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Abstract

Accurate assessment of fetal gestational age (GA) is critical to the clinical management of 

pregnancy. Industrialized countries rely upon obstetric ultrasound (US) to make this estimate. In 

low- and middle- income countries, automatic measurement of fetal structures using a low-cost 

obstetric US may assist in establishing GA without the need for skilled sonographers. In this 

report, we leverage a large database of obstetric US images acquired, stored and annotated by 

expert sonographers to train algorithms to classify, segment, and measure several fetal structures: 

biparietal diameter (BPD), head circumference (HC), crown rump length (CRL), abdominal 

circumference (AC), and femur length (FL). We present a technique for generating raw images 

suitable for model training by removing caliper and text annotation and describe a fully automated 

pipeline for image classification, segmentation, and structure measurement to estimate the GA. 

The resulting framework achieves an average accuracy of 93% in classification tasks, a mean 

Intersection over Union accuracy of 0.91 during segmentation tasks, and a mean measurement 

error of 1.89 centimeters, finally leading to a 1.4 day mean average error in the predicted GA 

compared to expert sonographer GA estimate using the Hadlock equation.
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1. INTRODUCTION

The lack of access to care during pregnancy and childbirth in low-resource settings 

represents a significant challenge to improving maternal and perinatal health outcomes. A 

clear disparity exists between industrialized and developing regions in the world, where the 

least developed countries have greater maternal mortality and complications related to 

pregnancy and childbirth are more than 300 times greater in low- and middle- income 

countries (LMICs)1.2 Obstetric ultrasound (US) is the primary diagnostic modality for 

several conditions impacting maternal and fetal outcomes, including multiple gestation, 

congenital anomalies, fetal growth restriction, abnormalities of placental implantation, and 

amniotic fluid disturbances. Additionally, US is critical for determining fetal gestational age 

(GA), a key piece of information upon which much obstetric decision-making is based.3 

Improved access to obstetric US is hoped to improve accurate targeting of risk-reducing 

health care interventions and decrease the burden of specific pregnancy-related 

complications in LMICs. Conventional obstetric US requires skilled operators to obtain 

specific images of uterine, placental, and fetal anatomy. With the advent of artificial 

intelligence (AI) and deep learning algorithms, many image recognition tasks can be 

automated, thus reducing the skill required by the device operator. However, large, annotated 

image databases are required for training these algorithms effectively.

In this paper, we propose an end-to-end framework to automate image recognition and 

measurement of major anatomical structures in fetal US images. We start by training a 

UNET4 to remove calipers and text annotations from clinically obtained images. Most 

commercial ultrasound machines do not collect these annotations in a separate layer; rather, 

they are “burned in” to the image. This has historically limited the utility of routinely-

collected ultrasound image data in training machine learning classifiers, since it is 

imperative to ensure that models are trained solely on raw features, rather than their 

interpretation by experts. The burned-in annotations are removed to let the classifiers solely 

rely on US image features, and to facilitate use of the vast routine-care retrospective data.

Once the annotations are removed, the UNET output is used to train a RESNET5 classifier to 

identify images of the fetal head, abdomen, femur, and in early pregnancy, fetal body length 

(a.k.a. crown-rump length; CRL). Next, we train a modified residual UNET (RUNET)6 for 

image segmentation of the anatomical structures. Finally, we measure the segmented 

structure of interest which can be subsequently used for gestational age estimation by 

applying any of a number of established formulas789 to the estimated biometry 

measurements.

Figure 1 shows examples of US images with different calipers and annotations by experts.

To the best of our knowledge this is a first attempt to create an end-to-end pipeline that 

includes classification, segmentation, and measurement of multiple fetal structures for GA 

prediction. Previous work has evaluated state-of-the-art convolutional neural 

networks(CNNs)for the task of fetal structure classification using 2D still frame images 

(BPD=99.5%, FL=89.1%, AC=91.3%).10 Others have explored the classification and 

measurement of the fetal head from images selected from free-hand US sweeps11, 12 with 
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high accuracy. We report comparable high classification accuracy, and a low measurement 

error compared to expert measurements.

