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a b s t r a c t 

The early detection of COVID-19 is a challenging task due to its deadly spreading nature and existing 

fear in minds of people. Speech-based detection can be one of the safest tools for this purpose as the 

voice of the suspected can be easily recorded. The Mel Frequency Cepstral Coefficient (MFCC) analysis of 

speech signal is one of the oldest but potential analysis tools. The performance of this analysis mainly 

depends on the use of conversion between normal frequency scale to perceptual frequency scale and 

the frequency range of the filters used. Traditionally, in speech recognition, these values are fixed. But 

the characteristics of speech signals vary from disease to disease. In the case of detection of COVID- 

19, mainly the coughing sounds are used whose bandwidth and properties are quite different from the 

complete speech signal. By exploiting these properties the efficiency of the COVID-19 detection can be 

improved. To achieve this objective the frequency range and the conversion scale of frequencies have 

been suitably optimized. Further to enhance the accuracy of detection performance, speech enhancement 

has been carried out before extraction of features. By implementing these two concepts a new feature 

called COVID-19 Coefficient (C-19CC) is developed in this paper. Finally, the performance of these features 

has been compared. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Coronavirus disease 19 (COVID- 19) which exhibits acute res- 

iratory syndrome is a deadly viral infection. As reported, it has 

tarted in Wuhan, China in 2019 and has affected the whole world 

1] . As per the report of the World Health Organization, more than 

 hundred million people have suffered till 7th March 2021 out of 

hich more than 2.5 million deaths have been reported [2] . The 

ocial distancing of 1.6 m to 3 m is recommended to control the 

apid spreading of COVID-19 cases [3] . It is observed from the ex- 

eriences of the medical practitioners that rather than the deadly 

ature of the virus, its fear of stigma is stopping people from go- 

ng to medical laboratories for testing purposes [4] . Under such 

ircumstances, it has become a huge challenge for developing an 

ppropriate method for the early detection of this disease. It is a 

act that the speech-based detection of COVID-19 is a simpler and 

afer approach for this purpose [5] . In this section, a review of re-

ated literature is carried out in two parts: speech based COVID-19 

etection and speech recognition using MFCC features. 
∗ Corresponding author. 

E-mail address: suresh.satapathyfcs@kiit.ac.in (S.C. Satapathy). 
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.1. Literature review 

In this section, the literature review has been carried out in two 

arts: speech based COVID-19 detection and use of MFCC features 

ased speech recognition. 

.1.1. Review on COVID-19 detection using speech signals 

Speech analysis is one of the important methods used for the 

etection of parkinson [6] alzheimer, asthma [7] . In the recent 

ast, attempts have been made in the area of speech based COVID- 

9 analysis and diagnosis. The details in terms of databases, fea- 

ure extraction methods, and performance analysis have been pre- 

ented. A crowdsourced data set of respiratory sounds has been 

repared using coughs and breathing sounds for detecting COVID- 

9. Several audio features such as speech time duration, onset, 

empo, period, RMS energy, spectral centroid, Roll-Off frequency, 

ero-crossing, MFCC have been used as inputs to classification 

ethods such as Logistic Regression, Gradient Boosting Trees, and 

upport Vector Machines (SVM) for the classification task. It is re- 

orted that a maximum accuracy of 80% in Receiver Operator Char- 

cteristics Area Under Curve (AUC) [8] . 

A review of Artificial Intelligence based methods used for 

OVID-19 detection is presented in [9] . It explains multi-modal 

https://doi.org/10.1016/j.patcog.2021.107999
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2021.107999&domain=pdf
mailto:suresh.satapathyfcs@kiit.ac.in
https://doi.org/10.1016/j.patcog.2021.107999
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pproach using audio, text, and image for achieving better detec- 

ion results. The log Mel spectra of a speech signal are mapped 

ith the respiratory sensors to train the neural network-based 

odels. A sensitivity of 91.2% for breathing based detection and 

 mean absolute error of 1.01 breaths per minute have been 

eported using the proposed methods. In another paper, the health 

ondition of COVID-19 patients is categorized into four types with 

espect to the severity of illness, sleep quality, fatigue, and anxiety 

10] . Audio dataset has been collected from twenty females and 

hirty-two males COVID19 patients from two hospitals in Wuhan, 

hina during March 20, – 26, 2020. Two acoustic feature sets from 

he computational paralinguistics challenge and extended Geneva 

inimalistic acoustic parameter sets have been used as inputs to 

VM to achieve an average classification accuracy of 69%. 

.1.2. Review on optimization in MFCC features 

The cepstral analysis is one of the oldest and popular signal 

nalysis methods which finds applications in the speech signal and 

echanical systems [11] . The MFCC based features are very pop- 

lar and effective for speech recognition, music information re- 

rieval, speech evaluation parameters, etc. An optimization of MFCC 

eatures is achieved by reducing the feature space using Linear Dis- 

riminant Analysis Fisher’s F-ratio [12] . The use of these features 

chieves faster convergence of the ANN model and improvement 

n recognition accuracy at different SNR levels. The source recog- 

ition of Cell-Phone is carried out using the optimization of dif- 

erent cepstral coefficients such as Mel, linear, and Bark frequency 

13] . The use of minimum and maximum frequencies of MFCC 

nd cepstral variance normalization has enhanced the identifica- 

ion rate to 96.85%. With an objective to minimize the dissimilarity 

etween the perceptual and feature domain distortions, modified 

FCC based features are proposed in [14] . These simple feature 

ectors provide improved speech recognition performance in noisy 

s well as clean conditions. In another paper, the mean and stan- 

ard deviation of the feature space including MFCC are optimized 

sing genetic algorithm, and differential evolution [15] . These im- 

roved features are used for the punjabi language speaker recogni- 

ion. 

