OCT imaging of different renal tissues

The imaging setup our OCT endoscope was demonstrated in Fig. 3(A). An adapter was used
to stabilize the endoscope in front of the OCT scan lens kit. From the kidney sample shown in

https://github.com/thepanlab/FOCT_kidney
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Fig. 3(A), we can visually distinguish different tissue types. Renal cortex was the brown tissue
on the edge of the whole kidney; Medulla can be recognized by its red renal pyramid structures
distributed on the inner side of the cortex; Calyx was featured by its obvious white structure in the
central kidney. Three tissue types were imaged respectively following the procedure described in
Section 2.2.

Fig. 3. (A) Sample kidney used for endoscopic OCT imaging; (B-D) Representative 3D
OCT images, cross-sectional OCT images and the histology results of renal cortex (B),
medulla (C) and calyx (D).

Figures 3(B)–3(D) show representative 3D OCT images, 2D cross-sectional images and
the histology results of three renal tissues. They were featured with different imaging depth
and brightness. The renal calyx had the shallowest imaging depth, but the tissue close to the
surface showed the highest brightness and density. Cortex and medulla both presented relatively
homogeneous tissue structures in OCT images, and the imaging depth of medulla was larger
than cortex. Furthermore, compared to cortex and medulla, calyx was featured with horizonal
stripes and layered structure. The transitional epithelium and fibrous tissue in the calyx may
explain the strip-like structures and significantly higher brightness in comparison to the other
two renal tissues. This is the significant part for PCN insertion since the goal of PCN is to reach
the calyx precisely. These imaging results demonstrated the feasibility of distinguishing renal
cortex, medulla, and calyx with the endoscopic OCT system.

3.2. CNN development and benchmarking results

Table 1 shows the average validation accuracies and their standard errors for the pre-trained
(PT) or randomly initialized (RI) model architectures after hyperparameter optimization. RI
MobileNetv2 frequently failed to learn, so only the PT MobileNetv2 model was used here.
The PT ResNet50 models outperformed the RI ResNet50 models in 6 of the 10 testing folds,
which indicated only a small boost by the pre-training on ImageNet. For all the 10 testing folds,
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the validation accuracies of the ResNet50 models were significantly higher than those of the
MobileNetv2 and ResNet34 models. Thus, the characteristic patterns of the three kidney tissues
may require a deep CNN architecture to recognize. The detailed results from the 9-fold cross
validation of RI ResNet34, PT MobileNetv2, RI ResNet50, and PT ResNet50 can be found in
Supplementary Table 1-Table 4, respectively.

Table 1. The averages and standard errors of the validation accuracies
from the nested cross-validation and testing procedure. The architecture

with the highest validation performance in each testing fold is indicated in
bold.

Testing folds PT MobileNetv2 RI ResNet34 RI ResNet50 PT ResNet50

K1 84.1%±3.5% 83.8%±3.7% 87.1%±2.9% 89.2%±2.4%
K2 82.1%±3.9% 84.6%±2.8% 87.0%±3.0% 89.8%±2.4%
K3 83.9%±4.2% 84.5%±3.5% 88.5%±2.4% 86.6%±2.4%

K4 78.0%±6.3% 83.5%±2.6% 85.0%±2.4% 87.8%±2.3%
K5 83.3%±2.7% 82.8%±4.2% 87.8%±1.9% 87.7%±2.3%

K6 86.2%±2.7% 84.5%±3.6% 88.4%±2.1% 88.1%±2.4%

K7 86.0%±3.8% 82.8%±3.0% 88.6%±1.7% 86.6%±2.4%

K8 76.1%±6.0% 82.1%±3.9% 87.7%±2.6% 88.0%±2.5%
K9 77.7%±4.8% 79.4%±4.3% 82.1%±3.6% 85.1%±2.3%
K10 81.8%±4.6% 86.4%±2.7% 87.5%±3.2% 87.7%±2.1%

Table 2 shows the test accuracy of the best-performing model in each of the 10 testing folds.
The output layer of the CNN models estimated three softmax scores that summed up to 1.0 for the
three tissue types. When the category with the highest softmax score was selected for an image
(i.e., a softmax score threshold of 0.333 to make a prediction), the CNN model made a prediction
for every image (100% coverage) at a mean test accuracy of 82.6%. This was substantially lower
than the mean validation accuracy of 87.3%, which suggested the overfitting to the validation set
by the hyperparameter tuning and early stopping. The classification accuracy can be increased at
the expense of lower coverage by increasing softmax score threshold, which allowed the CNN
model to make only confident classifications. When the softmax score threshold was raised to
0.5, 89.9% of the images on average were classified to a tissue type and the mean classification
accuracy increased to 85.6%±3.0%. For the uncovered images, the doctors can make a prediction
with the help of other imaging modality and their clinical experience.

