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ReVIEW

INTRODUCTION
Coronavirus disease 2019 (COVID-19) is a disease caused 
by the novel severe acute respiratory syndrome (SARS)-
coronavirus-2 (SARS-CoV-2), a virus belonging to the same 
family of the viruses causing SARS and middle-eastern 
respiratory syndrome (MERS), which was first reported in 
Wuhan in December 2019, in the province of Hubei, China.1 
COVID-19 shows a wide spectrum of clinical manifestations, 
ranging from mild, flu-like symptoms to severe interstitial 
pneumonia.

Patients with more severe symptoms may require intensive 
care treatment due to acute respiratory failure, needing 
mechanical ventilation and high positive end-expiratory 
pressure, and face high mortality risk.2 COVID-19 can 
cause an abnormal inflammatory response, which indeed 
resembles a “cytokine storm” characterized by increased 
plasma concentrations of C-reactive proteins, ferritin, pro-
inflammatory cytokines (interleukin (IL)-1β, IL-6, IL-12, 
tumor necrosis factor, interferon-γ) and decreased numbers of 
CD16+ and CD56+ lymphocytes.3 This inflammatory pattern is 
different from that of severe SARS patients4 and it is similar 
to that at the basis of adaptive immunity.5 Immunomodulatory 
agents such as anti-rheumatoid arthritis drugs (chloroquine, 
hydroxychloroquine and tocilizumab, a humanized monoclonal 
antibody targeting IL-6) are currently prescribed as an adjuvant 
treatment of COVID-19, in addition to antiviral drugs.6 

Immune activation is associated to endothelial dysfunction 
and microvascular complications,7 with significant septal 
capillary injury, characterized by mural and luminal 
fibrin deposition, permeation of the interalveolar septa by 
neutrophils and significant deposits of terminal complement 
components consistent with sustained, systemic activation 
of the alternative and lectin-based complement pathways, 
associated with procoagulant state.8 COVID-19 can also 
determine thrombotic complications: 1.4% of dead patients 
meet the International Society on Thrombosis and Haemostasis 
criteria for disseminated intravascular coagulation, as proven 
by the increased levels of D-dimer and fibrinogen, with lower 
anti-thrombin levels and spontaneous increase of the length 
of international normalized ratio,9 while only 0.6% of patients 
who survive meet these criteria10; pulmonary congestion with 
microvascular thrombosis and occlusion is the most relevant 
aspect on pathology.3 Pathological findings include “spotty 
lungs,” where hyperemic/hemorrhagic areas co-exist with 
areas of normal lung. There is also vascular hypertrophy, 
with enlarged (up to 20 times) and tubular pulmonary vessels, 
with microthrombi, followed by reduction of caliber. In the 
alveoli, there are typical findings of diffuse alveolar damage, 
with desquamation of pneumocytes, formation of hyaline 
membranes and fibrotic exudate.11 To suggest the systemic 
origin of the coagulative disorder, there is increasing evidence 
of central line thrombosis and vascular occlusive events (e.g., 
ischemic limbs).12 Moreover, there is increasing evidence of 
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other SARS-CoV2-related vasculitis such as skin purpura8 
and cerebrovascular accidents.13

The use of heparin has, indeed, proven useful in these 
patients: high-dose heparin is being used with success 
in patients who develop moderate to severe forms of 
COVID-19.14 Other treatments being investigated include 
defibrotide, a mixture of single-stranded oligonucleotides 
showing anti-clotting properties and used to treat veno-
occlusive disease (NCT04335201), and tissue-plasminogen 
activators.15 Yet, even though these approaches seem to work, 
they are symptomatic treatments and do not act on the causes 
of the endothelial dysfunction.

In this scenario, it is imperative to find new therapeutic 
options. An interesting option could be ozone therapy. In the 
present short review, we describe potential benefits of ozone 
therapy in COVID-19. A literature search was conducted on 
PubMed and Embase including “ozone,” “medical ozone,” 
“endothelial dysfunction,” “cytokine storm,” “shock,” and 
“ARDS” as search terms. An additional search was conducted 
on ClinicalTrial.gov including “ozone,” “COVID-19,” 
“SARS-CoV-2” and “oxygen therapy.”