An analysis of different frequency bands has been carried out 

sing the F-ratio method for speech unit classification and it is 

bserved that 1 kHz to 3 kHz frequency range to be provided 

ore emphasis and accordingly an optimization of features us- 

ng the F-ratio scale is proposed in [16] . A significant reduction 

n the sentence error rate is reported by using the proposed fea- 

ure optimization technique. The central and side frequency pa- 

ameters of MFCC filter banks have been optimized using parti- 

le swarm optimization and genetic algorithm [17] . These opti- 

ized features are then applied in the Hindi vowel recognition us- 

ng the Hidden Markov model and Multilayer perceptrons under 

ifferent noise conditions. A hybrid approach is proposed by tak- 

ng gammatone and mel frequency cepstral coefficients with PCA, 

nd multi tapered method using differential evolution, and Hid- 

en Markov model (HMM) based classifiers for robust recognition 

f Punjabi speech under different noise conditions [18] . The fre- 

uency range of the filter banks of MFCC is optimized for emotion 

ecognition using two databases [19] . This method has improved 

he speaker-independent emotion recognition accuracy by 15% for 

he Assamese database and 25% for the Berlin database. 

.2. Motivation 

It is observed from the literature review that early detection of 

OVID-19 from speech data is a challenging and timely research 

rea [20–22] . For the remote online based COVID-19 detection from 

he speech signal, the patients have to use mobile applications in 

he real-life noisy environment. Investigation in this direction has 
2 
ot been fully explored particularly in the selection of proper au- 

io features of COVID-19 patients for detection purposes. The na- 

ure of the speech signals used for the analysis of COVID-19 are 

ainly the breathing and cough sounds and hence it is quite dif- 

erent from the speech signal comprising complete sentences. The 

FCC features have also been used in COVID-19 detection in [23] , 

ut these features are directly used without any modification or 

mprovement in the features and hence the detection performance 

s poor. Thus, in the present COVID-19 scenario, there is a huge re- 

uirement to develop a better effective tool for improved detection 

rom a safe distance and remotely recorded speech. Hence, there is 

 need to find and identify improved features which are expected 

o improve the detection accuracy of the classifier. The focus of 

he current investigation is to develop potential features from the 

peech data for facilitating the classifier to yield higher accuracy of 

etection. In addition, speech enhancement is required to be car- 

ied out for extraction of the proper audio features [24] . It is fur-

her observed that there exists a huge class imbalance present in 

he speech data available on the online platforms [8,23] . This class 

mbalance affects the overall training and testing performance of 

lassifiers and hence this issue needs to be addressed and resolved. 

hese problems have been identified during the literature review 

nd taken up in this paper. 

There are different techniques used for achieving higher accu- 

acy in classification and prediction tasks out of which the deep 

earning-based techniques are preferred if the data size is high and 

eatures extraction and selection are difficult [25,26] . On the other 

and, ML based methods use extracted features whereas CNN ex- 

racts the appropriate features through a series of convolution op- 

rations. Further DL methods involve more time for classification 

27–29] . In the present problem, two speech datasets [8,23] with 

ategorically less data are available and the feature optimization 

s the target. Though Cepstral analysis is an old method, still it is 

uite popular, effective and a lot of recent articles still employ this 

eature [30,31] . Therefore, for the present problem, Cepstral opti- 

ised features are obtained by a bio-inspired technique and used 

or classification purposes. 

.3. Research objectives 

Based on the motivation of research arising out of the litera- 

ure review, the problem has been formulated with the following 

esearch objectives. Thus, the research objectives of the paper are: 

1. To analyze the cepstral features used in speech recognition and 

to suitably optimizing the conversion scale in the frequency do- 

main, and frequency range of filter banks using the bio-inspired 

technique to achieve better COVID-19 detection. 

2. To identify the best possible sound patterns during coughing, 

breathing, and voiced sounds to detect COVID-19. 

3. To employ the adaptive synthetic sampling approach for achiev- 

ing efficient training for class imbalance in the database and to 

facilitate proper classification using SVM. 

4. To compare and analyze the detection performance of the pro- 

posed cepstral feature-based classifier with that obtained from 

other reported results. 

.4. Organization of the paper 

Based on the objectives of the research the organization of the 

aper proceeds as follows. The introduction, literature review, mo- 

ivation, research objectives are presented in Section I. In section 

I, a detailed review of the related work on the theme of the prob- 

em is presented. The salient characteristics of data obtained from 

he standard database of COVID-19 are provided in Section III. In 

ection IV, the proposed methodology is presented in detail. The 
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Fig. 1. Steps for the MFCC feature extraction. 
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imulation-based experiment using two standard data sets and dis- 

ussion of results as well as the contribution of the paper is pre- 

ented in Section V. Finally, the conclusion of the paper and scope 

or future work are dealt with in Section VI. 

. Related works 

The cepstral analysis is one the oldest and popular signal anal- 

sis methods used in various applications like speech signal pro- 

essing, mechanical engineering problems, and analysis of multi- 

le inputs, multiple output systems, etc [11] . The MFCCs are very 

opular and effective features in speech recognition, music infor- 

ation retrieval, speech evaluation parameters. It is normally cal- 

ulated using the following steps [32] . 

• Step-1 — Apply the pre-processing like windowing, framing to 

the input signal 
• Step-2 — Calculate the energy of the frame 
• Step-3 — Find the Discrete Fourier transform using the FFT 

method 

• Step-4 — Apply the Mel filter bank by mapping the power spec- 

trum into the mel scale and by using triangular overlapping 

windows. 
• Step-5 — FInd the logarithm of Step 4 
• Step-6 — Apply the Discrete cosine transform 

• Step-7 — Combine Energy and other features from step-6 to get 

MFCC features 

These steps are also shown in Fig. 1 . Step-4 deals with the use

f the Mel filter bank. There are several variations of these filter 

anks reported in the speech processing such as triangular filter 

ank using mel-scale, human factor scale, Bark-scale, ERB-scale, 
3 
nd Gammatone filter bank. Depending on these filter banks the 

epstral coefficients are named accordingly. The basic steps used 

or the filter bank design are shown in Fig. 2 [33] . In this case, the

erceptual scale means frequency scale based on the human per- 

eption of sound like the mel scale. The details of the four types of 

eatures are discussed in the sequel. 

