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Abstract

1.

Giardia lamblia is a widespread parasitic protist with a complex MT cytoskeleton that is critical
for motility, attachment, mitosis and cell division, and transitions between its two life cycle stages
—the infectious cyst and flagellated trophozoite. Giardiatrophozoites have both highly dynamic
and highly stable MT organelles, including the ventral disc, eight flagella, the median body and
the funis. The ventral disc, an elaborate MT organelle, is essential for the parasite’s attachment to
the intestinal villi to avoid peristalsis. Giardia’s four flagellar pairs enable swimming motility and
may also promote attachment. They are maintained at different equilibrium lengths and are
distinguished by their long cytoplasmic regions and novel extra-axonemal structures. The
functions of the median body and funis, MT organelles unique to G/ardia, remain less understood.
In addition to conserved MT-associated proteins, the genome is enriched in ankyrins, NEKSs, and
novel hypothetical proteins that also associate with the MT cytoskeleton. High-resolution
ultrastructural imaging and a current inventory of more than 300 proteins associated with Giardia’s
MT cytoskeleton lay the groundwork for future mechanistic analyses of parasite attachment to the
host, motility, cell division, and encystation/excystation. Giardia’s unique MT organelles
exemplify the capacity of MT polymers to generate intricate structures that are diverse in both
form and function. Thus, beyond its relevance to pathogenesis, the study of Giardia’s MT
cytoskeleton informs basic cytoskeletal biology and cellular evolution. With the availability of new
molecular genetic tools to disrupt gene function, we anticipate a new era of cytoskeletal discovery
in Giardia.

Introduction

Microbial eukaryotes often possess unique and elaborate microtubule (MT) organelles
composed of both conserved MT binding proteins and novel proteins whose functions are
unknown (Dawson and Paredez, 2013; Nosala et al., 2018). These novel proteins lack
homology to known MT-associated proteins and may contribute to cytoskeletal architecture
or to processes such as MT nucleation, assembly, or dynamics (Hagen et al., 2011; Hu et al.,
2006; Preisner et al., 2016). Like other microbial eukaryotes, the diplomonad Giardia
lamblia has a complex three-dimensional ultrastructure with several novel MT organelles
and higher order structural elements of unknown function and composition (Fig. 1; Dawson,
2010). The primary cytoskeletal organelles in Giardia are the eight flagella and basal bodies,
the ventral disc, the median body, and the funis and caudal complex (Fig. 1A-D; Dawson,
2010). Giardia’stwo nuclei undergo a semi-open mitosis in which the mitotic spindle forms
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around the nuclear envelope and kinetochore MTs segregate chromosomes (Sagolla et al.,
2006). As compared to evolutionarily conserved and well-studied cytoskeletal structures
such as the mitotic spindle or flagellum (Chaaban and Brouhard, 2017), Giardia’s unique
MT organelles illustrate the capacity of simple MT polymers to generate intricate structures
that are diverse in both form and function.

Giardia's complex MT cytoskeleton is of critical importance throughout each of its life cycle
stages—the cyst and the motile trophozoite (Nosala and Dawson, 2015). Cysts ingested by
the mammalian host excyst in the small intestine. During excystation, beating of the flagella
may aid in opening the cyst, allowing the slightly rounded, quadrinucleate excyzoite to
emerge. The excyzoite then elongates and undergoes cytokinesis, producing two binucleate
daughter cells (Buchel et al., 1987; Feely, 1986). The multiflagellated motile trophozoites
attach to the intestinal microvilli using a unique MT organelle, the ventral disc (Dawson,
2010). Trophozoites colonise the small intestine, undergoing cell division approximately
once every 6-8h. Prior to cytokinesis, new dual mitotic spindles segregate chromosomes and
new MT structures (ventral disc, eight axonemes, etc.) are assembled and inherited. Giardia
lacks an anaphase-promoting complex and many conserved mitotic checkpoint complex
proteins (Vicente and Cande, 2014) found in other eukaryotes. In the absence of a canonical
contractile ring, flagellar motility generates forces that drive daughter cells in opposing
directions during cytokinesis (Hardin et al., 2017). As they transit through the intestinal
tract, trophozoites eventually differentiate to become cysts (Roxstrom-Lindquist et al.,
2006). Early in encystation, the two nuclei divide by a semi-open mitosis that occurs in the
absence of cytokinesis, yielding a quadrinucleate precyst (Jirakova et al., 2012). Cytoskeletal
movements, combined with the assembly of the cyst wall, remodel trophozoites from a
flattened teardrop shape to the more ovoid shape characteristic of the cyst (Midlej and
Benchimol, 2009). Each of the eight flagella are internalized during cyst formation, yet do
not completely resorb (Midlej and Benchimol, 2009). The MT spiral of the ventral disc is
fragmented and partially disassembled by unknown mechanisms. Mature cysts are then
disseminated into the environment.

Giardia’s MT cytoskeleton is thus essential for key aspects of its life cycle including
motility, host attachment, intracellular transport, cell division, encystation, and excystation.
Itis also a critical determinant of cell shape, cell polarization, and intracellular trafficking.
Beyond its clinical relevance, the study of Giardia’s MT cytoskeleton also informs basic cell
biology, molecular biology and cellular evolution (Dawson, 2010). This chapter focuses on
the structure, composition and dynamic movements of the primary MT cytoskeletal
organelles in Giardia: the ventral disc, median body, and eight flagella and basal bodies.

2. Conserved and novel composition of the MT cytoskeleton

MTs are highly conserved cytoskeletal polymers composed of heterodimers of a- and p-
tubulin. As polar polymers, MTs have two distinct ends—the plus and minus ends.
Individual MT polymers exhibit intrinsic dynamic instability at the highly dynamic ends,
where MTs exist either in growth (polymerization) or shrinkage (depolymerization) phases
(Desai and Mitchison, 1997). The organization of MT arrays in cells is tightly controlled by
MT-associated proteins (MAPS) that promote or suppress MT dynamic behaviour at the ends
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to regulate overall rates of MT assembly and disassembly, as well as the frequencies of
catastrophes and rescues (Akhmanova and Steinmetz, 2015). Centrosomes or basal bodies
are the primary MT organizing centres (MTOCS) in cells, yet MTs may also nucleate by
non-centrosomal methods. New MT filaments are formed by nucleation from the minus end,
dependent on y-tubulin ring complexes (-y-TuRCs) that comprise MTOCs (Moritz and
Agard, 2001). MAPs such as the EB proteins (EB1), XMAP215, CLIP-170 and CLASP
proteins regulate dynamics at the MT plus ends, and are termed MT plus-end tracking
proteins (+TIPs). Microtubule mators such as kinesins and dyneins also regulate MT
dynamics and organization by sliding and linking MTs along other existing filaments.
Microtubule organization is also regulated through the MT-severing proteins katanin and
spastin (McNally and Roll-Mecak, 2018). Lastly, numerous tubulin post-translational
modifications (PTMs) influence polymer dynamics by tuning MAP activity and affinity
(Song and Brady, 2015).

The Giardia lamblia (ATCC 50803) genome contains conserved structural cytoskeletal
proteins (see Table 1), as well as proteins known to regulate MT nucleation (y-TuRCs),
stability, and dynamics (e.g. XMAP215, katanin, and EB1) or to post-translationally modify
tubulin (e.g. tubulin tyrosine ligases). Many of these proteins associate with more than one
cytoskeletal structure and certain protein families are highly represented (Fig. 1E and F).
Giardia also has 24 kinesins and 14 dynein heavy chain motor proteins that may regulate
MT dynamics or organelle trafficking in this complex cell. The genome also contains 21
annexin homologues (alpha-giardins) (Weiland et al., 2005), and nearly 200 NIMA (NEK)
kinases (Manning et al., 2011), which are often associated with the cytoskeleton. Despite
having an elaborate microtubule cytoskeleton, Giardialacks the MARK (microtubule
affinity-regulating kinase) and the microtubule-associated kinases MAST and TTBK (Tau
tubulin kinase) (Manning et al., 2011). Together, conserved MAPs and motors, along with
other Giardia-specific MAPs, regulate MT assembly, disassembly, dynamics and stability in
each of the MT organelles (disc, flagella, median body, funis, and spindles).