There was substantial variability in the test accuracy among different kidneys. While three
kidneys had test accuracies higher than 92% (softmax score threshold of 0.333), the kidney
in the sixth fold had the lowest test accuracy of 67.7%. Therefore, the current challenge in
the image classification mainly comes from the anatomic differences among the samples. For
instance, Figs. 4(A) and 4(B) shows the receiver operating characteristic (ROC) curves of the
prediction results from kidney No. 5 and No. 10 (ROC curves of all the 10 kidneys in the 10-fold
cross-testing can be found in the Supplementary data). It is clear that the prediction of kidney 5
is much more accurate than that of kidney 10. Our nested cross-validation and testing procedure
was designed to simulate the real clinical setting in which the CNN models trained on one set of
kidneys need to perform well on a new kidney unseen by the CNN models until the operation.
When a CNN model was trained on a subset of images from all kidneys and validated on a separate
subset of images from all kidneys in cross-validation as opposed to partitioning by kidneys, it
achieved accuracies over 99%. This suggested that the challenge of image classification mainly
stemmed from the biological differences between different kidneys. The generalization of the
CNN models across kidneys can be improved by expand our dataset with kidneys at different
ages or physical conditions to represent different structural and morphological features.
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Table 2. Results from the 10-fold cross-testing. Average and
standard error of accuracy are shown for two thresholds.

Testing folds
Threshold= 0.333 Threshold= 0.5

Accuracy Coverage Accuracy Coverage

K1 75.4% 100% 79.0% 89.3%

K2 87.9% 100% 90.0% 93.3%

K3 71.4% 100% 76.8% 79.3%

K4 92.1% 100% 95.9% 88.4%

K5 93.2% 100% 95.6% 93.7%

K6 67.7% 100% 68.9% 94.2%

K7 83.5% 100% 86.4% 91.8%

K8 88.2% 100% 92.3% 85.0%

K9 92.2% 100% 94.8% 94.2%

K10 74.1% 100% 76.6% 90.2%

Average 82.6%±3.0% 100% 85.6%±3.0% 89.9%±1.5%

Fig. 4. ROC multi-class testing curves of (A) kidney 5, (B) kidney 10 and (C) the average
of all kidneys.

Figure 4(C) shows the average ROC curves for the three tissue types. The Area Under the
ROC Curve (AUC) were 0.91 for cortex, 0.96 for medulla, and 0.97 for calyx. Table 3 shows the
average confusion matrix for the 10 kidneys in the 10-fold cross-testing with a score threshold
of 0.333 and the average recall and precision for each type of tissue. Confusion matrix from
the 10-fold cross-testing for each of the 10 kidneys is shown in the Supplementary data. Cortex
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was most challenging tissue type to be classified correctly and often mixed up with medulla.
From the original images we found that the penetration depths of medulla were much larger than
cortex in seven of the ten imaged kidneys. While in other three samples, these differences were
insignificant. This may explain the challenging classification between cortex and medulla.

Table 3. Confusion matrix for classification of the three tissue types.

Predicted
Recall

Cortex Medulla Calyx

Tr
ue

Cortex 677± 109 204± 93 118± 93 68%± 11%
Medulla 75± 33 908± 41 17± 15 91%± 4%
Calyx 95± 30 14± 9 892± 32 89%± 3%
Precision 79%± 4% 85%± 6% 91%± 5%

To better understand how a CNN model classified different renal types, the class activation
maps were generated to visualize heatmaps of class activation over input images. Figure 5 shows
the class activation heatmaps for 3 representative images of each tissue type from the RI ResNet50
model and the PT ResNet50 model. The models and the representative images were selected
from the fifth testing fold. The RI ResNet50 model performed the classification by paying more
intention to the lower part of the images of cortex, to both the lower part and near the upper part
of the medulla images, and to the area of the calyx images with high intensity near the needle tip.
The PT ResNet50 model focused on both the upper part and lower part of the cortex images, on
the middle part and/or lower part of the medulla images, and on the region close to the needle tip
of the calyx images. Compared to the RI ResNet50 model, the PT ResNet50 model shifted its
attention closer to the signal regions. The class classification heatmaps provided an intuitive
explanation of the classification basis for the two CNN models.

Fig. 5. Class activation heatmaps of (A) RI ResNet50, and (B) PT ResNet50 for three
representative images in each tissue type. The class activation heatmaps used jet colormap
and were superimposed on the input images.
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4. Discussion

We investigated the feasibility of OCT endoscopic system for PCN surgery guidance. Three
porcine kidney tissue types: cortex, medulla and calyx were imaged. These three kidney tissues
show different structural features which can be further used for tissue type recognition. To
increase the image recognition efficiency and reduce the learning burden of the clinical doctors,
we developed and evaluated CNN methods for image classification and recognition. ResNet50
had the best performance compared to ResNet34 and PT MobileNetv2 and achieved an average
classification accuracy of 82.6%±3.0%.

In the current study, the porcine kidneys samples were obtained from a local slaughterhouse
without controlling the sample preservation and time after death. Biological changes may have
occurred in the ex-vivo kidneys, including collapse of some structures of nephrons such as the
renal tubules. This may make the tissue recognition more difficult, especially the classification
between cortex and medulla. Characteristic renal structures in the cortex can be clearly imaged
by OCT in both well-preserved ex-vivo human kidneys and living kidneys as previously reported
[44,50,86] and verified in an ongoing study in our lab using well-preserved human kidneys.
Additionally, nephron structures distributed in renal cortex and medulla are different [87]. These
additional features in renal cortex and medulla will improve the recognition of these two tissue
types and increase the classification accuracy of our future CNN models when imaging in-vivo
samples or well-preserved ex-vivo samples. The current study established the feasibility of
automatic tissue recognition using CNN and provided information for the model selection and
hyper-parameter optimization in future CNN model development using in-vivo pig kidneys and
well-preserved ex-vivo human kidneys.