.1. Triangular filter bank using mel-scale (TFBCC-M features) 

The steps involved in the design of the filter bank for extraction 

f TFBCC-M features [33] are explained in this section. The steps 

re as follows: 

• Convert linear scale frequency of DFT ( f ) to Mel scale ( f m 

) using

Equation (1) . 

f m 

= 2595 · log 10 

(
1 + 

f 

700 

)
(1) 

• The linear scale lower and higher cut-off frequencies ( f l and f h ) 

are converted into melscale ( fm l and fm h ) respectively. Now, the 

center frequencies 
(

f m c p 

)
of each filter are calculated using 

Equation (2) . 

f m c p 
= f ml + p ·

(
f mh − f ml 

P + 1 

)
(2) 

here p = 1, 2, 3,..., P -1. P is the number of Mel filters. 

• The center frequencies 
(

f m c p 

)
of p th filter band is to be con- 

verted to linear scale using 
(

f c p 
)
given in Equation (3) . 
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Fig. 2. Steps for the Filter bank computation. 
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Table 1 

Variables used in TFBCC-H features cal- 

culation. 

parameter value 

−
α 0.00000623 
−
β 0.09339 
−
γ 28.52 
∧ 
j 0 (for the first filter) 
∧ 
j 1 (for the P th filter) 

f p f l (for the first filter) 

f p f h (for the P th filter) 
f 
c p 

= 700 · 10 

f m c p 
2595 − 1 (3) 

• The magnitude response of each of the filters H p (k ) in the mel

filter bank is calculated using Equation (4) . 

 p (k ) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

0 , i f k < f r (p − 1) 
k − f r (p−1) 

f r (p) − f r (p−1) 
, i f f r (p − 1) ≤ k ≤ f r (p) 

f r (p+1) − k 
f r (p+1) − f r (p) 

, i f f r (p) ≤ k ≤ f r (p + 1) 

0 , i f k > f r ( p + 1) 

(4) 

Where, k is the frequency domain index of FFT, f r (p) is the 

ounded center frequencies ( 
(

f c p 
)
) and it is calculated using 

quation (5) and fs is the sampling frequency of the speech sig- 

al. 

f r (p) = ( length of F F T block + 1 ) · ( f c p / f s ) (5) 

.2. Triangular filter bank using bark scale (TFBCC-B features) 

The calculation of TFBCC-B features is similar to the TFBCC- 

 features with only one difference [33] . Instead of conversion 

etween linear scale frequency of DFT and mel scale (as men- 

ioned in Equations (1) and (3) ), the conversion is between lin- 

ar scale frequency of DFT ( f ) and Bark scale ( f b )as mentioned in

quations (6) and (7) . 

f b = 6 sin h 

−1 

(
f 

600 

)
(6) 

f 
c p 

= 600 sin h 

(
f b c p 
6 

)
(7) 

here 
(

f b c p 

)
is the center frequency in the Bark scale. 
4 
.3. Triangular filter bank using human factor scale (TFBCC-H 

eatures) 

The difference between the designing of filter bank for TFBCC- 

 and TFBCC-H features lies in the calculation of the critical band- 

idth using the ERB approximation [34] . 

• The center frequencies 
(

f c p 
)

of the first ( p = 1 ) and last ( p = P )

filters are computed as mentioned in Equation (8) 

f c p = 

1 

2 

·
(
−β + 

√ 

β2 − 4 γ
)

(8) 

here p is the index of filter and P is the maximum number of 

lters. For the first filter 

The 
(

f c p 
)

is obtained usingEquation (9) and Table 1 . 

= 

−
β −

∧ 
β

−
α − ∧ 

α
, γ = 

−
γ − ∧ 

γ
−
α − ∧ 

α
(9) 
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∧ 
α = ( −1 ) 

∧ 
j 

(
0 . 5 

700 + f p 

)
∧ 

= ( −1 ) 
∧ 
j 

(
700 

700 + f p 

)
(10) 

∧ = ( −1 ) 
∧ 
j +1 

( 0 . 5 f p ) 

(
1 + 

700 

700 + f p 

)

• After obtaining the values of 
(

f c p 
)
, these are converted from 

linear-scale to mel-scale as mentioned in Equation (11) , where 

f ′ c 1 
and f ′ 

cP 
are the center frequencies of the first and last filter 

in the mel-scale computed using Equation (1) . 

f ′ c p = f 
′ 
c 1 

+ ( i − 1 ) 

(
f ′ cP − f ′ c 1 

P − 1 

)
(11) 

• Convert the computed center frequencies of all the filters from 

mel-scale to linear-scale using Equation (3) . 
• Calculate the lower and upper limit of the frequency of each of 

the filters in the filter bank using Equations (12) , (13) and (14) .

f l p = −( 700 + ERB p ) + 

√ 

( 700 + ERB p ) 
2 + f c p 

(
f c p + 1400 

)
(12) 

f hp = f hp + 2 · ERB p (13) 

RB p = 

−
α f 2 c p + 

−
β f c p + γ (14) 

• Round off the center frequencies and magnitude response cal- 

culation of each filter as is done in case of TFBCC-M features 

using Equations (4) and (5) . 