During cell division, Giardia’s two spindles are dynamic, and it is likely that the assembling
disc, flagella, funis and median body are also subject to MT dynamics. While the flagella
and median body are dynamic interphase arrays, the ventral disc is a highly stable structure
that appears to lack canonical interphase MT dynamics. Whether the funis or caudal
complex MTs are dynamic during interphase is unknown. Microtubule-disrupting and MT-
stabilizing drugs are valuable tools to probe the assembly dynamics of MTs in Giardia by
either sequestering tubulin monomer pools and inhibiting tubulin polymerization
(nocodazole, colchicine, oryzalin) or by stabilizing growing MTs (Taxol) (Bhattacharyya et
al., 2008; Pellegrini and Budman, 2005). Microtubules of the eight flagella, the median
body, and the mitotic spindles are sensitive to these drugs, whereas the ventral disc MTs are
unaffected (Sagolla et al., 2006) in interphase. Disc MTs are likely stabilized by MAPs that
limit MT dynamics, as effects such as severe deformation of the disc are observed only after
long incubation periods with MT destabilizing drugs that involve multiple rounds of cell
division (Chavez et al., 1992; Oxberry et al., 1994). These findings are supported by the
localization of known MAPs (EB1, XMAP215, and katanin) and motors (kinesins and
dyneins) (Morrison et al., 2007) that regulate dynamics to the eight flagella, median body or
spindles, but not to the ventral disc.
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Molecular genetic strategies such as morpholino or CRISPRi knockdown and
overexpression of dominant negative mutant proteins have been used to investigate the role
of conserved MAPs and motors in Giardia. For example, knockdown or ectopic expression
of a dominant negative kinesin-13 (a depolymerizing kinesin) results in flagellar length and
median body defects (Dawson et al., 2007). Similar studies with kinesin-2a, part of the
kinesin-2 heterotrimeric complex that delivers IFT particles to the flagellar tip, resulted in
decreases in the lengths of the membrane-bound regions of the flagella, confirming its role
in flagellar assembly and length maintenance in Giardia (Hoeng et al., 2008).

Giardia possesses a single homologue of the conserved MT plus-end tracking protein EB1,
which regulates microtubule dynamics by recruiting other +TIPs to microtubule plus ends
(Akhmanova and Steinmetz, 2015). In Giardia, EB1 is reported to localize to the nuclear
envelope, the median body, the flagellar tips and the mitotic spindles of dividing
trophozoites (Dawson et al., 2007; Kim et al., 2014). Morpholino knockdown of EB1
resulted in a reduction in the size of the median body, as well as an increase in the number of
quadrinucleate trophozoites, suggesting a role in mitosis (Dawson et al., 2007; Kim et al.,
2014). The interaction between EB1 and other +TIPs may depend on its phosphorylation
state, and in vitro assays indicate a possible role for Giardiaaurora kinase in EB1
phosphorylation (Kim et al., 2017). Yeast two-hybrid assays with EB1 identified additional
interacting proteins, including -y-giardin (Kang et al., 2010), a component of the ventral disc
microribbons. Morpholino knockdown of y-giardin resulted in shortening of the
microribbons and flattening of the ventral groove region of the disc (Kim and Park, 2019)
confirming a structural role for y-giardin; however, the role of EB1 in ventral disc MT
dynamics remains unknown.

The role of y-tubulin, a component of MT organizing centres (MTOCs), has also been
examined in Giardia (Kim and Park, 2018). -y-tubulin is found in the MT nucleating y-TuSC
complex along with GCP2 and GCP3. -y-tubulin localizes primarily to G/ardia’s basal
bodies, as well as to the flagella and mitotic spindles (Davids et al., 2011; Kim and Park,
2018; Nohynkova et al., 2000). Morpholino knockdown of y-tubulin, GCP2 and GCP3
resulted in mitotic defects, decreases in both median body volume and caudal flagellar
length, and an increase in abnormal axonemes lacking a central pair (Kim and Park, 2018).
These effects were observed to a lesser extent for GCP2 and GCP3 knockdown, although the
degree of protein depletion differed for each these knockdowns.

3. Complex architecture and composition of the ventral disc

The ventral disc is perhaps the defining organelle in Giardia—it is a prominent, suction-cup-
shaped MT structure that facilitates parasite attachment (Fig. 2; Crossley and Holberton,
1983, 1985; Feely et al., 1982; Friend, 1966; Holberton, 1973a, 1981). Attachment to the
host intestinal epithelium is essential for in vivo colonization. Using the ventral disc,
trophozoites attach non-invasively to the microvilli, as well as to inert surfaces such as glass
or plastic (reviewed recently in Nosala et al., 2018). Giardia’s attachment to surfaces is
reversible and dynamic, allowing the parasite to resist peristaltic flow in the host
gastrointestinal tract (Nosala et al., 2018).
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The intricate architecture of the ventral disc and the complexity of the higher order
structures associated with disc MTs were first described in the 1960s (Cheissin, 1964;
Friend, 1966). In the past decade, however, cryo-electron tomography (cryo-ET) with
subtomogram averaging yielded the first 3D high-resolution structure of the ventral disc and
revealed dense protein complexes coating the protofilaments of the MT spiral array (Fig. 2A;
Schwartz et al., 2012). The ventral disc comprises approximately 100 parallel, evenly spaced
MTs that spiral clockwise around a central bare area and overlap to form a domed organelle
8 um in diameter (Brown et al., 2016). Trilaminar structures called microribbons jut dorsally
from the MT spiral, and vary in height and angle along the entire length of the array (Brown
et al., 2016). The microribbons are thought to lend rigidity and stability to the domed disc
structure (Holberton, 1973a, 1981; Schwartz et al., 2012), and are connected laterally at
16nm intervals by flexible structures known as crossbridges. Along the outer facing margin
of disc are other MT-associated complexes (side-arms and paddles) that repeat every 8 nm
and are thus spaced at the distance of a single alpha/beta-tubulin dimer (Schwartz et al.,
2012). The disc MT array also includes other repetitive elements that may regulate organelle
behaviour and confer stability (Ichikawa and Bui, 2018), such as the MT outer proteins
(gMAPs 1-3) and inner proteins (gMIPs 5, 7 and 8) associated with the outer and inner MT
walls (Schwartz et al., 2012). A small left-handed MT spiral array, the supernumerary MT
array, lies dorsal to the main ventral disc structure and has no known function. Lastly, the
lateral crest, associated with the disc margin, forms a seal with surfaces in early attachment
(Feely et al., 1982, 1990; House et al., 2011) and may have contractile functions (Kulda and
Nohynkova, 1995).