For translating the proposed OCT probe into clinics, we will assemble the endoscope with
appropriate diameter and length into the clinical used PCN needle. In current PCN puncture, a
trocar needle is inserted into the kidney. Since the trocar has a hollow structure, we can fix the
endoscope within the trocar needle. Then our OCT endoscope can be inserted into the kidney
together with the trocar needle. After the trocar needle tip arrives at the destination (such as the
kidney pelvis), we will withdraw the OCT endoscope from the trocar needle and other surgical
processes can be continued. During the whole puncture, no extra invasiveness will be caused.
Since the needle will keep moving during the puncture, there will be a tight contact between the
needle tip and the tissue. Therefore, the blood (if any) will not accumulate in front of the needle
tip. From our previous experience in the in-vivo pig experiment guiding the epidural anesthesia
using our OCT endoscope, the presence of blood is not a big issue [65]. The diameter of the
GRIN rod lens we used in the study is 1.3 mm. In the future study, we will further improve the
current setup with smaller GRIN rod lens that can be fit inside the 18-gauge PCN needle which is
clinically used in PCN puncture [88]. Furthermore, we will miniaturize the GSM device based on
microelectromechanical system (MEMS) technology, which will enable ease of operation and is
important for translating the OCT endoscope to clinical applications. The current employed OCT
system has a scanning speed up to 200 kHz, the 2D tissue images in front of the PCN needle can
be provided to surgeons in real time. Using ultra-high speed of laser scanning and data processing
system, 3D images of the detected sample can be obtained in real time [46,48]. In the next step,
we will acquire 3D images that may further improve our classification accuracy, because of the
added information content in 3D images. For example, Kruthika et al. detected Alzheimer’s
disease from MRI images and showed improved performance of 3D Capsule Network (CapsNet)
and 3D CNN over previous 2D approaches [89].

The CNN model training in this study used significant computational power. Each fold of the
cross-validation took ∼25 minutes for RI ResNet50 and ∼45 minutes for PT ResNet50 using one
NVIDIA Volta GPU. The 90 folds of the nested cross-validation for each model configuration
were performed in parallel across multiple compute nodes on the Summit supercomputer. The
inference was computationally efficient. It took ∼50 seconds using one NVIDIA Volta GPU to
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perform inference on 1000 images (i.e., ∼0.05 seconds per image on average), including model
loading, image preprocessing, and the ResNet50 classification. The ResNet50 classification
used ∼16 seconds for 1000 images or ∼0.016 seconds per image. In future, the inference can be
further accelerated through algorithm optimization and parallelization to make it more practical
for surgical applications.
Funding. National Cancer Institute (P30CA225520); National Institute of General Medical Sciences (P20GM103639);
Office of Science (DE-AC05-00OR22725); University of Oklahoma (2020 Junior Faculty Fellowship, 2020 Faculty
Investment Program); Oklahoma Center for the Advancement of Science and Technology (HR19-062).

Acknowledgments. Qinggong Tang would like to acknowledge the support from Faculty Investment Program
and the Junior Faculty Fellowship of University of Oklahoma; Oklahoma Health Research Program (HR19-062) from
Oklahoma Center for the Advancement of Science and Technology. This research used resources of the Oak Ridge
Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science
of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. Histology service provided by the
Tissue Pathology Shared Resource was supported in part by the National Institute of General Medical Sciences Grant
P20GM103639 and National Cancer Institute Grant P30CA225520 of the National Institutes of Health.

Disclosures. The authors declare no conflicts of interest related to this article.

Supplemental document. See Supplement 1 for supporting content.

References
1. W. E. Goodwin, W. C. Casey, and W. Woolf, “Percutaneous trocar (needle) nephrostomy in hydronephrosis,” J. Am.

Med. Assoc. 157(11), 891–894 (1955).
2. M. Young and S. W. Leslie, “Percutaneous nephrostomy,” in StatPearls (Treasure Island (FL), 2019).
3. L. R. Bigongiari, K. R. Lee, J. Weigel, and J. Foret, “Percutaneous nephrostomy. A non-operative temporary or

long-term urinary diversion procedure,” J. Kans Med. Soc. 79, 104–106 (1978).
4. S. Hellsten, J. Hildell, D. Link, and U. Ulmsten, “Percutaneous nephrostomy. Aspects on applications and technique,”

Eur Urol. 4(4), 282–287 (1978).
5. E. Perinetti, W. J. Catalona, C. B. Manley, G. Geise, and W. R. Fair, “Percutaneous nephrostomy: indications,

complications and clinical usefulness,” J. Urol. 120(2), 156–158 (1978).
6. D. P. Stables, N. J. Ginsberg, and M. L. Johnson, “Percutaneous nephrostomy: a series and review of the literature,”

Am. J. Roentgenol. 130(1), 75–82 (1978).
7. W. J. Lee, U. Patel, S. Patel, and G. P. Pillari, “Emergency percutaneous nephrostomy: results and complications,” J.