.4. Triangular filter bank using ERB scale (TFBCC-E features) 

The calculation of TFBCC-E features is similar to that of TFBCC- 

 features with only one change [33] . Instead of conversion be- 

ween linear scale frequency of DFT and mel scale (as mentioned 

n Equations (11) , (1) and (3) ), the conversion is made between 

inear scale frequency of DFT ( f ) and ERB scale ( f e )as mentioned in

quations (15) and (16) . 

f e = 24 . 7 ( 0 . 00437 · f + 1 ) (15) 

f c p = 228 . 72 

((
f e cp 

24 . 7 

)
− 1 

)
(16) 

.5. Parameters for optimization 

It is observed from the detailed review of the existing Cepstral 

oefficients that the two parameters such as the conversion of fre- 

uency from linear scale to perceptual scale and the selection of 

ut-off frequencies are the determining factor for the performance 

f the cepstral analysis. This issue is addressed in the literature 

13–19] . This problem has been further investigated in Section 5.2 . 

. Database preparation 

Two Speech databases are used in the simulation-based exper- 

ments carried out in Section 5 . The brief details of the databases 

sed are discussed in this section. 
5 
.1. Coswara database 

The Coswara database (DB-1) has been developed by the Indian 

nstitute of Science, India in the year 2020 [23] . A web applica- 

ion is used for collecting audio samples for diagnosing COVID-19 

revalence using breath, cough, and voice sounds. The audio files 

re arranged in groupings of different respiratory indicators such 

s shallow and deep breathing, shallow and heavy cough, contin- 

ous vowel pronunciation /a/, /e/, and /o/, counting normal and 

ast. This database also contains additional information in terms of 

ge, gender, demography, existing health history, and the existence 

f chronic health preconditions. The volunteering members have 

ndividually contributed to multiple sound clips for multiple seg- 

ents. The maximum duration of the sound clips for the individual 

egment is approximately 15 seconds duration with the sampling 

requency as 41 kHz or 48 kHz. This data set covers 570 partici- 

ants and each participant has contributed 9 audio files pertaining 

o various categories. Cumulatively, this data set comprises 3470 

lean, 1055 noisy, and the remaining are highly degraded sound 

amples. 

.2. Crowdsourced respiratory sound data 

The Crowdsourced Respiratory Sound Data (DB-2) has been de- 

eloped by Cambridge University, the UK in the year 2020 [8] . 

he Android and web-based sound application is used for cap- 

uring speech/audio samples for detecting Corona Virus disease 

revalence using breath, and cough sounds. For capturing the re- 

uired sounds, the volunteers are prompted to follow instructions 

or coughing and breathing a couple of times along with reading 

hases. Finally, the users are asked whether they have clinically 

ested COVID positive so far. Since the project employs two ap- 

lications to collect the data, the indicating words ’web’ and ’an- 

roid’ are frequently used to distinguish between the recorded au- 

io samples. Also, while naming the audio files, ’no cough’ and 

with cough’ designate a volunteer’s report of a condition to dry 

r wet cough, while ’nosymp’ means the volunteer showed no 

igns at that time. The selected audio.wav files have been ar- 

anged in groupings under categories of cough, breath, and asthma. 

he maximum duration of the sound clips for the individual seg- 

ent recorded by the android application varies from 8 seconds 

o 20 seconds duration approximately with a sampling frequency 

f a maximum 48 kHz. Similarly, the maximum duration of the 

ound clips for the individual segment recorded by Web applica- 

ion varied from 11 seconds to 24 seconds duration approximately 

ith the sampling frequency of maximum of 48 kHz samples. This 

ataset consists of 4352 unique users from the web app and 2261 

nique users from the Android app. Out of these, total of 235 users 

re declared COVID-19 positive. 

In the two databases, the signals are recorded at 44.1 kHz and 

8.1 kHz sampling rates. It is observed from the literature [35] the 

ost of the latent features are within 8 kHz bandwidth and the 

ence pre-processing is done by downsampling the speech signal 

o 16 kHz. 

. Proposed methodology 

The details of the proposed method are discussed in this 

ection. The methodology is depicted in the block diagram form 

 Fig. 3 ) and the need and operation of each block are explained. 

he algorithm is divided into two parts: configuration and ap- 

lication [36] . The configuration part deals with the preparation 

f a clean balanced dataset, and the application part explains 

he extraction and use of the proposed C-19CC features. In the 

onfiguration stage, the two available datasets are analysed and 

onverted into a labeled balanced dataset by using the Adaptive 
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Fig. 3. Block Diagram of Proposed detection model of COVID-19. 
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ynthetic Sampling Approach [37] which is applied to deal with 

eant for Imbalanced Learning method. To transform the dataset 

ith a uniform single sampling rate, the sampling rate conver- 

ion strategy is applied. Subsequently, the Speech Enhancement 

lgorithm is employed for the reduction of noise present in 

he data. In the configuration stage, the calculation of the best 

ossible values of the Cepstral features is carried out from the 

re-processed dataset. Finally, the previously configured set of 

-19CC features are extracted from speech databases. The classifier 

s then trained using these extracted features for the identification 

f the appropriate class. 

.1. Fire-Fly optimization algorithm 

Based on the flashing pattern of fireflies, an efficient optimiza- 

ion algorithm known as FF Algorithm has been developed in the 

ast decade. It has the advantages of swarm intelligence and also 

t has other advantages as compared to the standard swarm intel- 

igence based algorithms due to its automatic subdivision and the 

bility of dealing with multi-modality [38] . This section deals with 

 brief discussion on the operation and implementation of the FF 

lgorithm. 

The basic concept of the FF algorithm is based on the attraction 

nd attacking principle of the firefly species. They produce short 

nd rhythmic flashes and the attractiveness of a firefly is calcu- 

ated by its brightness (light intensity). This principle is modeled 

s the objective function. The attractiveness is governed by light 

ntensity variation with distance and the absorption coefficient and 

xpressed in Equation (17) . 

 = 

I s 

r 2 
, I = I o e 

−γ r (17) 

The explanations of the parameters used in the FF Algorithm 

re listed in Table 2 . 