The identities and functions of the disc substructures and protein densities revealed by
detailed cryo-ET must still be determined (Brown et al., 2016); however, progress in
identifying numerous disc-associated proteins (DAPS) has been made using a combination
of biochemical, proteomic and fluorescent-tagging approaches (reviewed in Nosala et al.,
2018). Early biochemical studies with detergent extracted ventral discs showed that several
~30kDa DAPs, termed “giardins” to indicate their Giardia origin, copurified with tubulin
and were likely components of the disc microribbons (Crossley and Holberton, 1983). More
recently, we used a comprehensive proteomic approach with C-terminal GFP-tagging of disc
protein candidates to identify nearly 20 new DAPs localizing to the disc and lateral crest
(Hagen et al., 2011); through an ongoing project associated with the GiardiaDB
(Aurrecoechea et al., 2009), the total number of DAPs localizing to the disc in interphase
trophozoites now exceeds 90 (see Table 2; Nosala et al., 2018). Nearly two-thirds of known
DAPs localize only to the disc, whereas the remainder also localize to other MT structures
such as the flagellar axonemes, basal bodies, and median body (Fig. 1E). Regional variations
in the disc ultrastructure that have been defined by cryo-ET (Brown et al., 2016) are
mirrored in the localizations of DAPs to distinct areas of the disc, including the overlap
zone, ventral groove, supernumerary MTs, MT nucleating dense bands and disc margin or
lateral crest (Fig. 2A and B; Nosala et al., 2018).

The disc is primarily composed of ankyrins and novel hypothetical proteins that have no

homology to proteins outside of Giardia species (Andersson et al., 2007; Fig. 1F). One such
novel DAP, median body protein (MBP, DAP16343), is a major component of the disc spiral
MT array and localizes strongly to the ventral disc edge and overlap zone. Both morpholino
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and CRISPRi knockdowns result in open discs, demonstrating that MBP is necessary for
proper ventral disc biogenesis and function (Mclnally et al., 2019; Woessner and Dawson,
2012). Nearly 30 DAPS are ankyrins, which contain 33-amino acid helix-turn-helix
domains, often in tandem arrays, that act as molecular scaffolding to bring proteins together
and mediate protein stability (Islam et al., 2018; Li et al., 2006). A few DAPs that may
comprise the microribbons (Feely et al., 1990) are striated fibre (SF)—assemblins (beta-
giardin, delta-giardin, and SALP-1) (Palm et al., 2003), whereas several others are “alpha-
giardins” belonging to the annexin family of Ca2+ regulated membrane binding proteins that
have diverse functions in cells (Bauer et al., 1999; Peattie, 1990; Weiland et al., 2003, 2005).
At least 14 DAPs are NEKs (Table 2) kinases, which are associated with the cytoskeleton in
other organisms (O’Regan et al., 2007). Giardia lamblia (ATCC 50803) has an expanded
family of 198 NEKs, (Manning et al., 2011); however, nearly three-fourths of them lack
conserved catalytic residues, making their role in the cell uncertain. In other eukaryotic cells,
such pseudokinases may retain signalling functions as scaffolds or kinase substrates
(Manning et al., 2011).

Despite the localization of some DAPs to multiple MT structures, only two DAPs have MT
binding motifs or homology to known MAPs. One of the 24 Giardia kinesins—Kkinesin-6a
(DAP102455)—Ilocalizes to disc margin, whereas DAP5374, a CAP-Gly protein, has a
conserved MT binding motif (Weisbrich et al., 2007) and likely interacts with tubulin and
MT lattices. DAP16263 is a homologue of DIP13, a MT-associated protein found in
flagellates and other organisms with flagellated cell stages (Fritz-Laylin et al., 2010;
Pfannenschmid et al., 2003). DAP16263 localizes to the flagella and ventral disc (Hagen et
al., 2011), primarily to the overlap zone and ventral axonemes, but it lacks the conserved
KREE binding domain that allows direct interaction with MTs (Pfannenschmid et al., 2003).
In Chlamydomonas, DIP13 localizes to the centrioles and to cytoplasmic and flagellar MTs,
and may stabilize or connect MTs to other cellular structures (Pfannenschmid et al., 2003).

The disc is “hyperstable” structure, as drugs that normally affect MT dynamic instability
have no effect on ventral disc MTs (Dawson et al., 2007) and turnover of DAPSs has not been
observed (Hagen et al., 2011). The DAPs that coat both the outside and inside of nearly all
disc MT protofilaments, including the gMAPs and gMIPs, likely confer hyperstability to the
disc singlet MT array (Brown et al., 2016; Schwartz et al., 2012). DAPs may also nucleate
the disc MT array, bind and stabilize MT plus and minus ends, or facilitate or stabilize the
curvature and doming of the disc (Brown et al., 2016; Schwartz et al., 2012). Future
molecular genetic and functional analyses of DAPs will be central towards understanding
disc architecture, assembly and attachment dynamics.

4. Mechanisms of ventral disc-mediated attachment

Giardia attachment to surfaces is reversible and occurs within seconds. Using TIRF
microscopy and Giardia trophozoites stained with a fluorescent membrane marker, the
stages of attachment were defined based the degree of trophozoite contact with the
attachment surface (House et al., 2011). During the earliest attachment stages, the
trophozoite skims along the surface and makes mechanosensory contact using the
ventrolateral flange. A seal then forms as the disc perimeter contacts the surface. In the later

Adlv Parasitol. Author manuscript; available in PMC 2021 April 30.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Hagen et al.

Page 7

stages of attachment, additional contacts are formed between the surface and the plasma
membrane of the bare area and lateral shield regions. The lateral shield regions of the cell
body lie alongside the ventral flagella, whereas the bare area region, which lacks MTs, is
located in the centre of the disc array and contains numerous membrane-bound vacuoles
(Friend, 1966).

Despite the critical role of parasite attachment by the ventral disc for Grardia’'s pathogenesis
(Nosala and Dawson, 2015), the evaluation of any proposed attachment mechanism has been
limited by over 50 years of conflicting observations and theoretical biophysical models of
attachment that lack corresponding empirical analyses (Feely and Erlandsen, 1981, 1982;
Hansen et al., 2006; Hansen and Fletcher, 2008; Holberton, 1974; Inge et al., 1988; Mariante
et al., 2005; Sousa et al., 2001). Various conformational changes in the disc may be required
for either early or late stage suction-based attachment (House et al., 2011; Owen, 1980). The
rigid structure of the ventral disc could also indirectly contribute to attachment by
maintaining a negative pressure differential created by some other unknown mechanism
(e.g., an osmotic pressure differential-based mechanism) (Friend, 1966; Hansen et al., 2006;
Hansen and Fletcher, 2008). Proposed models of Giardia attachment to surfaces include:
ligand-independent interactions (electrostatic or van der Waals forces) (Hansen et al., 2006),
ligand-dependent interactions (Inge et al., 1988; Magne et al., 1991; Nash et al., 1983;
Ortega-Barria et al., 1994; Sousa et al., 2001), clutching mechanisms (Feely and Erlandsen,
1981; Holberton, 1973a,b; Inge et al., 1988), or suction-mediated mechanisms (Feely and
Erlandsen, 1981; Hansen et al., 2006; Hansen and Fletcher, 2008; Holberton, 1973a,b,
1974). Each of the proposed models is not necessarily mutually exclusive. Despite this
diversity of attachment models, disc-mediated suction is likely sufficient for in vitro
attachment (Hansen et al., 2006; Hansen and Fletcher, 2008).

For almost five decades, the “hydrodynamic suction model” of Giardia attachment has
remained an unconfirmed, yet often cited mechanism of attachment by the ventral disc
(Holberton, 1973a, 1974). As hypothesized by Holberton, the continuous beating of a
trophozoite’s ventral flagella lowers the pressure underneath a static, inflexible ventral disc,
generating a hydrodynamic force sufficient for attachment. The hydrodynamic model was
initially derived from observations of the murine isolate G. muris attached to glass slides,
with subsequent mathematical modelling of fluid flow under low Reynolds number to
confirm the theoretical feasibility of hydrodynamic suction (Holberton, 1974). The
hydrodynamic model relies on a constantly open ventral groove region that is lacking in
Giardia muris (Holberton, 1973b; Holberton and Ward, 1981). Holberton’s hydrodynamic
suction model of Giardiaattachment is contingent on three essential requirements: (1)
ventral flagellar beating establishes hydrodynamic flow underneath the disc through
proposed channels at the disc perimeter; (2) continuous ventral flagellar beating is required
to maintain a hydrodynamic suction through the open channels; and (3) the ventral disc must
be concave, inflexible and rigid to accommodate the biophysical stresses of a negative
pressure differential underneath the disc relative to the outside medium (Holberton, 1974).