WHAT IS OZONE THERAPY?
Ozone is an allotropic form of oxygen, with a molecule made 
up by three oxygen atoms. Ozone is a powerful oxidant, di-
rectly acting on the cells through lipidic peroxidation, amino 
acids oxidations and DNA irreversible damage, leading to cell 
death.16 Being one of the strongest oxidants, it is extremely tox-
ic. Ozone therapy consists in the preparation of an extemporary 
mixture of ozone (5% maximum concentration) and oxygen 
(95% minimum concentration), so-called medical ozone (MO). 
MO has several actions and has been applied on a wide range 
of pathologies as an unconventional medicine practice.17 MO 
can be administered systemically by adding it to a sample of 
patient’s blood which is then reinfused (auto-hemo-infusion) 
or by adding it to saline solution. It can also be administered 
locally, by subcutaneous/intramuscular injection, by inhalation 
or by exposing the skin or other bodily cavities (i.e., rectal, 
nasal) to an air mixture containing MO.18 The biological effects 
of ozone are mainly mediated by antioxidant systems.19 The 
anti-inflammatory, immuno-modulator and virustatic effects 
of ozone as well as its direct effect on coagulation and micro-
circulation improvement are particularly important. 

MECHANISMS OF ACTION
Biochemical reactions 
MO reacts within biological liquids – especially in the blood – 
with a wide range of substrates, involved in several metabolic 
pathways. These complex reactions occur very quickly, and 
MO’s half-life lasts only milliseconds. MO mainly reacts with 
polyunsaturated fatty acids, bound to albumin and present in 
most lipids and phospholipids, as well as with antioxidants, 
proteins and carbohydrates.20 Most of MO is involved in the 
reaction of “addition of polyunsaturated fatty acids to double 
carbon bonds,” known as “Criegée reaction.”20 This reaction 
involves the formation of a primary ozonide, which splits into 
a lipid peroxidation product whose structure is α-hydroxy-
hydroperoxide and its aldehyde. Lipid peroxidation products 

oxidizing power is lower than other peroxides and in an aque-
ous solution it is degraded into hydrogen peroxide, a reactive 
oxygen species. Among the aldehydes that are formed in this 
process, the most active is the 4-hydroxy-2,3 trans-nonenal, 
fundamental in cellular signal-transduction, by upregulating 
the antioxidant system in a controlled way on numerous cells 
of the organism.21 This cascade of reactions ends with the ex-
haustion of MO. In other words, ozone is an unstable molecule 
and causes oxidative reactions but, if administered properly 
(i.e., MO), it generates a “controlled and transient oxidative 
stress,” which stimulates the cell’s antioxidant system. This 
is the paradox that a molecule having oxidizing activity can 
be the basis of a complex antioxidant mechanism with several 
metabolic effects, as summarized in Figure 1.22

Figure 1: Biological effects of oxygen-ozone.
Note: LOP: Lipid peroxidation product; NO: nitric oxide; O3: ozone; ROS: reactive 
oxygen species. Adapted from Bocci et al.22