By combining the two factors of Equation (17) the instanta- 

eous intensity can be expressed asEquation (18) 

 = I o e 
−γ r 2 (18) 

Similarly, the attractiveness ( β) is represented as 

quation (19) . 

= βo e 
−γ r 2 (19) 
6 
The distance between any two fireflies i and j at position x i and 

 j is computed as the Cartesian distance given in Equation (20) . 

 i j = ‖ x i − x j ‖ = 

√ 

d ∑ 

k =1 

(x i,k − x j,k ) 2 (20) 

here x i,k is the k th component of the spatial coordinate x i of 

he i th firefly. The movement of a firefly i attracted to another 

righter firefly j is expressed as Equation (21) , where the second 

erm denotes the attraction and the third term is for inserting ran- 

omization. For most cases the value of βo = 1 and α ∈ [0, 1]. 

he speed of the convergence and the overall effectiveness of the 

F algorithm depends upon the parameter γ which denotes the 

ariation of the attractiveness. The value of γ varies from 0.1 to 

0. When any i th firefly is attracted by a brighter (more attractive) 

refly j, then its movement is expressed as in Equation (21) . 

 i = x i + βo e 
−γ r 2 

i, j ( x j − x i ) + ϑ ε i (21) 

The flow chart of the FF algorithm is shown in Fig. 4 . In the FF

lgorithm, the whole population can be easily subdivided into sub- 

roups based on the attraction principle. These subgroups help to 

nd the local optimum solutions and correspondingly the global 

ptimum. This concept of subdivision allows the fireflies to get 

he optima simultaneously if the population size is sufficiently 

39] . Also, it has been proved that the FF algorithm works better 

han the traditional Particle Swarm Optimization and Genetic Al- 

orithm in terms of both efficiency and success rate [39] . Recently 

everal speech processing based optimizations have been imple- 

ented successfully using FF algorithms [40] . Hence, the FF algo- 

ithm has been chosen for finding the best possible cepstral fea- 

ures to be used for the COVID-19 classification. 

.2. Classification 

The classification is an important task for the detection of 

OVID-19. Support Vector Machines (SVM) are simple but potential 

lassifiers having lower computational complexity providing higher 

lassification accuracy as compared to other non-linear classifiers 

41] . It is further observed from the literature that for the sev- 

ral speech signal based classifications, SVM with the Gaussian ker- 

el is one of the effective classifiers due to its overall good per- 
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Table 2 

Parameters used in the FF Algorithm. 

Name of Parameter Details 

I light intensity at any particular instant 

I s light intensity at the source 

I o Original light intensity used in the calculation of absorption effect 

γ light absorption coefficient 

r distance 

β attractiveness 

βo attractiveness at distance r = 0 

ϑ randomization parameter 

ε vector of uniformly distributed zero mean random numbers in the range of — 0.5 to 0.5 

Fig. 4. Flow Chart of Fire Fly Algorithm. 
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ormance and requirement of the optimization of fewer parame- 

ers associated with penalty and kernel parameters [42] . The cross- 

alidation process is used for the calculation of the accuracy of the 

lassifier. In this case, the input data is divided into two parts such 

s training and testing. The validation accuracy is calculated from 

he unknown testing part of the data set. In the present case, 80% 

f the data is used for training and the remaining 20% is used for 

esting and a five-fold cross-validation scheme is also used. The 

imulation study is carried out in the MATLAB Platform and the 

alidation accuracy is calculated using Equation (22) . 

 alidation Accuracy = 1 − (k − fold Loss ) (22) 

In the optimization process, the cost function is considered as 

 minimization problem, the k-fold loss is taken as the objective 

unction. The range of k-foldloss is from 0 to 1 and the lower the 

alue the better is the overall performance of the classifier. 

.3. Problem formulation 

The problem dealt with in this paper is to calculate the op- 

imum values of conversion between linear to mel scale and 

igher and lower cut-off frequencies in of the filters related 

quations (1) , (2) and (3) . These equations are re-written here 

ith the proper variables that needs to be optimized. The conver- 

ion of the linear scale frequency of DFT ( f ) to Mel scale ( f m 

) is

ritten with a variable factor δ in theEquation (23) . This idea of 
7 
ptimizing δfor classification is inspired a similar implementation 

f the Optimization in Automatic Speech Recognition [14] . In nor- 

al MFCC calculations, the value of δ is taken as 7. 

f m 

= 2595 · log 10 

(
1 + 

f 

(δ × 100) 

)
(23) 

Correspondingly, the conversion of mel scale to linear scale is 

lso written with the variable δ. 

f 
c p 

= (δ × 100) ·
[ (

10 

f m c p 
2595 

)
− 1 

] 
(24) 

It is also observed from the literature that the linear scale lower 

nd higher cut-off frequencies ( f l and f h ) and correspondingly the 

elscale lower and higher cut-off frequencies ( fm l and fm h ) in 

quation (2) can also be optimally chosen for improvement in the 

verall classification accuracy [13] . 

.4. Need for finding optimum values of δ., fl and fh using FF 

lgorithm 

The effect of the change in magnitude of the parameters on the 

ccuracy of classification is dealt in this section. In Fig. 5 , the ef-

ects of the change in the value of δ.and maximum frequency of 

he speech signal on the validation accuracy are shown. It is no- 

iced from these two figures that the selection of the best pos- 

ible value of the δ.to achieve the highest validation accuracy is 
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Fig. 5. Effect of change in the Delta value and maximum frequency on the Validation Accuracy. 
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ot straight forward and hence can not be selected using the em- 

irical calculations. Due to the random nature in the pattern of 

hese graphs, to select the best parameters to achieve the maxi- 

um validation accuracy, the bio-inspired optimization technique 

s employed. To fulfill this requirement, the FF algorithm is chosen 

n this paper. 