For years, the key assumptions of the hydrodynamic model—such as the contribution of
flagellar motility to hydrodynamic flow—uwere neither confirmed by direct live observations
of human Giardiia isolates nor evaluated using standard molecular genetic approaches. In
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2011, however, House et al. showed that, once attached, Giardia mutants with severe defects
in flagellar beating (ventral or any flagella) were able to resist shear and normal forces
(House et al., 2011). While it remains possible that flagellar motility is required for early
stages of attachment, proper ventral flagellar beating is not required for trophozoites to
maintain their attachment to surfaces, which is incongruent with the second assumption of
the hydrodynamic model. For hydrodynamic current to flow underneath the disc, the
hydrodynamic model predicted the existence of open channels that direct current around the
disc periphery (Holberton, 1974). In contrast to early descriptions of an unsealed disc, our
lab’s more recent quantitative time-lapse live TIRF imaging indicated the presence of a disc
perimeter (or lateral crest) seal in attached trophozoites that are resistant to shear and normal
forces (House et al., 2011). This lateral crest seal is not congruent with the proposed “lateral
channels” (Holberton, 1974) that were deemed necessary to facilitate a hydrodynamic
current around the disc perimeter in G. muris isolates (Woessner and Dawson, 2012).
Disruptions of the lateral crest seal in a morpholino-based disc mutant also cause an open,
flattened disc that limits the parasite’s ability to resist shear or normal forces (Woessher and
Dawson, 2012).

Seal formation during attachment is likely mediated by the lateral crest (House et al., 2011),
a repetitive structure on the outer edge of the ventral disc that is composed of a network of
fibres (Feely et al., 1982; Friend, 1966; Hagen et al., 2011). The presence of seal contacts
demarks the transition from attaching trophozoites to attached trophozoites. Lateral crest
DAPs, like other DAPs, are primarily proteins that are unique to Giardia or possess ankyrin
repeat or NEK kinase domains (e.g. DAP13981). Actin was initially reported to localize to
the lateral crest and periphery of the disc using heterologous (anti-chicken) antibodies (Feely
etal., 1982), but this is likely an artefactual localization due to the divergence of the Giardia
actin gene (Morrison et al., 2007). The subsequent use of Giardia-specific actin antibodies
(Paredez et al., 2011) indicated that actin does not localize to the ventral disc or the lateral
crest.

Given a wealth of new proteins associated with the ventral disc, future studies of disc-

mediated attachment should include molecular genetic and biochemical analysis of DAPSs,
with the aim of resolving the long-standing controversies concerning the existence and the
role of disc flexibility, curvature, and lateral crest seal formation in attaching trophozoites.

5. The structure and putative functions of the median body

The crooked Giardia “smile” is formed by the “median body”, an MT array of unknown
function (Dawson, 2010; Piva and Benchimol, 2004). The median body is a bundle of semi-
organized MTs, located on the dorsal side of trophozoites, roughly perpendicular to the
caudal axonemes and posterior to the ventral disc. Median body MTs are dynamic during
interphase, as they are sensitive to both MT stabilizing and MT depolymerizing drugs
(Dawson et al., 2007; Sagolla et al., 2006). Median body MT dynamics are also regulated by
the depolymerizing kinesin motor protein kinesin-13 (Dawson et al., 2007). Thus is likely
that the median body possesses a mixture of dynamic and more stable MTs.
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Several clues to median body function derive from analyses of median body structure and
shape throughout the life cycle. The shape and the presence of the median body varies
during the cell cycle; it disappears altogether following mitosis, prior to disc division
(Sagolla et al., 2006). The median body may serve as a reservoir of tubulin subunits for
duplicating MT structures, such as the daughter ventral discs, prior to cytokinesis
(Brugerolle, 1975; Feely et al., 1990). This would permit the rapid assembly of the ventral
disc so that trophozoites could quickly reattach to the intestinal villi. In support of this
hypothesis, Brugerolle identified small “appendages” similar to the disc microribbons on
median body MTs (Brugerolle, 1975). In addition, Crossley et al. showed beta-giardin also
localized to the median body of some cells (Crossley et al., 1986). Most recently, Hardin et
al. (2017) observed the flux of mNeonGreen labelled tubulin from the median body to
assembling microtubule structures including the spindles, daughter discs and nascent flagella
in mitotic cells, supporting the “reservoir” hypothesis. An alternative function of the median
body has also been proposed, implicating this structure in detachment (Piva and Benchimol,
2004). To date, the function of the median body remains enigmatic; few studies have
investigated the “reservoir” hypothesis or this alternative “detachment” hypothesis.

6. Flagella and basal body architecture and composition

The discovery of Giardiais attributed to Antonie van Leewenhoek, (Dobell, 1932) who in
1681 observed teardrop shaped flagellates with “sundry little paws”. More than 300 years
later, our understanding of Giardia flagellar biology remains rudimentary. Like all
diplomonads, Giardiatrophozoites have eight flagella that all retain the canonical “9+2”
structure of the eukaryotic motile flagellum (Manton and Clarke, 1952). The eight flagella
are organized into four symmetrical pairs: the anterior, the caudal, the posteriolateral, and
the ventral (Fig. 1). The basal bodies that nucleate all flagella are located in the anterior of
the cell between the two nuclei (Fig. 1; Mclnally and Dawson, 2016). The anterior basal
bodies are located near the anterior ends of the two nuclei and are oriented towards the
anterior end of the cell. Basal bodies that nucleate the ventral, caudal and posteriolateral
axonemes are positioned posteriorly below the two anterior basal bodies and are oriented
towards the posterior of the cell. The anterior axonemes cross over the ventral disc MT array
before exiting on the right and left sides of the anterior ventrolateral flange. The length from
the cell body to the flagellar tip is about 12um. The two caudal axonemes run along the
anterior-posterior axis of the cell, and measure about 7um from the cell body to the distal tip.
The ventral axonemes exit the cell body just posterior to the disc and extend about 14um in
the ventrocaudal groove, a channel bounded on either side by the lateral shield regions.
Lastly, the posteriolateral axonemes angle outward at the lower third of the cell body,
extending about 8um from the cell body (Dawson and House, 2010).

In general, eukaryotic flagella extend from a basal body or centriole and are surrounded by a
specialized flagellar membrane after they project from the cell surface. The conserved MT
architecture of the axoneme consists of a central pair of singlet MTs surrounded by outer
doublet MTs that are connected to one another by nexin links. The A tubules of the outer
doublets have associated inner- and outer- dynein arms and radial spokes that project
towards the central pair. In contrast to other flagellated protists, each G/ardia axoneme has a
long cytoplasmic region that extends from the centrally located basal body to the point
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where it exits the cell body as a membrane-bound flagellum (Fig. 2C and D; see Dawson
and House, 2010). These long cytoplasmic regions are not extended transition zones (Hoeng
et al., 2008). In spite of the extensive cytoplasmic regions, Giardia axonemes have a
conserved structure akin to more commonly studied flagella in experimental systems such as
Chlamydomonas. Each of the eight Giardia axonemes retains the central pair and outer
doublet MTs, dynein arms and radial spokes (Carvalho and Monteiro-Leal, 2004; Clark and
Holberton, 1988). Electron-dense “flagellar pore complexes” are located at the regions
where each flagellum exits the cell body, and likely form a diffusion barrier between the
cytoplasmic and membrane-bound compartments of each axoneme (Hoeng et al., 2008).
Inheritance of the eight axonemes is complex and is maintained through basal body
migration, duplication, maturation, and subsequent association with the specific spindle
poles during cell division (Nohynkova et al., 2006).