Vasc. Interv. Radiol. 5(1), 135–139 (1994).
8. J. F. Pedersen, “Percutaneous nephrostomy guided by ultrasound,” J Urol 112(2), 157–159 (1974).
9. O. Efesoy, B. Saylam, M. Bozlu, S. Cayan, and E. Akbay, “The results of ultrasound-guided percutaneous nephrostomy

tube placement for obstructive uropathy: A single-centre 10-year experience,” Turk J. Urol. 44, 329–334 (2018).
10. L. LeMaitre, P. Mestdagh, J. Marecaux-Delomez, P. Valtille, F. Dubrulle, and J. Biserte, “Percutaneous nephrostomy:

placement under laser guidance and real-time CT fluoroscopy,” Eur Radiol. 10(6), 892–895 (2000).
11. H. G. Zegel, H. M. Pollack, M. C. Banner, B. B. Goldberg, P. H. Arger, C. Mulhern, A. Kurtz, P. Dubbins, B.

Coleman, and H. Koolpe, “Percutaneous nephrostomy: comparison of sonographic and fluoroscopic guidance,” Am.
J. Roentgenol. 137(5), 925–927 (1981).

12. N. L. Miller, B. R. Matlaga, and J. E. Lingeman, “Techniques for fluoroscopic percutaneous renal access,” J. Urol.
178(1), 15–23 (2007).

13. Z. L. Barbaric, T. Hall, S. T. Cochran, D. R. Heitz, R. A. Schwartz, R. M. Krasny, and M. W. Deseran, “Percutaneous
nephrostomy: placement under CT and fluoroscopy guidance,” Am. J. Roentgenol. 169(1), 151–155 (1997).

14. A. Hacker, G. Wendt-Nordahl, P. Honeck, M. S. Michel, P. Alken, and T. Knoll, “A biological model to teach
percutaneous nephrolithotomy technique with ultrasound- and fluoroscopy-guided access,” J. Endourol. 21(5),
545–550 (2007).

15. N. de Sousa Morais, J. P. Pereira, P. Mota, E. Carvalho-Dias, J. N. Torres, and E. Lima, “Percutaneous nephrostomy vs
ureteral stent for hydronephrosis secondary to ureteric calculi: impact on spontaneous stone passage and health-related
quality of life-a prospective study,” Urolithiasis 47(6), 567–573 (2019).

16. S. Gupta, M. Gulati, and S. Suri, “Ultrasound-guided percutaneous nephrostomy in non-dilated pelvicaliceal system,”
J. Clin. Ultrasound 26(3), 177–179 (1998).

17. P. Ramchandani, J. F. Cardella, C. J. Grassi, A. C. Roberts, D. Sacks, M. S. Schwartzberg, and C. A. Lewis, and S. o.
I. R. S. o. P. Committee, “Quality improvement guidelines for percutaneous nephrostomy,” J. Vasc. Interv. Radiol. 14,
S277–S281 (2003).

18. P. Montvilas, J. Solvig, and T. E. B. Johansen, “Single-centre review of radiologically guided percutaneous
nephrostomy using “mixed” technique: Success and complication rates,” Eur. J. Radiol. 80(2), 553–558 (2011).

19. O. Ozbek, H. E. Kaya, A. Nayman, T. B. Saritas, I. Guler, O. Koc, and H. Karakus, “Rapid percutaneous nephrostomy
catheter placement in neonates with the trocar technique,” Diagn. Interv. Imaging 98(4), 315–319 (2017).

https://doi.org/10.6084/m9.figshare.14251607
https://doi.org/10.1001/jama.1955.02950280015005
https://doi.org/10.1001/jama.1955.02950280015005
https://doi.org/10.1159/000473972
https://doi.org/10.1016/S0022-5347(17)57085-8
https://doi.org/10.2214/ajr.130.1.75
https://doi.org/10.1016/S1051-0443(94)71470-6
https://doi.org/10.1016/S1051-0443(94)71470-6
https://doi.org/10.1016/S0022-5347(17)59669-X
https://doi.org/10.5152/tud.2018.25205
https://doi.org/10.1007/s003300051030
https://doi.org/10.2214/ajr.137.5.925
https://doi.org/10.2214/ajr.137.5.925
https://doi.org/10.1016/j.juro.2007.03.014
https://doi.org/10.2214/ajr.169.1.9207516
https://doi.org/10.1089/end.2006.0327
https://doi.org/10.1007/s00240-018-1078-2
https://doi.org/10.1002/(SICI)1097-0096(199803/04)26:3<177::AID-JCU13>3.0.CO;2-8
https://doi.org/10.1016/j.jvir.2015.11.045
https://doi.org/10.1016/j.ejrad.2011.01.109
https://doi.org/10.1016/j.diii.2016.08.010


Research Article Vol. 12, No. 4 / 1 April 2021 / Biomedical Optics Express 2416

20. C. Vignali, S. Lonzi, I. Bargellini, R. Cioni, P. Petruzzi, D. Caramella, and C. Bartolozzi, “Vascular injuries after
percutaneous renal procedures: treatment by transcatheter embolization,” Eur Radiol. 14(4), 723–729 (2004).

21. M. Dagli and P. Ramchandani, “Percutaneous nephrostomy: technical aspects and indications,” Semin Intervent
Radiol. 28(04), 424–437 (2011).

22. W. J. Lee, A. D. Smith, V. Cubelli, G. H. Badlani, B. Lewin, F. Vernace, and E. Cantos, “Complications of
percutaneous nephrolithotomy,” Am. J. Roentgenol. 148(1), 177–180 (1987).