The objective cost function is to minimize the k-fold loss. It is 

efined as 

b jecti v e F unction = min 

δ, f l , f h 
{ k − f ol d l oss } (25) 

The k-fold loss of the classifier depends on the values of δ, fl

nd fh. Hence, these three variables ( δ, fl and fh) are chosen for 

ptimization. The k-fold loss needs to be minimized by suitably 

ptimizing by using nature inspired technique. The range of k-fold 

oss lies between 0 and 1. The goal is to calculate the best possible

alues of these variables to obtain the lowest possible value of the 

-fold loss at the output of the SVM classifier. 

.5. Speech enhancement 

Speech enhancement is a process used to denoise the noisy 

peech signal and to improve the overall quality and intelligibility 

f the denoised speech. It is widely used in hearing aids, speech 

ommunications, and speech recognition tasks. Recently, the phase 

pectrum compensation based speech enhancement has been pro- 

osed [43] and its performance has been shown to be improved 

sing the bio-inspired and ANN techniques [40] . This algorithm has 

een employed in this paper in the speech enhancement part. This 

lgorithm is based on the concept of the use of proper scaling fac- 

or in the phase spectrum compensation. The Flow chart of this 

lgorithm is shown in Fig. 6 . 

.6. Adaptive synthetic sampling approach for imbalanced learning 

Classification based on Imbalanced learning is a challenging 

ask in the fields of machine learning and data mining. One of the 

ffective approaches to handle such a problem is called Adaptive 

ynthetic Sampling Approach for Imbalanced Learning (ADASYN). 

t solves the problem of the imbalanced classification problem by 

enerating new data from the minority class (synthetic data). This 

s achieved by reducing the bias of the class imbalance, and grad- 

ally changing the classification decision boundary [37] . 

The motivation behind using the ADASYN algorithm in the pro- 

osed COVID-19 detection problem due to its encouraging perfor- 

ance in speech recognition (vowel) in [37] , where the ratio be- 

ween the number of the minority to majority samples is 90:900. 

imilarly, in the present case, the ratio of minority to majority class 
8 
n Database-1 and Databse-2 are above 30% to 70% which are un- 

alanced case. 

The steps of the or the ADASYN algorithm are expressed below. 

• Step-1 — Calculate the degree of class imbalance ( d ) from the 

given training data 
• Step-2 — Generate the number of new data samples (synthetic 

data = G ) for the minority class 
• Step-3 — Calculate the r i from the K nearest neighbors calcula- 

tion and normalize it. (where r i = 

� i 
K , where � i is the number 

of examples in the K nearest neighbors of x i (feature vector of 

the i th sample) that belong to the majority class) 
• Step-4 — Calculate the number of synthetic data samples that 

need to be generated for each minority sample 
• Step-5 — Generate the synthetic data using Equation (26) for 

the loop varying from 1 to g i 

 i = x i + ( x zi − x i ) × λ (26) 

here g i is the number of synthetic data that need to be generated 

or each minority sample, λ is a random number between 0 and 1, 

nd x zi is the random selection of one minority data sample from 

he K-nearest neighbors. The important parameter which makes 

DASYN algorithm better than other similar technique [44] is the 

se of a density distribution which automatically calculates the 

umber of synthetic samples that need to be generated for each 

inority data sample. 

. Experiment 

In this section the details of the simulation based experiments 

arried out and various results are obtained. The different steps 

n simulation study snd the corresponding flowchart is shown in 

ig. 3 

Step-1 — A balanced labeled data set is prepared with 200 

peech samples. 

Step-2 — The sampling rate is converted to 16 kHz for all the 

peech samples. 

Step-3 — Speech Enhancement principle is applied to remove 

he unwanted noise components from the data set. 

Step-4 — The best possible values of δ, fl and fh in the MFCC 

mplementation are obtained which helps to yield the lowest pos- 

ible value of k-fold loss of the SVM classifier using the enhanced 

peech data set. 

Step-5 — The optimized values of δ, fl and fh obtained from the 

tep-4 are applied and the corresponding modified cepstral fea- 

ures of the remaining speech samples of database-1 and 2 are ob- 

ained. 
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Fig. 6. Flow Chart of Improved phase aware speech enhancement Scheme. 
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Step-6 - The various performance measures of classification us- 

ng the optimized features are obtained from the SVM classifier. 

.1. Performance evaluation measures 

.1.1. Sensitivity 

The performance of any classifiers is commonly evaluated by 

sing either a numeric metric (accuracy), or a graphical repre- 

entation of performance (receiver operating characteristic (ROC) 

urve). A commonly used classification metric, the Confusion ma- 

rix is calculated from the four values such as: TP (True Positive), 

P (False Positive), FN (False Negative), and TN (True Negative) [45] . 

or the medical diagnosis, the FN plays a crucial role because it 

hows the class of patients who suffer from the COVID-19 disease 

ut the classifier has falsely predicted them to be healthy [46] . But 

he FP has less significance in COVID-19 as the patient can go for 

he second round of tests to confirm. But the COVID-19 positive pa- 

ients should not have false interpretation as if they are negative. 

o effectively find the FNs, the Recall (Sensitivity) value is used. It 

s calculated as 

ensit i v it y = 

T P 

T P + F N 

(27) 

.1.2. F- βScore 

Traditionally, F- βScore is another performance measure of clas- 

ification accuracy. The βvalue indicates whether the evaluation 

mportance would be to be given to FP or FN. It is known from 

he medical field that identification of FN is more significant than 

P and βvalue is taken as 2 for evaluation of classification accuracy 

47] . The F- βScore and F-2 Score are computed as 

F β = 

(
1 + β2 

)
× P recision × Recall 

(β2 × P recision ) + Recall 

P recision = 

T P 

T P + F P 
and Recall = 

T P 

T P + F N 

(28) 

F 2 = 

5 × P recision × Recall 

(4 × P recision ) + Recall 

.1.3. Kruskal-Wallis tests 

Kruskal-Wallis tests are widely used to check the suitability of 

he input features to be used in the classification task. It is a non-

arametric evaluation and no assumption is made about any prior 

istribution of the input data [6] . The test is based on statistical 
9 
arameter H defined in Equation (29) , where the total number of 

amples including all the classes is M, the number of samples in 

he jth class is m j , and the sum of ranks of the jth class is R j , and

 is the number samples in the independent group. 