While flagellar and basal body proteomics has contributed to our overall understanding of
flagellar structure and evolution in eukaryotes, these structures are difficult to isolate from
the rest of the Giardia cytoskeleton (Lauwaet et al., 2011). Nonetheless, many flagellar
proteins have been identified in the Giardia genome (Table 3) using proteomic and gene
sequence analysis. It has been proposed that more than 500 proteins comprise the eukaryotic
flagellum (Dutcher, 1995; Luck, 1984; Ostrowski et al., 2002; Pazour et al., 2005); however,
some flagellar components appear to be lineage-specific. The Giardia genome contains over
100, MT-associated, flagellar and basal body proteins (see Table 3). Flagellar structural
components include the protofilament ribbons (Rib43a and Rib72), the central pair (PF16,
PF20, and hydin), the radial spokes (rsp3 and rsp9), and nexin links (PF2). Canonical basal
body-associated proteins (e.g. centrin, delta-tubulin and epsilon-tubulin) and five
components of the BBSome are also present (Table 3). Centrin localizes to two distinct
clusters adjacent to the two nuclei during interphase, colocalizing with the flagellar basal
bodies (Sagolla et al., 2006). Consistent with observations in other flagellated cells, -y-
tubulin also localizes to flagellar basal bodies during interphase; however, y-tubulin
localization is restricted only to flagella that are newly produced during cell division
(Nohynkova et al., 2006). Some proteins identified by comparative proteomics of basal body
proteins lack basal body localization in Giardia (e.g. FAP52 GL50803_15956 and PACRG1
GL50803_15455), or localize to other MT structures as well as basal bodies (e.g.
GL50803_8557 and GL50803_29796) (Mclnally and Dawson, 2016). Giardiaalso has basal
body-localizing proteins that lack homology to known basal body proteins in other
eukaryotes (e.g. GL50803_15193 and GL50803_6254) (Mclnally and Dawson, 2016). In
total, over 70 proteins have been shown to localize to some or all Giardiabasal bodies (see
Mclnally and Dawson, 2016; Fig. 1; Table 3).

More than 1000 hypothetical proteins (e.g., those lacking significant similarity to proteins in
other organisms) have been identified in the Giardiagenome. This genetic novelty is
reflected in the analyses of basal body (Lauwaet et al., 2011) and flagellar proteomes
(Hagen et al., 2011) and by the fact that the majority of proteins known to localize to the
axonemes and basal bodies are hypothetical (Fig. 1F). Each basal body and axoneme is
unique in its cytological position and its association with different cytoskeletal structures,
including extra-axonemal structures. To date, several pairs of axonemes have specific
proteins that localize exclusively to either the cytoplasmic or membrane-bound regions.
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Such proteins include GASP-180, a member of a novel family of coiled-coil proteins
(Elmendorf et al., 2003), and several members of the multi-gene a-giardin family (Kim et
al., 2013; Szkodowska et al., 2002; Wei et al., 2010; Weiland et al., 2005; Wu et al., 2016).
The a-giardins are related to annexins—calcium-dependent phospholipid-binding proteins
that may serve to anchor other proteins to the plasma membrane (Rescher and Gerke, 2004).
Whether these Giardia annexins contribute to flagellar function or structure is unknown
(Vahrmann et al., 2008).

7. Putative functions of axoneme-associated structures

Novel axoneme-associated structures (Friend, 1966) define each flagellar pair. Specifically,
the cytoplasmic portions of the anterior axonemes are associated with dense rods, and are
connected to the “marginal plates” by a system of filaments (Friend, 1966; Maia-Brigagao et
al., 2013); electron dense material is associated with cytoplasmic regions of the
posteriolateral axonemes; “caudal complex” or “funis” microtubules surround and extend
from the caudal axonemes; and fin-like structures extend from membrane-bound regions of
the ventral axonemes (Kulda and Nohynkova, 1995). Although our understanding of the
composition and function of these axoneme-associated structures is limited, each confers a
unique structural identity to the different flagellar pairs and, likely, enables functional
differentiation with respect to motility or even attachment (Campanati et al., 2002). For
example, the “marginal plate” and “striated fibre” structures associated with the cytoplasmic
regions of the anterior axonemes are located slightly dorsal to the anterior regions of the disc
spiral array (Kulda and Nohynkova, 1995). These structures are in close proximity to the
ventral disc, and may affect or modulate disc conformational dynamics and attachment.
Likewise, the composition or dynamics of the funis and caudal complex, which are
associated with the cytoplasmic regions of the caudal axonemes, are unclear. Funis and
caudal complex MTs form sheets that are likely nucleated from bands of linked MTs in the
nuclear region of the caudal basal bodies (Benchimol et al., 2004). The funis MTs wrap the
caudal axonemes near the basal bodies, then fan out laterally at the emergence of the ventral
axonemes (Benchimol et al., 2004). Microtubule plus ends of the funis may to be anchored
in the cytoplasmic regions of the posteriolateral axonemes, and filamentous links of funis
MTs to the underlying plasma membrane are also reported (Benchimol et al., 2004). The
funis and caudal complex may limit the movements of caudal flagella (Campanati et al.,
2002), and have been suggested to either have a structural role in maintaining cell shape or a
potential role in generating movements of the posterior “tail” region during detachment
(Benchimol et al., 2004; Carvalho and Monteiro-Leal, 2004; Ghosh et al., 2001; Owen,
1980). Lastly, the fin-like structures associated with the ventral flagella give these flagella a
unique shape that may contribute to attachment by evacuating fluid from beneath ventral
disc and by providing a downward force that drives the ventral disc towards the surface
(Lenaghan et al., 2011).

8. Flagellar motility and role during the life cycle

The coordinated beating of Giardia’s eight motile flagella results in complex movements
essential for motility and cell division, and may aid in parasite attachment to the host gut
epithelium (Fig. 3; Campanati et al., 2002; Dawson and House, 2010). Modelling and
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analysis of the flagellar movements of unattached trophozoites (Lenaghan et al., 2011, 2013)
showed that rapidly swimming cells exhibit rotational or tumbling movements accompanied
by undulations of the caudal region that may propel the cell forward. Tumbling motion
ceases and movement becomes stable and planar during the transition to attachment
(Lenaghan et al., 2011). During planar movement, the ventral flagella provide propulsive
force for turning and forward motion, and the anterior flagella provide steering and control
(Lenaghan et al., 2013). Not all flagellar pairs have characteristic flagellar waveforms
(Campanati et al., 2002). The ventral flagella beat in an expanding sinusoidal waveform due
to the boundary conditions imposed by the ventral groove, whereas the anterior and
posteriolateral flagellar pairs beat in a paddle-like fashion with a strong downward power
stroke followed by a reduced drag upstroke (Lenaghan et al., 2011). Despite having a motile
“9+2” axonemal structure, the cytoplasmic regions of caudal axonemes flex rather than beat
with a canonical flagellar waveform, and external regions of the caudal axonemes are non-
motile. This absence of beating has been attributed to the presence of the caudal complex
surrounding the cytoplasmic regions of the caudal axonemes. The “tail” region of
trophozoites bends dorsally as well as laterally, a motion termed “dorsolateral tail flexion”
(Carvalho and Monteiro-Leal, 2004). This tail flexion derives from the sliding of MTs of the
caudal complex, caudal axonemes, or funis (Campanati et al., 2002). Ventral flagellar
beating, as mentioned above, has also been implicated in the generation of suction-based
attachment via the “hydrodynamic model” (Holberton, 1974).