Anti-inflammatory and immunomodulatory effects
The anti-inflammatory and immunomodulatory effect of MO 
is expressed through the activation or inhibition of different 
molecular pathways, involved in systemic inflammation. 
For instance, MO inhibits the nuclear factor-kappaB (NF-
κB) pathway, whose activation promotes the transcription 
of proinflammatory cytokine genes such as tumor necrosis 
factor-α, IL-1β, IL-8.23 The underlying reasons for the anti-
inflammatory efficacy of MO therapy can therefore be found 
in a systemic reduction of inflammatory parameters such as 
IL-1.24 On the other hand, MO stimulates the activation of 
the nuclear factor erythroid 2-related factor 2 pathway,25 an 
intracellular transcription factor, binding to the anti-oxidant 
response elements nuclear regions encoding for antioxidants 
enzymes such as superoxide dismutase, catalase and heme 
oxygenase-1. Heme oxygenase-1 is a microsomal enzyme 
that catalyzes the degradation of haeme and produces carbon 
monoxide, which is another inhibitor of the NF-κB pathway.26 
Moreover, heme oxygenase-1 directly activates anti-inflamma-
tory cytokines,25 and increases the number of progenitor cells 
of the endothelium.27,28 Given the above-mentioned reasons, 
one might wonder if ozone can have an immunosuppressant 
effect. On the contrary, ozone application in addition to an-
tibiotic therapy can have protective effects on septic injuries 
of lungs, by lowering the lipopolysaccharide-induced NF-κB 
hyperexpression.16,29 Yet, even though a few studies have been 
carried out to evaluate effects of ozone on sepsis, no clear 
benefits have been found.30-32
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Effects on microcirculation
MO is mostly applied where microcirculation is impaired, 
as in peripheral arteriopathies (i.e., diabetic foot or systemic 
sclerosis).33 Ozone therapy improves blood flow in poorly 
perfused territories, promoting revascularization, vascular 
compliance, rheology and blood-tissues gas exchanges. Re-
vascularization can be assessed by video capillaroscopy with 
optical probe, with the restoration of the three-dimensional 
capillary bed framework,28 if the capillary damage has not 
already caused a severe capillary loss.32 Revascularization 
depends on a non-chaotic neo-angiogenesis, favored by an 
appropriate synthesis of vascular endothelial growth factor, 
due to an increased production of hydrogen peroxide.34 In ad-
dition, MO induces nitric oxide synthase with the consequent 
formation of nitric oxide and other reactive nitrogen species. 
Reactive nitrogen species play a central role as modulators of 
the physiological signals of the cardiovascular system and in 
particular of vasodilator mechanisms; nitric oxide also acts as 
a neuromodulator, and inhibitor of platelet aggregation, vas-
cular adhesion of leukocytes and the proliferation of smooth 
muscle cells.35 At an erythrocyte level, the molecular pathways 
determined by MO lead to an increase in the concentration 
of 2,3-diphosphoglicerate, which determines a right shift in 
the dissociation curve of oxyhemoglobin and, therefore, an 
increased exchange of oxygen to the peripheral tissues. In ad-
dition, the temporary lipid peroxidation action makes the red 
blood cell membrane more deformable. Thus, in the smaller 
capillaries, the red cells, instead of moving in disorder, align 
themselves and proceed along the axis of the vessel, arranging 
in a pile (Fahraeus-Lindquist effect) and facilitating metabolic 
exchanges.36 MO has a beneficial action in the granulation 
and healing processes through lowering production of tissue 
plasminogen activation factor and inducing greater quantities 
of its inhibitors, favoring the processes of fibrinolysis to those 
of deposition of fibrin.37

The net result of MO in the damage of microcirculation is to 
favor the regeneration of the microcirculation and the gaseous 
exchanges (through the increase of the blood flow, decrease 
of the blood viscosity and of the platelet aggregation, of the 
erythrocyte deformability and of the release of oxygen) and, 
at the same time, to reduce thrombotic and fibrotic processes.

Virustatic effects
Ozone directly inactivates some viruses. To successfully pen-
etrate cells, various viruses (e.g., hepatitis A, human immuno-
deficiency virus, Ebola) require that membrane glycoproteins 
have sulfhydryl groups in the reduced form. The Ebola virus 
has regions on the envelope rich in cysteine, whose altera-
tion blocks the growth properties of the virus.38 Ozone can 
permanently oxidize the thiol residues of cysteine in vitro.39 
Virustatic ozone against Ebola has also been tested in vivo, 
with encouraging results but on a limited sample.40