23. K. A. Hausegger and H. R. Portugaller, “Percutaneous nephrostomy and antegrade ureteral stenting: technique-
indications-complications,” Eur Radiol. 16(9), 2016–2030 (2006).

24. I. Kyriazis, V. Panagopoulos, P. Kallidonis, M. Ozsoy, M. Vasilas, and E. Liatsikos, “Complications in percutaneous
nephrolithotomy,” World J. Urol. 33(8), 1069–1077 (2015).

25. E. Radecka and A. Magnusson, “Complications associated with percutaneous nephrostomies. A retrospective study,”
Acta Radiol. 45(2), 184–188 (2004).

26. H. Egilmez, I. Oztoprak, M. Atalar, A. Cetin, C. Gumus, Y. Gultekin, S. Bulut, M. Arslan, and O. Solak, “The place
of computed tomography as a guidance modality in percutaneous nephrostomy: analysis of a 10-year single-center
experience,” Acta Radiol. 48(7), 806–813 (2007).

27. P. Sonawane, A. Ganpule, B. Sudharsan, A. Singh, R. Sabnis, and M. Desai, “A modified Malecot catheter design to
prevent complications during difficult percutaneous nephrostomy,” Arab J. Urol. 17(4), 330–334 (2019).

28. P. Alken, G. Hutschenreiter, R. Gunther, and M. Marberger, “Percutaneous stone manipulation,” J. Urol. 125(4),
463–466 (1981).

29. Q. Liu, L. Zhou, X. Cai, T. Jin, and K. Wang, “Fluoroscopy versus ultrasound for image guidance during percutaneous
nephrolithotomy: a systematic review and meta-analysis,” Urolithiasis 45(5), 481–487 (2017).

30. B. X. Liu, G. L. Huang, X. H. Xie, B. W. Zhuang, X. Y. Xie, and M. D. Lu, “Contrast-enhanced US-assisted
percutaneous nephrostomy: a technique to increase success rate for Patients with nondilated renal collecting system,”
Radiology 285(1), 293–301 (2017).

31. X. W. Cui, A. Ignee, T. Maros, B. Straub, J. G. Wen, and C. F. Dietrich, “Feasibility and usefulness of intra-cavitary
contrast-enhanced ultrasound in percutaneous nephrostomy,” Ultrasound Med. Biol. 42(9), 2180–2188 (2016).

32. T. Ungi, D. Beiko, M. Fuoco, F. King, M. S. Holden, G. Fichtinger, and D. R. Siemens, “Tracked ultrasonography
snapshots enhance needle guidance for percutaneous renal access: a pilot study,” J. Endourol. 28(9), 1040–1045
(2014).

33. M. H. Lu, X. Y. Pu, X. Gao, X. F. Zhou, J. G. Qiu, and J. Si-Tu, “A comparative study of clinical value of
single B-mode ultrasound guidance and B-mode combined with color doppler ultrasound guidance in mini-invasive
percutaneous nephrolithotomy to decrease hemorrhagic complications,” Urology 76(4), 815–820 (2010).

34. C. M. Hawkins, K. Kukreja, T. Singewald, E. Minevich, N. D. Johnson, P. Reddy, and J. M. Racadio, “Use of
cone-beam CT and live 3-D needle guidance to facilitate percutaneous nephrostomy and nephrolithotripsy access in
children and adolescents,” Pediatr. Radiol. 46(4), 570–574 (2016).

35. C. A. Uribe, H. Osorio, J. Benavides, C. H. Martinez, Z. A. Valley, and K. S. Kaler, “A New Technique for Percutaneous
Nephrolithotomy Using Retrograde Ureteroscopy and Laser Fiber to Achieve Percutaneous Nephrostomy Access:
The Initial Case Report,” J. Endourol. Case Rep. 5(3), 131–136 (2019).

36. G. A. Krombach, A. Mahnken, J. Tacke, G. Staatz, S. Haller, C. C. A. Nolte-Ernsting, J. Meyer, P. Haage, and
R. W. Gunther, “US-guided nephrostomy with the aid of a magnetic field-based navigation device in the porcine
pelvicaliceal system,” J. Vasc. Interventional Radiol. 12(5), 623–628 (2001).

37. R. A. Miller and J. E. Wickham, “Percutaneous nephrolithotomy: advances in equipment and endoscopic techniques,”
Urology 23(5), 2–6 (1984).

38. W. Isac, E. Rizkala, X. Liu, M. Noble, and M. Monga, “Endoscopic-guided versus fluoroscopic-guided renal access
for percutaneous nephrolithotomy: a comparative analysis,” Urology 81(2), 251–256 (2013).

39. Q. G. Tang, J. T. Wang, A. Frank, J. Lin, Z. F. Li, C. W. Chen, L. Jin, T. T. Wu, B. D. Greenwald, H. Mashimo, and Y.
Chen, “Depth-resolved imaging of colon tumor using optical coherence tomography and fluorescence laminar optical
tomography,” Biomed. Opt. Express 7(12), 5218–5232 (2016).

40. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A.
Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).

41. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and
applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).

42. P. M. Andrews, Y. Chen, M. L. Onozato, S. W. Huang, D. C. Adler, R. A. Huber, J. Jiang, S. E. Barry, A. E. Cable,
and J. G. Fujimoto, “High-resolution optical coherence tomography imaging of the living kidney,” Lab Invest. 88(4),
441–449 (2008).