Flagellar beating has thus been argued to be essential for the maintenance of attachment, and
conversely the cessation of flagellar beating has been proposed as the mechanism of parasite
detachment (Cheissin, 1964; Holberton, 1973a,b, 1974). Whether these observations reflect
causality (ventral flagellar beating causes attachment) or correlation (ventral flagella beat at
the same time cells attach) is unknown. Thus the role of ventral flagellar beating in
attachment remains open to debate. Early attachment models invoked ventral flagellar
beating as a means to generate a hydrodynamic force (Holberton, 1974) to create suction.
Recent studies modelling Giardia motility suggest that the ventral flagella are ideally suited
both for providing a downward force that drives the disc towards the attachment surface and
for removing fluid from underneath the ventral disc (Lenaghan et al., 2011, 2013). Even if it
is not required to generate hydrodynamic currents, flagellar motility is essential for
positioning the cell parallel to surfaces prior to attachment and for manoeuvring trophozoites
towards suitable niches for colonization. Future mechanistic studies should consider the
relative contributions of both disc conformational dynamics and flagellar motility to
attachment.

9. Flagellar assembly and equilibrium length maintenance

Eukaryotic flagella are dynamic, membrane-bound and compartmentalized MT-based
organelles that facilitate diverse cellular behaviours including motility and chemosensation
(Brooks and Wallingford, 2014; Pazour and Witman, 2003). Early work in the green alga
Chlamydomonas reinhardtii showed that axonemes are assembled by the addition of proteins
at the distal flagellar tip, rather than at the basal body (Kozminski et al., 1993). Axonemal
building blocks are trafficked to the tip using a bidirectional process called intraflagellar
transport (IFT) (Kozminski et al., 1993; Lechtreck, 2015), in which proteinaceous particles
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or “trains” synthesized in the cytoplasm are continuously carried to and from the tip by MT
motor proteins (Rosenbaum and Witman, 2002; Scholey, 2003). Both flagellar assembly and
length maintenance are dependent upon the active transport of protein complexes by IFT
(Kozminski et al., 1993; Marshall et al., 2005). IFT components—including IFT particles,
the BBsome, kinesin and dynein motors, and transition zone (TZ) complex proteins—are
widely conserved in free-living and parasitic unicellular flagellates (Buisson et al., 2013;
Hao et al., 2009; Kozminski et al., 1993).

Like many model organisms, Giardia has canonical motile axonemes that are nucleated by
basal bodies and have a conserved “9+2” axoneme structure. Yet in contrast to other models,
the eight Giardia axonemes are paired into four flagellar types with four different
equilibrium lengths and include long, non-membrane-bound cytoplasmic regions (Fig. 4A
and B). Giardiaalso possesses the majority of IFT, BBSome, and motor proteins (kinesin-2,
kinesin-13, and IFT dynein) that are essential components of flagellar length control
mechanisms in diverse model systems (Avidor-Reiss and Leroux, 2015; Lechtreck, 2015).
Giardia axonemes lack a transition zone, however, and there are no TZ protein homologues
in the genome (Avidor-Reiss and Leroux, 2015; Barker et al., 2014).

The anterograde movement of IFT trains along the outer doublet of axonemes to the flagellar
tip is mediated by the kinesin-2 heterotrimeric complex, which is comprised of two
kinesin-2 homologues and the kinesin-associated protein (KAP). The retrograde movement
of IFT rafts back towards the cell body is mediated by cytoplasmic dynein 1b (Orozco et al.,
1999). Proteins homologous to components of the retrograde and anterograde IFT
complexes (A and B), the kinesin-11 heterotrimeric complex and IFT dynein are found in
Giardia (see Table 3). The primary anterograde IFT motor in G/ardiais the kinesin-2
heterotrimeric complex (Briggs et al., 2004; Morrison et al., 2007. In G/ardia, both IFT
complex A and B components localize to the cytoplasmic and membrane-bound regions of
axonemes (Fig. 4C and D). Kinesin-2 GFP fusions (G/IKINZa and GiKINZ2b) and
components of the IFT complex A (IFT140) and complex B (IFT81) raft localize along the
length of cytoplasmic axonemes and form foci at the eight distal flagellar tips and the
flagellar pore complex regions (Hoeng et al., 2008).

Cytoplasmic regions of axonemes, including the non-motile caudal pair, have a conserved
flagellar ultrastructure, possessing the outer doublet MTs, canonical radial spokes, axonemal
dynein arms and the central MT pair (Carvalho and Monteiro-Leal, 2004; Clark and
Holberton, 1988). Cytoplasmic axoneme length is unaffected by morpholinos that interfere
with Kinesin-2 expression or by the overexpression of a dominant negative kinesin-2
(Carpenter and Cande, 2009; Hoeng et al., 2008). This is also supported by CRISPRI-
mediated knockdown of kinesin-2 (Mclnally et al., 2019). IFT trains likely diffuse on
cytoplasmic portions of axonemes, and accumulate and inject into the membrane-bound
portions at the flagellar pore complexes (Hoeng et al., 2008). IFT-mediated axoneme
assembly appears to be required only for membrane-bound regions of axonemes. Overall,
these studies imply that cytoplasmic axonemes are assembled by an IFT-independent
mechanism. Both IFT-mediated and non-IFT mediated assembly of axonemes can occur
simultaneously in the same cell (Briggs et al., 2004). The mechanism and temporal sequence
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by which the extra-axonemal-associated structures (e.g. marginal plate, fins, caudal complex
or funis) are assembled during cell division remains unclear (Hoeng et al., 2008).

The lengths of flagella are dynamic, and steady-state or equilibrium flagellar length is a
balance between IFT-mediated flagellar assembly and flagellar disassembly. A classic
experiment in the green alga Chlamydomonas known as the “long-zero” experiment showed
that amputation of one of the two flagella led to equalization of the lengths of both flagella
due to a shared, limited precursor pool for regrowth. This and subsequent studies in
Chlamydomonas have been used to develop the “balance-point model” of flagellar length
regulation (Marshall and Rosenbaum, 2001). According to this model, constitutively
controlled steady-state length is a balance between a /length-dependent assembly rate and a
length-independent disassembly rate. Equilibrium length is altered through modulating the
rates of flagellar assembly or disassembly.

While flagellar assembly and length regulation is well-studied in some model systems, little
is known about how flagella with different equilibrium lengths are assembled and regulated
in the same cell. In Giardia, hierarchical levels of regulation must act to maintain four
different flagellar lengths. We have recently shown that IFT-mediated flagellar assembly is
length-independent, as IFT train size, speed, and injection frequencies are similar between
flagella of different lengths (Mclnally et al., 2020). Axonemal MT disassembly is mediated
by action of kinesin-13, a depolymerizing kinesin. Overexpression of a dominant negative
kinesin-13 or CRISPRi-mediated kinesin-13 knockdown results in long flagella (Dawson et
al., 2007; Mclnally et al., 2019). Equilibrium flagellar length is also sensitive to both MT
stabilizing and destabilizing drugs (Dawson et al., 2007). Treatment with the MT stabilizing
drug Taxol resulted in all flagella extending over three times the average interphase length
(Dawson et al., 2007). Overall in Giardia, kinesin-13 mediates a disassembly-driven, length-
dependent mechanism of length regulation that balances length-independent IFT-mediated
assembly, resulting in different lengths (Mclnally et al., 2020).