OZONE IN COVID-19
MO could play a beneficial role in the patient suffering from 
COVID-19 on various levels. To foster the use of ozone 
therapy in COVID-19 there is the similarity between the 
microvascular damage in the peripheral arterial diseases41 

and in the diabetic retinopathy42 with the microvascular 
(arterioles, precapillary arterioles, capillaries, postcapillary 
venules, and venules) damage at lung level in COVID-19. 
The latter is evidenced by CT imaging of tubular and en-
larged pulmonary vessels followed by a sudden reduction of 
their caliber43 and by pathological findings of microthrombi 
and capillary aneurisms. All these diseases share vascular 
features of microhemorrhages, microthrombi, microaneu-
rysms, pericapillary and tissue edema, as demonstrated both 
by video capillaroscopy with optical probe and by autopsy 
findings. The action of MO on microcirculation in terms of 
organized neo-angiogenesis, increase in blood flow, decrease 
in blood viscosity and platelet aggregation, and increase in 
red blood cells deformability and gas exchanges was previ-
ously discussed. Overall, MO therapy has given excellent 
benefits in diabetic foot, trophic or pressure ulcers, systemic 
sclerosis.17,33,34 Positive responses in terms of reduction of 
ischemic-hemorrhagic damage of the microcirculation could 
be obtained in COVID-19 pneumonia and on other paren-
chyma by an early MO auto-hemo-infusion. These positive 
responses could be mediated both by increasing the produc-
tion of surfactant and the elasticity of the alveoli and by a 
reduction of endothelial damage, through platelet adhesion 
reduction and through blockage of the coagulation cascade 
preventing microthrombi formation.44 In addition, this effect 
would also occur at a peripheral level, by reducing formation 
of deep venous thrombi and consequent pulmonary embolism. 
Both micro and macrothrombi lead to the formation of pul-
monary shunt and pulmonary hypertension, that are typical 
features of hypoxemia refractory to ventilatory therapy.45 To 
our knowledge, no studies have been published regarding the 
development of pulmonary hypertension in COVID-19 or its 
severity in those with a history of pulmonary hypertension. 
In the authors’ opinion, MO should not be administered in a 
context of advanced microvascular lung damage with massive 
capillary loss, similar to what occurs in systemic sclerosis 
with pulmonary hypertension46; in this context ozone could 
determine a worsening of lung damage, inflammation and 
edema in patients with pulmonary hypertension,47 or it could 
have no effect due to the capillary loss. Yet, an anti-hypoxemic 
action was observed by the MO auto-hemo-infusion in pa-
tients suffering from chronic obstructive bronchitis.48 Further-
more, in an animal model with a healthy lung, ozone seems to 
have a protective action on the genesis of pulmonary edema, 
thanks to the ability to stimulate the pulmonary sympathetic 
nervous system, and block microvascular responses to acetyl-
choline and substance P at a lung level.49 Interestingly, when 
applied to the patient with severe respiratory insufficiency, 
requiring mechanical ventilation with long-term elevated 
positive end-expiratory pressure (as in severe COVID-19 
pneumonia), inhaled ozone improved gas exchanges in the 
lung, increased surfactant production and lung compliance 
in a small sample of patients.44

Another potential benefit of MO auto-hemo-infusion could 
be on the “cytokine storm” in the pathogenesis of respiratory 
failure, disseminated intravascular coagulation and multi-
organ failure in COVID-19. The protective immunomodula-
tory effects of ozone in septic lung injury have already been 
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discussed previously. “Cytokine storm” hemodynamic conse-
quences are similar to those of toxic shock.50 In toxic shock, 
as in septic shock, microcirculatory abnormalities are cardinal 
features, being dissociated from that of systemic hemody-
namic and more severe among non-survivors.51 Therefore, 
microcirculatory alterations may persist despite correction of 
systemic hemodynamic variables with vasopressors drugs.52 
Ozone preconditioning has been demonstrated to be as potent 
as dexamethasone in reducing tumor necrosis factor-α level 
during lipopolysaccharide-induced endotoxic shock and 
oxidative stress in a murine model.31 In addition to primary 
“cytokine storm,” a superinfection and a secondary septic 
shock are prevalent among patients with COVID-19.31,53 
Ozone has both a direct bactericidal action, through lipid 
peroxidation product and reactive oxygen species,54 and an 
indirect one, through an increase in neutrophilic chemotaxis 
and myeloperoxidase activity.55 Thus, MO could both reduce 
the microcirculatory alterations induced by the “cytokine 
storm” and the occurrence of bacterial superinfections and 
septic shock.