2. MATERIALS

We used three data sources for this work. The Zambian Preterm Birth Prevention Study 

(ZAPPS) is a prospective pregnancy cohort established at the Women and Newborn Hospital 

of the University Teaching Hospitals (UTH) in Lusaka, Zambia.13 Enrolled participants 

receive routine antenatal and postnatal care, lab testing, mid-trimester cervical length 

measurement, serial fetal growth monitoring, and careful assessment of birth outcomes. 

Between August 2015 and September 2017 (study phase 1), 1450 women were enrolled at a 

median gestational age of 16 weeks (IQR 13–18). 23,209 fetal biometry images from 3,369 

studies were collected in this phase of the ZAPPS Study. We call this retrospective data set 

ZAPPS.

The second data set used for training was a historical archive of studies performed for 

clinical care at the University of North Carolina Hospitals during the years 2012 through 

2018. This database includes 124,646 2D images from 2,983 ultrasound sessions. 

Ultrasound studies of women who received obstetric ultrasound by the University of North 

Carolina Maternal-Fetal Medicine group are included in this data set. We call this 

retrospective data set UNC.

We used optical character recognition (OCR)* on the ZAPPS and UNC datasets to identify 

burned-in labels and measurement calipers placed on images by sonographers at the time of 

collection, including 7274 head images labeled with “BPD” and/or “HC”, 3152 embryo/

fetus images labeled with “CRL”, 7216 femur images labeled with “FL” and 6717 

abdominal images labeled with “AC”. The BPD, HC, FL, AC and CRL labels refer to 

biparietal diameter, head circumference, femur length, abdominal circumference and crown-

rump length, respectively. These are the standardized ultrasound images with specific 

anatomic landmarks used universally in clinical practice to estimate fetal size and gestational 

age. These images were used to train the generative networks.

Finally, we evaluated our classification and segmentation methods on a third, prospectively 

collected dataset obtained as part of the ongoing Fetal Age Machine Learning Initiative 

(FAMLI), a prospective study funded by the Bill and Melinda Gates Foundation 

(OPP1191684). FAMLI enrolled adult pregnant women in both Lusaka and Chapel Hill, 

North Carolina, and collected a variety of fetal ultrasound data, including raw images 

without burned-in annotation. Our evaluation set included images collected between 

September 2018 and October 2019, and included 1646 BPD/HC, 2622 AC, 2466 FL, and 

499 CRL images without labels or measurement calipers. We call this data set FAMLI.

*https://cloud.google.com/vision/docs/ocr
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3. METHODS

3.1 Caliper removal via inpaint/UNET

As a preprocessing step to prepare the ZAPPS and UNC datasets for model training, calipers 

and extra text were removed from each image. As mentioned above, this ensured the 

classification and segmentation algorithms rely only on native image features during the 

training process.

Caliper removal is performed in two stages. First, an inpainting technique for object removal 

is employed to erase calipers from a set of images.14, 15 This algorithm takes as input an 

image and the target region. Starting from the outer edges, pixels in the labeled region are 

replaced by averaging pixels from similar patches. Figure 2(a) shows example patches and 

their corresponding closest neighbor(CN) in the image. Next, a UNET4 is trained to 

automatically remove the calipers. Ideally, the caliper removal should not rely on identifying 

the text or calipers, therefore, we train a neural network to automate this procedure. Figure 2 

summarizes the caliper and text removal steps and the UNET architecture.

The images produced in this step are used as input for the rest of the methods described in 

subsequent sections.

3.2 Image classification via RESNET

The first step towards a fully automated system for GA prediction is to classify images into 

their respective category. We trained a RESNET5 to classify images into four categories: 

head (BPD and HC), abdomen (AC), femur (FL), and fetus (crown rump length: CRL). 