 = 

( 

12 

M(M + 1) 

N ∑ 

j=1 

R 

2 
j 

m j 

) 

− 3(M + 1) (29) 

.2. Performance evaluation using TFBCC-M features 

In this Section, the performance analysis using the existing 

FCC features (TFBCC-M features) is carried out. For this purpose, 

0 uniformly distributed random are selected from the COVID-19 

ositive and negative subjects in each of cough (C-1), breathing (B- 

), and voiced (V-1) from database-1 and cough (C-2), breathing 

B-2) from database-2. The 13 MFCC feature vectors are extracted 

nd classified using the SVM classifier using five-fold cross vali- 

ation. The performance is evaluated in terms of the validation 

ccuracy, sensitivity, F-2 score, and Kruskal-Wallis tests using two 

atabases. The results are plotted in Fig. 7 . The Receiver Operating 

haracteristics (ROC) and Area Under Curves (AUC) are obtained 

nd plotted in Fig. 8 . 

It has been observed that the overall performance of the TFBCC- 

 features are not satisfactory in the detection of COVID-19 and 

lso it is noticed that the cough sounds are providing consistent 

erformance compared to other categories of sounds. Therefore, 

o improve the performance of the TFBCC-M features the cough 

ounds are used for determining the optimum values of δ, f l and 

 h by using FF Algorithm. 

.3. finding the optimum values of δ, f l and f h using FF algorithm 

The relationship between the best cost (k fold loss) and the 

umber of iterations obtained from the simulation study is shown 

n Fig. 9 . The associated parameters of the FF algorithm used in 

he simulation study are γ = 0 . 2 , β0 = 1 , ϑ = 0 . 98 and the pop-

lation size is assumed to be 50. These parameters have been cho- 

en based on trial and error which provides the least k-fold loss at 

he output of the classifier. The objective function to be minimized 

s given in Equation (25) . The three attributes δ, f l and f h are as-

ociated as a member of the population of the FF algorithm. The 

ight intensity value affects the k-fold loss for a given range of δ, 
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Fig. 7. Performance analysis of the TFBCC-M features. 

Fig. 8. Comparison of the performance of standard MFCC features for databse-1. 

Fig. 9. The learning characteristics obtained during the optimization of FF algo- 

rithm. 
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 l and f h . The attractiveness is governed by light intensity varia- 

ion with distance and the absorption coefficient. It is expressed in 

quation (18) . The minimization of k-fold loss continues using the 

F algorithm until it attains the best possible minimum value. Af- 

er obtaining the satisfactory convergence, the best member of the 

opulation provides the optimized values of δ, f l and f h . 

.4. Discussion 

In this section, the detection performance using the proposed 

epstral Coefficients (C-19CC) is compared with another seven 

ypes of audio features such as TFBCC-M features (T-M), TFBCC-B 

T-B) features, TFBCC-H (T-H) features, TFBCC-E features (T-E) [33] , 

WT based MFCC Features (D-M) [48] , TQWT based MFCC Fea- 

ures (T-M) [49] , and Temporal and Spectral acoustic features (T-S) 
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Fig. 10. Comparison of the validation accuracy and sensitivity using different feature sets. 

Fig. 11. Comparison of the F-2 score and average p-value using different feature sets. 

[

f

a

d

o

b

[

n

o

t

a

d

r

d

c

t

c

t

i

s

i

a

c

n

d

a

p

b

o

t

i

I

t

n

c

d

s

0

W

t

p

t

t

d

o

a

t

w

a

s

s

h

m

c

c

t

23] for cough sounds. The effectiveness of the proposed C-19CC 

eatures is illustrated using different measures such as validation 

ccuracy, sensitivity, F-2 score and Kruskal-Wallis tests for the two 

atabases. 

The better classification performance demonstrates the efficacy 

f the proposed method. The optimization of MFCC features has 

een previously used in the area of spoken language recognition 

13] speaker-independent emotion recognition [18] , source recog- 

ition of Cell-Phones [19] . In this current research work, better- 

ptimized MFCC features are obtained and used for efficient detec- 

ion of COVID-19. An important advantage of using C-19CC features 

s the problem of feature selection or reduction is avoided. In tra- 

itional speech recognition tasks, several spectral, cepstral, tempo- 

al, and wavelet features are obtained and combined to form the 

esired feature vector which is a tedious and time-consuming pro- 

ess. On the other hand, the proposed C-19CC features are easy 

o generate and potential in performance. In Figs. 10 and 11 , the 

omparison of various performance measures using different fea- 

ure sets is made for the combined cough category of sounds us- 

ng the relevant data of the two databases. It is observed that the 

ensitivity is high because of the lower FN values. This is very 

mportant in the case of medical data classification. The same is 

lso evident from the plot of the F-2 Score and validation ac- 

uracy. To further justify the effectiveness of the proposed tech- 

ique, the p-value comparative analysis is carried out for stan- 

ard MFCC and C-19 CC features as inputs. The average compar- 

tive performance plots are presented in Figure 10 . The average 

-value is observed to be quite low. The lower the p-value, the 

etter is the effectiveness of that feature. The average p-values 
11 
btained for all the 13 coefficients of C-19CC are quite low and 

hus are suitable features for the COVID-19 classification. The val- 

dation accuracy of different audio features is plotted in Fig. 10 . 

t is noticed that the C-19CC features-based model outperforms 

he other input feature-based models. This justifies the effective- 

ess of the suggested features. The F-2 scores of the individual 

ategories of both databases are listed in Table 3 using the two 

atabases. 