Like in the case of Ebola virus, another potential action 
of ozone is the inactivation of the spike protein that coro-
naviruses need to infect guest cells. The spike protein is 
rich in cysteine residues, permanently oxidized by ozone, 
and these residues are preserved during the evolution of the 
viral strains.56 Therefore, SARS-CoV-2 could potentially be 
inactivated by ozone-mediated oxidation during the viremic 
phase (if administered early via auto-hemo-infusion) and at 
the level of the colonized nasopharyngeal mucosa of healthy 
carriers through topic formulations.57

Only one clinical trial about ozone therapy in patients 
affected by severe COVID-19 related pneumonia has been 
conducted to date (NCT04370223). Preliminary data showed 
that the patients treated with MO presented both shorter time 
to clinical improvement and a significantly higher proportion 
of patients achieving 14-day clinical improvement compared 
to those receiving supportive care.58 Yet, it was a single-center 
study enrolling few patients and larger randomized clini-
cal trials are needed. On the other hand, three trials about 
hyperbaric oxygen therapy have already been conducted 
(NCT04370223, NCT04343183, and NCT04332081). This 
preliminary data suggest potential benefit of hyperbaric 
oxygen therapy in COVID-19.59 This finding is also of in-
terests because, in a murine model of pulmonary damage, 
a combination of hyperbaric oxygen therapy and MO was 
demonstrated to be more effective than hyperbaric oxygen 
therapy regarding serum IL-1β, lung glutathione storages 
and histologic outcome.29

CONTRAINDICATIONS FOR OZONE THERAPY
Regarding MO systemic therapy, there are some contraindi-
cations and warnings. First, MO should not be administered 
directly in the blood and should not be mixed in solution 
with other drugs but saline solution, because of its oxidizing 
effect. Second, there are no studies about ozone-therapy and 
pregnancy; hence it should be avoided in this case. Another 
absolute contraindication is glucose-6-phosphate dehydroge-
nase deficiency in systemic administration,60 the same warning 

concerning antimalarials.61 Potentially, MO administration in 
patients suffering from hyperthyroidism could be harmful for 
the lungs, as shown in murine models.62

CONCLUSIONS
The adjuvant use of ozone-therapy in COVID-19 through auto-
hemo-infusion could better oxygenate the tissues, decrease 
lung inflammation and regulate the immune response, avoiding 
the “cytokine storm,” slow down viral growth, regulate lung 
microcirculation and avoid or slow down vascular hypertrophy 
and the consequent hyperemia, especially in the initial stages, 
by contrasting endothelial damage, in analogy with what hap-
pens in peripheral arterial pathologies. An association with 
other currently available treatments is mandatory, to avoid or 
limit the use of intubation and, ultimately, allowing a shorten-
ing of healing times with the possibility of greater replacement 
in the intensive care, to date the real limiting factor.

If auto-hemo-infusion is not administrable, MO could be 
delivered through dilution in saline solution or rectal infu-
sion. Endonasal application could be administered to inac-
tivate colonizing SARS-CoV2 in the asymptomatic carriers. 
Furthermore, since there are no major side effects and it can 
be synergistic with other therapies, it is a candidate to be 
an essential therapy in home care, given its easy execution 
and low cost. Ozone-therapy could be considered a feasible, 
cost-effective and easy to administer adjuvant therapy while 
waiting for the synthesis of a therapy or the development of 
the vaccine. 
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