During training, the dropout rate is set to 0.4; the learning rate is set to 1e−4 and to decay 

exponentially for 10000 steps, at a decay rate of 0.96. The batch size is set to 16, and the 

network is trained for 10 epochs. The loss function measures the probability of classification 

error in the mutually exclusive classes.

3.3 Image segmentation via RUNET

A residual UNET or RUNET was proposed by,6 however, for segmenting the fetal 

structures, the implementation of the up-sampling block is modified as shown in Figure 4(a), 

mirroring the original down-sampling block of the RESNET architecture.5 The full 

architecture is shown in Figure 4(b). We train 3 different RUNETs to segment the regions of 

interest (i.e. head, abdomen and femur). The learning rate is set to 1e−3, with an exponential 

decay of 0.96 for 10000 steps, and the dropout rate is 0.2. The network is trained for 150 

epochs. Crown rump length images are not included because of lack of ground-truth data.

Ground truth label maps were generated using the original position of the calipers as shown 

in Figure 3. Head images used the position of the calipers to calculate the minor radius minr 
(cyan) and orientation of the ellipse; the major radius of the ellipse was empirically set to 1.3 

∗ minr (magenta). Femur image label maps are generated by interpolating between the 

calipers. Abdominal images used the calipers to compute the radius and center of a circle. 

Since such automatic label map generating steps cannot be perfomed on full fetal images, 

crown rump length images were not included in the segmentation training process.
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We use this RUNET implementation to segment the structures of interest. The loss function 

used for all segmentation tasks is the Intersection over Union (IoU) metric, which is defined 

as

IoU = 2 ∗ Pr ∗ Gt
Pr + Gt

(1)

where Pr is the predicted segmentation and Gt is the ground truth label map. The 

optimization minimizes 1 − IoU.

3.4 Measurement via Ellipse/circle/line fitting

After the segmentation is complete, an ellipse, circle, or line was fit to the segmented region 

based on the image type.

Scaling information in the input US images was used to measure the corresponding (a) 

biparietal diameter and head circumference from ellipses fit on head images, (b) abdominal 

circumference from a circle fit on abdomen images, and (c) femur length from the line fit in 

the femur images. The results biometry measurements were then used to estimate GA using 

the established Hadlock polynomial equation that is commonly used in clinical practice.7

4. RESULTS

4.1 Caliper removal

Figure 5 shows examples from the caliper removal step. The algorithm preserves structures 

from the original US images while removing calipers and text.

4.2 Classification via RESNET

Figure 6 shows the classification results on the evaluation data set for the combined 

ZAPPS/UNC data, and FAMLI dataset. The combined ZAPPS/UNC data had a total of 

24,359 images out of which 20% (for each class) was randomly selected and used for 

evaluating the performance of image classification. Evaluation of the RESNET model on the 

never-annotated and without calipers, prospectively collected FAMLI ultrasound image 

data illustrates the performance of the model when trained on retrospectively collected data.

The classification performed well on both evaluation sets with a mean accuracy of 93%.

4.3 Image segmentation and ellipse/circle/line fitting

Figure 7 shows the performance of the segmentation task on the evaluation set from the 

ZAPPS/UNC data. As before, 20% (4,871 images) of the ZAPPS/UNC data was used for 

evaluation. The mean IoU was 0.91. Since the ground truth labelmaps were not available for 

the FAMLI dataset, IoU analysis was not performed.

4.4 Measurement and GA estimation

For the ZAPPS/UNC set, the ground truth measurements (circumference, diameter, and 

length) were extracted using OCR as physical size for pixels was not available in the ZAPPS 

images. The ground truth measurements were compared with scaled predicted 
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measurements. Real world pixel size was available for the FAMLI Dataset, so the predicted 

measurements were directly compared to the ground truth (obtained from concurrent clinical 

data). Measurement errors for both evaluation sets are depicted in Figure 8.