43. J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A.
Swanson, “Optical Biopsy and Imaging Using Optical Coherence Tomography,” Nat. Med. 1(9), 970–972 (1995).

44. P. M. Andrews, H. W. Wang, J. Wierwille, W. Gong, J. Verbesey, M. Cooper, and Y. Chen, “Optical coherence
tomography of the living human kidney,” J. Innov. Opt. Health Sci. 07(2), 1350064 (2014).

45. Q. Li, M. L. Onozato, P. M. Andrews, C. W. Chen, A. Paek, R. Naphas, S. A. Yuan, J. Jiang, A. Cable, and Y. Chen,
“Automated quantification of microstructural dimensions of the human kidney using optical coherence tomography
(OCT),” Opt. Express 17(18), 16000–16016 (2009).

https://doi.org/10.1007/s00330-003-2009-2
https://doi.org/10.1055/s-0031-1296085
https://doi.org/10.1055/s-0031-1296085
https://doi.org/10.2214/ajr.148.1.177
https://doi.org/10.1007/s00330-005-0136-7
https://doi.org/10.1007/s00345-014-1400-8
https://doi.org/10.1080/02841850410003671
https://doi.org/10.1080/02841850701416528
https://doi.org/10.1080/2090598X.2019.1626587
https://doi.org/10.1016/s0022-5347(17)55073-9
https://doi.org/10.1007/s00240-016-0934-1
https://doi.org/10.1148/radiol.2017161604
https://doi.org/10.1016/j.ultrasmedbio.2016.04.015
https://doi.org/10.1089/end.2014.0011
https://doi.org/10.1016/j.urology.2009.08.091
https://doi.org/10.1007/s00247-015-3499-1
https://doi.org/10.1089/cren.2018.0079
https://doi.org/10.1016/S1051-0443(07)61488-2
https://doi.org/10.1016/0090-4295(84)90234-6
https://doi.org/10.1016/j.urology.2012.10.004
https://doi.org/10.1364/BOE.7.005218
https://doi.org/10.1126/science.1957169
https://doi.org/10.1088/0034-4885/66/2/204
https://doi.org/10.1038/labinvest.2008.4
https://doi.org/10.1038/nm0995-970
https://doi.org/10.1142/S1793545813500648
https://doi.org/10.1364/OE.17.016000


Research Article Vol. 12, No. 4 / 1 April 2021 / Biomedical Optics Express 2417

46. N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschlager, P. Tidemand-Lichtenberg, C.
Pedersen, A. Podoleanu, and O. Bang, “Real-time high-resolution mid-infrared optical coherence tomography,” Light:
Sci. Appl. 8(1), 11 (2019).

47. J. Fujimoto and E. Swanson, “The Development, Commercialization, and Impact of Optical Coherence Tomography,”
Invest. Ophthalmol. Vis. Sci. 57(9), OCT1–OCT13 (2016).

48. W. Wieser, W. Draxinger, T. Klein, S. Karpf, T. Pfeiffer, and R. Huber, “High definition live 3D-OCT in vivo: design
and evaluation of a 4D OCT engine with 1 GVoxel/s,” Biomed. Opt. Express 5(9), 2963–2977 (2014).

49. H. W. Wang and Y. Chen, “Clinical applications of optical coherence tomography in urology,” Intravital 3(1), e28770
(2014).

50. B. Konkel, C. Lavin, T. T. Wu, E. Anderson, A. Iwamoto, H. Rashid, B. Gaitian, J. Boone, M. Cooper, P. Abrams, A.
Gilbert, Q. Tang, M. Levi, J. G. Fujimoto, P. Andrews, and Y. Chen, “Fully automated analysis of OCT imaging of
human kidneys for prediction of post-transplant function,” Biomed. Opt. Express 10(4), 1794–1821 (2019).

51. Z. Ding, L. Jin, H.-W. Wang, Q. Tang, H. Guo, and Y. Chen, “Multi-modality Optical Imaging of Rat Kidney
Dysfunction: In Vivo Response to Various Ischemia Times,” in Oxygen Transport to Tissue XXXVIII (Springer,
2016), pp. 345–350.

52. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo
endoscopic optical biopsy with optical coherence tomography,” Science 276(5321), 2037–2039 (1997).

53. J. Xi, A. Zhang, Z. Liu, W. Liang, L. Y. Lin, S. Yu, and X. Li, “Diffractive catheter for ultrahigh-resolution
spectral-domain volumetric OCT imaging,” Opt. Lett. 39(7), 2016–2019 (2014).

54. G. K. Sharma, G. S. Ahuja, M. Wiedmann, K. E. Osann, E. Su, A. E. Heidari, J. C. Jing, Y. Q. Qu, F. Lazarow, A.
Wang, L. Chou, C. C. Uy, V. Dhar, J. P. Cleary, N. Pham, K. Huoh, Z. P. Chen, and B. J. F. Wong, “Long-Range
Optical Coherence Tomography of the Neonatal Upper Airway for Early Diagnosis of Intubation-related Subglottic
Injury,” Am. J. Respir. Crit. Care Med. 192(12), 1504–1513 (2015).

55. Y. Chen, A. D. Aguirre, P. L. Hsiung, S. Desai, P. R. Herz, M. Pedrosa, Q. Huang, M. Figueiredo, S. W. Huang,
A. Koski, J. M. Schmitt, J. G. Fujimoto, and H. Mashimo, “Ultrahigh resolution optical coherence tomography of
Barrett’s esophagus: preliminary descriptive clinical study correlating images with histology,” Endoscopy 39(07),
599–605 (2007).