10. Assembly and inheritance of MT organelles during cell division

Muitosis occurs in 6.5min and new daughter discs and new flagella are assembled in less than
3 min (Hardin et al., 2017). The two spindles radiate from one of the flagellar basal bodies
near each spindle pole, forming a sheath around the nuclear envelope. Each spindle pole is
associated with at least one axoneme. The nuclear envelope remains, forming a barrier
between cytoplasmic MT arrays and chromatin; there is no evidence of mixing of the
chromatin between nuclei (Sagolla et al., 2006). Daughter cells inherit one copy of each
parent nucleus. Presumptive kinetochore MTs penetrate at the spindle poles through large
polar openings in the nuclear membrane (Sagolla et al., 2006). Likely more than one MT is
attached per kinetochore in Giardia. The internal (presumably kinetochore) MTs extend only
a few microns into the nucleus near the chromatin in late stage (anaphase B) nuclei.

During mitosis, trophozoites remain attached from the onset of cell division through the
assembly of the new daughter discs (Nohynkova et al., 2000; Tumova et al., 2007). In late
mitosis, the parental disc undergoes dramatic structural changes, leading to parental ventral
disc disassembly and detachment prior to the late stages of cytokinesis. Before parental disc
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disassembly occurs, the two daughter discs are assembled de novo on the anterior dorsal side
of the attached parent cell, with their ventral sides exposed on the parental cell surface
(Tumova et al., 2007). Assembly of daughter discs is thought to terminate after the
detachment of the dividing cell (Tumova et al., 2007). The amount of polymerized tubulin is
nearly tripled in dividing cells (Brown et al., 2016).

Before mitosis is completed, flagellar and basal body duplication occurs (Nohynkova et al.,
2006; Sagolla et al., 2006). Flagellar regeneration begins in anaphase with short flagella
(presumably the new ventral and posteriolateral pairs) emerging from the spindle poles
(Nohynkova et al., 2006; Sagolla et al., 2006). G/ardia’s eight basal bodies have a unique
inheritance pattern in daughter cells. In the interphase trophozoite, eight basal bodies are
arranged into two tetrads and each basal body pair is associated with a distinct flagellum.
The polarity of each daughter cell is thought to be determined through the association of
axonemal basal bodies with the dividing nuclei (Sagolla et al., 2006).

Due to the inheritance and de novo assembly of specific flagella in daughter cells, a
multigenerational division cycle has been proposed in Giardia wherein the relative age of a
flagellar axoneme is different based on the anatomical position in the trophozoite
(Nohynkova et al., 2006). The flagella of some other protists are known to undergo a similar
maturation process that takes more than one cell cycle (Beech et al., 1991), mirroring the
behaviour of centrioles in metazoans (reviewed in Beisson and Wright, 2003). Based on
immunostaining with a polyglycylated tubulin antibody to visualize parental axonemes and
an acetylated tubulin antibody to visualize daughter axonemes, eight parental (old) flagella
are retained and eight new flagella are synthesized each cell division cycle (Nohynkova et
al., 2006). While specific molecular markers have not been used to track each flagellar pair
to confirm their identity during division (Nohynkova et al., 2006), the full length parental
anterior axonemes are proposed to become the right caudal axonemes in the new daughter
cells. Parental right caudal axonemes are then proposed to become the left caudal axonemes.
Thus each daughter cell inherits a full complement of eight axonemes and associated basal
bodies—four parental (old), and four newly duplicated each generation (Nohynkova et al.,
2006; Sagolla et al., 2006). The timing and mechanism by which the extra-axonemal-
associated structures (e.g. marginal plate, caudal complex or funis) are assembled during cell
division also remains unclear (Hoeng et al., 2008).

The division of the caudal axonemes and their associated basal bodies also has notable
implications for the de novo nucleation and assembly of the daughter ventral discs. After the
daughter nuclei are partitioned and the caudal flagellar basal bodies have been repositioned
between the two nuclei (Nohynkova et al., 2006), two new dorsal daughter ventral discs are
assembled during telophase. The parental ventral disc is not disassembled until later in the
cell cycle. Thus the caudal basal bodies nucleate the caudal axonemes and also determine
the site of ventral disc assembly, establishing the polarity of the new daughter cells. The left
caudal flagellum has been proposed to nucleate the spiral MT arrays that form the basis of
the ventral disc (Friend, 1966); however, recent work shows that the dense bands near the
basal bodies nucleate the ventral disc MTs (Brown et al., 2016; see Fig. 2).
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Following mitosis, the ventral disc appears to be rapidly nucleated in at least four ways.
Recent cryo-ET studies indicated that about 59% of ventral disc MTs are nucleated near the
eight basal bodies (Brown et al., 2016). Disc MT minus ends do not directly contact basal
bodies but rather arise from a series of perpendicular bands termed the dense band (DB)
nucleation zone (Brown et al., 2016). The protein composition of these dense bands and the
mechanism by which they support MT nucleation is undefined, although we have identified
several proteins localizing to this region (Fig. 1). Giardialacks some components of the
gamma-TuRC nucleation complex yet retains the two gamma-TuSC components and
gamma-tubulin (Mclnally and Dawson, 2016). Despite lacking an augmin homologue, about
39% of disc MTs nevertheless nucleate from the disc margin (DM) region, possibly via a
branching nucleation-type mechanism (Brown et al., 2016). A small subset of MTs (~2%) is
nucleated within the disc MT array itself. Lastly, an additional subset of about 20MTs
nucleate from a distinct yet overlapping array of dense bands dorsal to the ventral disc,
termed the supernumerary MTs (SN). This array is hypothesized to nucleate a new ventral
disc during cell division, but this hypothesis fails to fully explain ventral disc biogenesis
because two new discs are generated instead of one (Tumova et al., 2007).

The mechanism underlying the synchronized bending of newly growing disc MTs and the
control of their length is also unknown. During dorsal daughter disc assembly, the MT spiral
is nucleated first, with subsequent assembly and lengthening of the disc microribbons. The
lateral crest is the last of the disc substructures to be assembled (Tumova et al., 2007).
Assembling daughter discs appear to have varying levels of competence for attachment. As
daughter discs assemble, the parental disc opens, and the spiral MT array disassembles. This
process is accompanied by the progressive shortening and loss of the microribbons and the
degradation of crossbridges. The final release of the disc from the basal bodies coincides
with parental disc disassembly, and results in parasite detachment (Hardin et al., 2017;
Tumova et al., 2007).

Dividing trophozoites not only need to build new daughter discs, but must also assemble
other MT-based structures including two spindles and eight new flagella. Thus, the ventral
disc MTs must be distinguished from the MTs of other MT arrays to properly recruit
proteins required for the assembly of disc substructures. One obvious way that ventral disc
MTs could be marked is by tubulin post-translational modifications (PTMs) (Garnham and
Roll-Mecak, 2012), which could mediate the recruitment of DAPS to the nucleating disc
during cell division. Disc substructures assemble sequentially on two daughter disc MT
arrays in mitosis and excystation, yet the molecular details of this process are unclear (Palm
et al., 2005; Tumova et al., 2007). Several regulatory proteins localize to the disc during
division, including the sole Grardia aurora kinase (Davids et al., 2008), two putatively cell
cycle-specific NEK kinases (Davids et al., 2011), and an ERK1 kinase that localizes to the
disc during encystation (Ellis et al., 2003). Understanding how the ventral disc is assembled
and which substructures and associated DAPs are essential for functional competency is
critical for selecting potential druggable disc targets that may disrupt attachment and parasite
colonization.
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11. Assembly and inheritance of organelles during encystation and
excystation

With respect to both encystation and excystation, the molecular genetic mechanisms
underlying cytoskeletal assembly, disassembly, and cytoskeletal movements remain virtually
undescribed. Encystation and excystation require flagellar, disc, and median body
disassembly and assembly; however, the details or stages of cytoskeletal assembly/
disassembly dynamics during these important transitions in the life cycle have not been
described at the cytological or molecular level.