For the FAMLI dataset the mean absolute error (in cm) was 0.9 for HC, 0.41 for BPD, 2.21 

for AC, and 0.49 for FL with standard deviations of 1.14, 0.5, 2.61, and 0.55 respectively. 

The prediction error for all categories lies between two standard deviations of the mean, 

which is an acceptable accuracy for clinical GA prediction716.17

Finally, using these predicted measurements, GA was estimated with the Hadlock formula7 

for studies that had all BPD, HC, AC and FL measures available (716 ultrasound sessions). 

This was compared to the clinician-determined GA at the time of the study. The mean error 

in GA prediction was 1.4 days.

5. CONCLUSION

In this paper we describe a fully automated machine learning framework that accurately 

recognizes and measures important fetal structures (HC, AC, BPD, FL) for GA prediction, 

and can recognize fetal images (CRL) accurately. The classification task recognizes 

structures with an average accuracy of 93%, while the average IoU for segmentation was 

0.91. The mean absolute errors for the predicted measurements in cm were BPD=0.82, 

HC=2.96, FL=0.78, and AC=3.0, which are acceptable for GA prediction716.17 Predicting 

GA using these measures gives a mean error of 1.4 days. The fully automated framework 

presented here has diverse applications. Among our most important findings there are three 

key findings. First, we determined that burned-in annotations – formerly thought to render 

routine images of little use for model training – can be successfully removed with a 2-step 

inpainting and UNET approach. The resulting raw images can then be used for model 

training, unlocking vast databases of expertly collected and annotated images. Secondly, 

image classification of specific fetal US images can be performed accurately with AI, not 

only in stored 2D images but also in prospectively acquired ultrasound images. Thirdly, 

accurate automated segmentation and measurement of specific major fetal structures of 

interest are possible in order to estimate GA.

Future work will aim to continue and increase the inclusion of images of all the available 

data sets (historical and prospective) for the image classification task to further validate this 

model in other populations. Additionally, we will seek to improve our methods to generate 

ground truth label maps from expert annotations to improve segmentation and measurement 

accuracy. Finally, we aim to create semi-autonomous real-time feedback system for training 

purposes, driven by the location of the probe, which will permit identification and 

measurement of structures of interest during blind sweep acquisition.

We expect that a machine learning-based sonography approach allowing au- tomated GA 

determination will serve as an opportunity to improve health out- comes of women and 

children in low-resource settings who otherwise lack access to routine and often life-saving 

sonography. Ultimately, our hope is to develop a system that accurately determines GA and 
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other high-risk prenatal diagnoses, allowing providers to make appropriate clinical decisions 

that direct limited resources toward the highest risk pregnancies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Examples of historical images that could be used for training machine learning algorithms. 

The image annotations/calipers are removed to preserve image features for future analysis.
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Figure 2. 
Caliper removal: The in-paint technique replaces the labeled region (red) using redundant 

information in the image. The UNET is trained using the in-paint images as target and the 

source images (blue) are modified by randomly adding small calipers, big calipers and text 

(top to bottom).
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Figure 3. 
Ground truth label maps generated for all classes. BPD/HC, FL and AC use the original 

position of the calipers to generate an ellipse/circle or a line.
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Figure 4. 
Architecture of the RUNET for image segmentation.
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Figure 5. 
Examples for the UNET caliper removal step.
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Figure 6. 
Confusion matrices showing the classification results for the ZAPPS/UNC test set and the 

FAMLI validation set.
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Figure 7. 
Segmentation accuracy for head, femur and abdomen images using the evaluation data set. 

From left to right: the segmentation output from the RUNET; the fitted element; and the IoU 

error distribution
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Figure 8. 
Measurement error for the structures in Zambia/UNC and FANLI dataset. Since FAMLI 

images have real world pixel size, the measurement accuracy is better.
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Table 1.

Description of data sets used in this work

Name no. of studies no. of images Calipers/annotations present Training/evaluation

ZAPPS 3,369 23,209 present training

UNC 2,983 124,646 present training

FAMLI 2,491 7,233 absent evaluation
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