56. A. M. Sergeev, V. M. Gelikonov, G. V. Gelikonov, F. I. Feldchtein, R. V. Kuranov, N. D. Gladkova, N. M. Shakhova, L.
B. Snopova, A. V. Shakhov, I. A. Kuznetzova, A. N. Denisenko, V. V. Pochinko, Y. P. Chumakov, and O. S. Streltzova,
“In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa,” Opt. Express 1(13), 432–440
(1997).

57. B. E. Bouma, G. J. Tearney, C. C. Compton, and N. S. Nishioka, “High-resolution imaging of the human esophagus
and stomach in vivo using optical coherence tomography,” Gastrointest Endosc 51(4), 467–474 (2000).

58. M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E.
Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract
microstructure,” Nat Med 19(2), 238–240 (2013).

59. J. M. Poneros, S. Brand, B. E. Bouma, G. J. Tearney, C. C. Compton, and N. S. Nishioka, “Diagnosis of specialized
intestinal metaplasia by optical coherence tomography,” Gastroenterology 120(1), 7–12 (2001).

60. K. Liang, G. Traverso, H. C. Lee, O. O. Ahsen, Z. Wang, B. Potsaid, M. Giacomelli, V. Jayaraman, R. Barman, A.
Cable, H. Mashimo, R. Langer, and J. G. Fujimoto, “Ultrahigh speed en face OCT capsule for endoscopic imaging,”
Biomed. Opt. Express 6(4), 1146–1163 (2015).

61. G. Isenberg, M. V. Sivak, A. Chak, R. C. K. Wong, J. E. Willis, B. Wolf, D. Y. Rowland, A. Das, and A. Rollins,
“Accuracy of endoscopic optical coherence tomography in the detection of dysplasia in Barrett’s esophagus: a
prospective, double-blinded study,” Gastrointest. Endosc. 62(6), 825–831 (2005).

62. A. M. Winkler, P. F. Rice, R. A. Drezek, and J. K. Barton, “Quantitative tool for rapid disease mapping using optical
coherence tomography images of azoxymethane-treated mouse colon,” J. Biomed. Opt. 15(4), 041512 (2010).

63. S. Jäckle, N. Gladkova, F. Feldchtein, A. Terentieva, B. Brand, G. Gelikonov, V. Gelikonov, A. Sergeev, A. Fritscher-
Ravens, and J. Freund, “In vivo endoscopic optical coherence tomography of the human gastrointestinal tract-toward
optical biopsy,” Endoscopy 32(10), 743–749 (2000).

64. P. R. Pfau, M. V. Sivak, A. Chak, M. Kinnard, R. C. K. Wong, G. A. Isenberg, J. A. Izatt, A. Rollins, and V. Westphal,
“Criteria for the diagnosis of dysplasia by endoscopic optical coherence tomography,” Gastrointest. Endosc. 58(2),
196–202 (2003).

65. Q. G. Tang, C.-P. Liang, K. Wu, A. Sandler, and Y. Chen, “Real-time epidural anesthesia guidance using optical
coherence tomography needle probe,” Quant. Imaging Med. Su. 5(1), 118–124 (2015).

66. C. Wang, M. Gan, M. Zhang, and D. Y. Li, “Adversarial convolutional network for esophageal tissue segmentation
on OCT images,” Biomed. Opt. Express 11(6), 3095–3110 (2020).

67. U. Schmidt-Erfurth, A. Sadeghipour, B. S. Gerendas, S. M. Waldstein, and H. Bogunovic, “Artificial intelligence in
retina,” Prog. Retin. Eye Res. 67, 1–29 (2018).

68. L. Y. Fang, C. Wang, S. T. Li, H. Rabbani, X. D. Chen, and Z. M. Liu, “Attention to lesion: lesion-aware convolutional
neural network for retinal optical coherence tomography image classification,” IEEE Trans. Med. Imaging 38(8),
1959–1970 (2019).

69. L. Y. Fang, N. J. He, S. T. Li, P. Ghamisi, and J. A. Benediktsson, “Extinction profiles fusion for hyperspectral images
classification,” IEEE Trans. Geosci. Remote Sensing 56(3), 1803–1815 (2018).

https://doi.org/10.1038/s41377-019-0122-5
https://doi.org/10.1038/s41377-019-0122-5
https://doi.org/10.1167/iovs.16-19963
https://doi.org/10.1364/BOE.5.002963
https://doi.org/10.4161/intv.28770
https://doi.org/10.1364/BOE.10.001794
https://doi.org/10.1126/science.276.5321.2037
https://doi.org/10.1364/OL.39.002016
https://doi.org/10.1164/rccm.201501-0053OC
https://doi.org/10.1055/s-2007-966648
https://doi.org/10.1364/OE.1.000432
https://doi.org/10.1016/S0016-5107(00)70449-4
https://doi.org/10.1038/nm.3052
https://doi.org/10.1053/gast.2001.20911
https://doi.org/10.1364/BOE.6.001146
https://doi.org/10.1016/j.gie.2005.07.048
https://doi.org/10.1117/1.3446674
https://doi.org/10.1055/s-2000-7711
https://doi.org/10.1067/mge.2003.344
https://doi.org/10.3978/j.issn.2223-4292.2014.11.28
https://doi.org/10.1364/BOE.394715
https://doi.org/10.1016/j.preteyeres.2018.07.004
https://doi.org/10.1109/TMI.2019.2898414
https://doi.org/10.1109/TGRS.2017.2768479


Research Article Vol. 12, No. 4 / 1 April 2021 / Biomedical Optics Express 2418

70. R. C. Date, S. J. Jesudasen, and C. Y. Weng, “Applications of deep learning and artificial intelligence in retina,” Int.
Ophthalmol. Clin. 59(1), 39–57 (2019).