In the host, rounded excyzoites excyst from the cyst stage, then progressively elongate, and
complete cytokinesis to differentiate into the motile trophozoites that colonise the small
intestine (Buchel et al., 1987; Feely, 1986). The subsequent assembly of fully functional
flagella and ventral discs allows the trophozoite to swim and attach to surfaces. As compared
to encystation, the cytoskeletal changes that occur during the stages of excystation are less
well characterized; however, cytoskeletal dynamics obviously play an important role in
excystation. Flagellar motility has been suggested to play a mechanical role in the initial
opening of the cyst. Other contractile or MT-mediated forces may also occur during
excystation (Buchel et al., 1987; Feely, 1986). Prior to excystation, the trophozoite may
undergo meiosis and nuclear fusion (Poxleitner et al., 2008).

Cytoskeletal movements, in conjunction with the assembly of the cyst wall, transform
trophozoites into the environmentally resistant cyst form. Trophozoites transform from their
characteristic teardrop shape to an ovoid shape as the cyst wall is assembled and cytoskeletal
rearrangements occur during encystation (Midlej and Benchimol, 2009). The ventral disc
structure transforms from a closed spiral disc to a horseshoe-shaped structure, then is
subsequently fragmented and partially disassembled. Flagella are internalized and may
continue to beat inside the newly formed cyst (Midlej and Benchimol, 2009).

12. Perspectives for future studies of Giardia’s MT organelles

Cytoskeletal innovation and diversity are widespread in eukaryotic cells (Dawson and
Paredez, 2013), and Giardiaand other diverse emerging cell biological model systems offer
a wealth of unexplored MT structures with unique functional properties (Russell et al.,
2017). Given the finite and relatively small number of known proteins that regulate MT
dynamics and assembly, how do diverse eukaryotic cells like Giardia create elaborate MT
structures?

The complex architecture and functions of the ventral disc and axoneme-associated
structures challenge our conceptions of the capabilities of cytoskeletal polymers. As most
efforts to study the Giardia cytoskeleton have been cytological, future work should
emphasize understanding details of Giardia’s elaborate MT-based structures and elucidating
the molecular mechanisms of dynamic cytoskeletal movements. The mechanisms of some
Giardia-specific MT dynamics—such as attachment, cell division, and encystation/
excystation—are essentially uncharacterized at the molecular level. Our identification and
subcellular localization of several hundred proteins associated with disc, axonemes, basal
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bodies, and median body lays the foundation for further analyses of MT assembly and
function in Giardia. In vitro biochemical studies of novel MT-associated proteins in Giardia
will aid in understanding their roles in modulating MT dynamics and regulation in the
various MTs organelles.

The lack of forward genetic tools for G/ardiahas limited our ability to define genes that are
required for cytoskeletal biology. Molecular genetic tools in Giardia include transient
translational repression by electroporation of morpholinos (Carpenter and Cande, 2009) or
the overexpression of long double-stranded RNAs or hammerhead ribozymes for
transcriptional repression (Chen et al., 2007; Dan et al., 2000). While CRISPR/Cas9-
mediated knockout strategies have recently been used for genome engineering in several
parasitic protists (Ren and Gupta, 2017), our lab’s recent development of CRISPRi-mediated
transcriptional repression will advance studies of the GJardia cytoskeleton (Mclnally et al.,
2019). Our successful use of CRISPRI to repress both exogenous, and single or multiple
endogenous genes underscores the versatility of this stable and modular gene regulation
methodology. CRISPRi knockdowns with partial transcriptional repression facilitate the
identification of cytoskeletal genes with severe fitness costs (e.g. cell division or motility), as
the complete knockdown or knockout of essential genes results in lethal phenotypes. We
anticipate that the use of untargeted, genome-wide CRISPRI screens (Kampmann, 2018;
Larson et al., 2013) could identify essential genes critical for Giardlia growth and division,
attachment, motility, and pathogenesis.
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Many cytoskeletal proteins associated with microtubule organelles in Giardialack MT
binding motifs. The schematic of the Giardiatrophozoite cytoskeleton (A) indicates the
ventral disc (vd) and lateral crest (Ic), the four flagellar pairs (AF, anterior; PF,
posteriolateral; VF, ventral; CF, caudal) and basal bodies (bb), as well as the median body
(mb) and funis (fn). The teardrop cell shape is visible in panel B (CellMask membrane stain)
and the primary MT organelles are also highlighted in an N-terminally tagged mNeonGreen
(mNG) beta-tubulin strain (C). The merged image in panel D highlights the MT organelles
(mNG-beta-tubulin, green), (CellMask, magenta) with DAPI (blue) to stain the nuclei. Over
300 cytoskeletal proteins have been identified bioinformatically or localized to one or more
MT arrays (panel E and Tables 1-3). Many Giardia cytoskeleton-associated proteins lack
homology or MT binding motifs (hypothetical or conserved hypothetical) or simply have
conserved ankyrin repeat domains or are NIMA (NEK) kinases, yet different MT organelles

(axonemes, basal bodies, disc, median body) have different numbers of these

overrepresented categories (F).
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Fig. 2.
Localization of both conserved and novel cytoskeletal proteins to all MT organelles. More

than 90 disc-associated proteins (DAPs) have been identified and localized to the complex
ventral disc architecture, which includes the abundant microribbon (MR)/crossbridge (CB)
complexes associated with the disc MTs (see schematic in A). As illustrated by
representative images of GFP-tagged DAPs in panel B, some localize to the disc body or to
one or more structurally defined regions of the disc (e.g., VG, ventral groove; DM, disc
margin; OZ, overlap zone; DB, dense bands; LC, lateral crest). Giardia axonemes have
specific cytoplasmic (light blue) and membrane-bound regions (dark blue), and axonemes
exit the cell body at flagellar pores (see orange in schematic in C). Representative GFP-
tagged cytoskeletal proteins illustrate that many proteins localize specifically to the basal
bodies (bb), the median body (mb), or either to the entire length of some or all the flagella,
or only to the cytoplasmic portions of the axonemes or to the flagellar pores (fp).
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A Rotational (tumbling) movement

Fig. 3.
Complex matility in the multiflagellated trophozoite. During rapid, rotational swimming

(A), undulating movements of the caudal region propel the trophozoite forward and are
accompanied by paddle-like beating of the anterior and posteriolateral flagella. Prior to
attachment, motion slows, and swimming becomes stable and planar (B), with the ventral
disc oriented towards the attachment surface. Ventral flagellar beating may produce a force
that drives the disc downward. Dorsolateral tail flexion (C) has been attributed to the funis or
caudal complex and may promote detachment.
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Fig. 4.
Flagellar structure and assembly of the eight flagella. Each of the eight axonemes are

nucleated by basal bodies located in the cytoplasm between the two nuclei (see schematic in
A). Each axoneme also extends through the cytoplasm and is compartmentalized into a
membrane-bound flagellum at the flagellar pores (fp). Yet each flagellar pair (AF, anterior;
VF, ventral; CF, caudal; PF, posteriolateral) has different lengths in both the cytoplasmic and
the membrane-bound regions (B). Flagellar assembly and length maintenance are generally
achieved by intraflagellar transport (IFT) powered by MT motors. In Giardia, IFT particles
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assemble on cytoplasmic portions, accumulate at flagellar pores (fp) and are actively
trafficked by IFT on membrane-bound portions as illustrated (see C, D) using a marker of
IFT trains (MNG-tagged IFT81, green; MTs, magenta).
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