It is observed from Table 3 that in the category of cough 

ounds, the proposed C-19 CC provides the highest F-2 scores of 

.851 and 0.741 for the database-2 and database-1 respectively. 

hile in the Vowel category, the E sound TQ-M features perform 

he best and the /e/ vowel is providing superior performance com- 

red to /o/ and /a/. Similarly, for the counting case, the T-S fea- 

ures exhibit the best performance and in the breathing category, 

he T-M and D-M features are better than the others. The vali- 

ation accuracy is also found to be the highest for the category 

f cough sound using the proposed C-19 CC features. Considering 

ll the categories and databases, the cough sound is found to be 

he best one which provides the highest accuracy of detection as 

ell as the highest F-2 score employing the C-19CC features. The 

coustic properties of the coughing signal are different from the 

peech signal in terms of bandwidth and the way of perception of 

ound. The application of the additional speech enhancement block 

as further improved the detection performance of the proposed 

odel. Additionally, the use of the ADASYN tool for removing the 

lass imbalance in both the databases has improved the classifi- 

ation performance because it helps in identifying the better fea- 

ures. 
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Table 3 

Performance Comparison of the different categories of sounds using 8 different feature sets. 

Category of Sound Evaluation Measures Features 

T-M T-B T-H T-E D-M TQ-M T-S C-19CC 

Vowel-/o/ (DB-1) F-2 Score 0.547 0.527 0.604 0.515 0.577 0.685 0.674 0.619 

Accuracy 0.590 0.485 0.611 0.532 0.552 0.692 0.656 0.626 

Vowel-/e/ (DB-1) F-2 Score 0.587 0.543 0.535 0.528 0.597 0.704 0.645 0.645 

Accuracy 0.596 0.577 0.559 0.515 0.656 0.682 0.674 0.663 

Vowel-/a/ (DB-1) F-2 Score 0.543 0.523 0.523 0.423 0.603 0.595 0.598 0.595 

Accuracy 0.509 0.469 0.502 0.414 0.582 0.593 0.554 0.575 

Counting-Fast (DB-1) F-2 Score 0.681 0.641 0.671 0.611 0.691 0.701 0.728 0.708 

Accuracy 0.636 0.652 0.616 0.61 0.684 0.721 0.735 0.699 

Counting-Normal (DB-1) F-2 Score 0.543 0.525 0.532 0.456 0.564 0.597 0.713 0.713 

Accuracy 0.537 0.567 0.519 0.468 0.555 0.558 0.725 0.714 

Cough-Shallow (DB-1) F-2 Score 0.608 0.546 0.535 0.454 0.583 0.612 0.701 0.729 

Accuracy 0.592 0.567 0.574 0.502 0.576 0.614 0.685 0.741 

Cough-Heavy (DB-1) F-2 Score 0.612 0.532 0.562 0.462 0.632 0.662 0.698 0.711 

Accuracy 0.586 0.496 0.492 0.499 0.592 0.666 0.659 0.723 

Breathing-Deep (DB-1) F-2 Score 0.594 0.529 0.502 0.466 0.576 0.546 0.577 0.557 

Accuracy 0.623 0.529 0.506 0.439 0.586 0.564 0.562 0.607 

Breathing-Shallow (DB-1) F-2 Score 0.611 0.481 0.475 0.402 0.615 0.561 0.556 0.536 

Accuracy 0.586 0.497 0.486 0.496 0.622 0.601 0.563 0.534 

Cough (DB-2) F-2 Score 0.735 0.691 0.715 0.695 0.742 0.776 0.751 0.851 

Accuracy 0.717 0.651 0.718 0.701 0.759 0.772 0.792 0.857 

Breathing (DB-2) F-2 Score 0.751 0.746 0.722 0.719 0.697 0.742 0.806 0.732 

Accuracy 0.794 0.788 0.685 0.711 0.694 0.728 0.815 0.736 
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. Conclusion 

The detection of COVID-19 using speech signal can serve as an 

mportant cost-effective tool as it does involve any complicated 

edical test. This approach can easily diagnose the preliminary 

ondition of a patient even without visiting a hospital and with- 

ut the help of any medical staff as it serves as an automatic de- 

ection tool. In this paper, a new audio feature called C-19CC is 

roposed and used for detection of COVID-19 in this paper and the 

erformance of the method is tested using two standard speech 

atabases. The proposed model has been demonstrated to be su- 

erior to other existing speech based COVID-19 detection model 

eported in the literature. However, it is suggested that the detec- 

ion accuracy need to be ascertained by appropriate medical ex- 

erts. The performance can be further be increased by combining 

he new C-19CC with other temporal and statistical features. The 

roposed method and the combination of features can also be ap- 

lied for detection of other speech related diseases. 

The proposed C-19CC features are based on the selection of the 

est possible conversion scale and frequency range of the Cepstral 

lter bank by using the bio-inspired technique. This is achieved by 

dentification of the appropriate sound patterns to efficiently de- 

ect COVID-19 and application of the speech enhancement schemes 

or the improvement of the classification performance. In this pa- 

er, a simple SVM based classifier is used for detection purpose. 

owever, the classification accuracy can further be improved by 

sing deep learning-based techniques. 

The attributes given in the dataset are breath, cough and voiced 

owel sounds. Moreover, the analysis can be extended to study 

he phonetic relevance and identification of phonemic grouping of 

peech based COVID-19 detection. For this study there is a require- 

ent of preparation of the phonetically balanced dataset of COVID- 

9. The optimization method of the filter bank parameters can also 

e extended to different mechanical applications of cepstral analy- 

is, where the properties of the input signal is quite different from 

hat of standard human speech signals. There is a scope for fur- 

her work to reduce computational complexities associated with 

his method so that it may be suitable for the real-life application 

sing FPGA [8] . 
12 
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