71. Q. Dou, H. Chen, L. Q. Yu, L. Zhao, J. Qin, D. F. Wang, V. C. T. Mok, L. Shi, and P. A. Heng, “Automatic detection
of cerebral microbleeds from MR images via 3D convolutional neural networks,” IEEE Trans. Med. Imaging 35(5),
1182–1195 (2016).

72. S. Pereira, A. Pinto, V. Alves, and C. A. Silva, “Brain tumor segmentation using convolutional neural networks in
MRI images,” IEEE Trans. Med. Imaging 35(5), 1240–1251 (2016).

73. M. J. J. P. van Grinsven, B. van Ginneken, C. B. Hoyng, T. Theelen, and C. I. Sanchez, “Fast convolutional neural
network training using selective data sampling: application to hemorrhage detection in color fundus images,” IEEE
Trans. Med. Imaging 35(5), 1273–1284 (2016).

74. S. Raschka, “Model evaluation, model selection, and algorithm selection in machine learning,” arXiv preprint
arXiv:1811.12808 (2018).

75. S. Varma and R. Simon, “Bias in error estimation when using cross-validation for model selection,” BMC
Bioinformatics 7(1), 91 (2006).

76. N. Iizuka, M. Oka, H. Yamada-Okabe, M. Nishida, Y. Maeda, N. Mori, T. Takao, T. Tamesa, A. Tangoku, H.
Tabuchi, K. Hamada, H. Nakayama, H. Ishitsuka, T. Miyamoto, A. Hirabayashi, S. Uchimura, and Y. Hamamoto,
“Oligonucleotide microarray for prediction of early intrahepatic recurrence of hepatocellular carcinoma after curative
resection,” The Lancet 361(9361), 923–929 (2003).

77. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016), 770–778.

78. M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mobilenetv2: Inverted residuals and linear
bottlenecks,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018), 4510–4520.

79. M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, and M. Isard,
“Tensorflow: A system for large-scale machine learning,” in 12th {USENIX} symposium on operating systems design
and implementation ({OSDI} 16), 2016), 265–283.

80. J. Deng, W. Dong, R. Socher, L. Li, L. Kai, and F.-F. Li, “ImageNet: A large-scale hierarchical image database,” in
2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009), 248–255.

81. F. Chollet, Keras, 2015.
82. A. Géron, Hands-on Machine Learning with Scikit-learn, Keras, and Tensorflow: Concepts, Tools, and Techniques to

Build Intelligent Systems (O’Reilly Media, 2019).
83. D. Krstajic, L. J. Buturovic, D. E. Leahy, and S. Thomas, “Cross-validation pitfalls when selecting and assessing

regression and classification models,” J. Cheminform. 6(1), 10 (2014).
84. R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, “Grad-cam: Visual explanations from

deep networks via gradient-based localization,” in Proceedings of the IEEE international conference on computer
vision, 2017), 618–626.

85. F. Chollet, Deep Learning with Python (Manning, 2018), Vol. 361.
86. Y. Chen, P. M. Andrews, A. D. Aguirre, J. M. Schmitt, and J. G. Fujimoto, “High-resolution three-dimensional

optical coherence tomography imaging of kidney microanatomy ex vivo,” J. Biomed. Opt. 12(3), 034008 (2007).
87. C. J. Lote, Principles of Renal Physiology, 4th ed. (Kluwer Academic Publishers, 2000), pp. x, 203 p.
88. R. B. Dyer, J. D. Regan, P. V. Kavanagh, E. G. Khatod, M. Y. Chen, and R. J. Zagoria, “Percutaneous nephrostomy

with extensions of the technique: Step by step,” Radiographics 22(3), 503–525 (2002).
89. K. R. Kruthika, Rajeswari, and H. D. Maheshappa, “CBIR system using Capsule Networks and 3D CNN for

Alzheimer’s disease diagnosis,” Inf. Med. Unlocked 14, 59–68 (2019).

https://doi.org/10.1097/IIO.0000000000000246
https://doi.org/10.1097/IIO.0000000000000246
https://doi.org/10.1109/TMI.2016.2528129
https://doi.org/10.1109/TMI.2016.2538465
https://doi.org/10.1109/TMI.2016.2526689
https://doi.org/10.1109/TMI.2016.2526689
https://doi.org/10.1186/1471-2105-7-91
https://doi.org/10.1186/1471-2105-7-91
https://doi.org/10.1016/S0140-6736(03)12775-4
https://doi.org/10.1186/1758-2946-6-10
https://doi.org/10.1117/1.2736421
https://doi.org/10.1148/radiographics.22.3.g02ma19503
https://doi.org/10.1016/j.imu.2018.12.001

