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BACKGROUND: Due to the ubiquitous use of chemicals in modern society, humans are increasingly exposed to thousands of chemicals that contribute
to a major portion of the human exposome. Should a comprehensive and risk-based human exposome database be created, it would be conducive to
the rapid progress of human exposomics research. In addition, once a xenobiotic is biotransformed with distinct half-lives upon exposure, monitoring
the parent compounds alone may not reflect the actual human exposure. To address these questions, a comprehensive and risk-prioritized human
exposome database is needed.

OBJECTIVES: Our objective was to set up a comprehensive risk-prioritized human exposome database including physicochemical properties as well as
risk prediction and develop a graphical user interface (GUI) that has the ability to conduct searches for content associated with chemicals in our
database.
METHODS: We built a comprehensive risk-prioritized human exposome database by text mining and database fusion. Subsequently, chemicals were
prioritized by integrating exposure level obtained from the Systematic Empirical Evaluation of Models with toxicity data predicted by the Toxicity
Estimation Software Tool and the Toxicological Priority Index calculated from the ToxCast database. The biotransformation half-lives (HLBs) of all
the chemicals were assessed using the Iterative Fragment Selection approach and biotransformation products were predicted using the previously
developed BioTransformer machine-learning method.
RESULTS: We compiled a human exposome database of >20,000 chemicals, prioritized 13,441 chemicals based on probabilistic hazard quotient and
7,770 chemicals based on risk index, and provided a predicted biotransformation metabolite database of >95,000 metabolites. In addition, a user-
interactive Java software (Oracle)-based search GUI was generated to enable open access to this new resource.

DISCUSSION: Our database can be used to guide chemical management and enhance scientific understanding to rapidly and effectively prioritize chem-
icals for comprehensive biomonitoring in epidemiological investigations. https://doi.org/10.1289/EHP7722

Introduction
The human exposome, defined as the totality of exposures
throughout the human lifespan (Wild 2005), has raised concerns
in environmental health studies in recent years. Due to the ubiqui-
tous use of manmade chemicals in modern society, people are
potentially exposed to thousands of chemicals via multiple path-
ways, such as air, water, food, and soil (Wambaugh et al. 2014).
As an important part of the overall human exposome, chemical
exposure is challenging to characterize because it requires expo-
sure data to be obtained under multiple scenarios (Dai et al.
2017). We are still at the early stage of figuring out what we are
exposed to and it is also difficult to determine which chemicals
pose high exposure risk to human health. These data gaps neces-
sitate the human exposome database as well as chemical risk
prioritization.

To date, some yet insufficient efforts have been directed to
collect and organize data on hazard and exposure for thousands
of chemicals. For known exposure biomarkers, the Exposome-
Explorer Database (http://exposome-explorer.iarc.fr/) with 691
chemicals has been established to provide comprehensive data on
exposure to dietary factors, pollutants, and contaminants meas-
ured in population studies (Neveu et al. 2017). More recently,
Barupal and Fiehn (2019) conducted a more in-depth literature
mining and database fusion for the blood exposome, yielding
49,940 unique chemicals pooled from 676,643 papers. Our earlier
work (Dong et al. 2019) established a dust exposome database
with 511 chemicals with measured concentrations by an exten-
sive text mining approach. However, most of these studies are ei-
ther based on studies with previous measurements for only
limited numbers of chemicals or databases without associated
toxicity information. It is still possible that many compounds
remain uncovered by existing databases, such as the Exposome-
Explorer Database and the Blood Exposome Database (http://
bloodexposome.org/). Hence, a comprehensive human exposome
database, as well as a potential biomarker database, is needed. In
addition, the enormous number of chemicals make biomonitoring
using traditional methods, such as targeted or nontargeted mass
spectrometry methods, almost impossible. Therefore, it is of great
scientific value to sort and prioritize chemicals based on their ex-
posure and risk in the context of exposome research for activities
such as chemical management and environmental epidemiologi-
cal investigation.

To date, a few studies have tried to prioritize limited numbers
of chemicals using either exposure level or in vitro toxicity
screening methods. For example, the U.S. Environmental
Protection Agency (EPA) has established the ToxCast Program
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combining in vitro high-throughput assays to facilitate rapid haz-
ard assessments based on chemical bioactivities (Williams et al.
2017). In one study, the prioritization of 309 environmental
chemicals was characterized by the Toxicological Priority Index
(ToxPi) model using the data from 467 in vitro high-throughput
screening (HTS) assays (Reif et al. 2010). In another example,
the U.S. EPA initiated the Exposure Forecasting (ExpoCast) pro-
gram, which contained information on exposure to ensure the
need for rapid characterization of exposure potential, and a total
of 1,936 chemicals were ranked by the predicted exposure level
(Wambaugh et al. 2013). Subsequently, the U.S. EPA developed
an updated consensus, meta-model using the Systematic
Empirical Evaluation of Models (SEEM) approach to calibrate
various exposure predictors from ExpoCast with the output of
relevant exposure pathway(s), median intake rate, and credible
interval for 479,926 chemicals (Ring et al. 2019). In general, the
prioritization approaches were conducted based on either only ex-
posure or toxicity alone. One previous study presented a risk-
based method for chemical prioritization; however, only 180
chemicals were prioritized (Shin et al. 2015). Some efforts were
made to develop quantitative approaches to translate in vitro tox-
icity potencies to in vivo equivalent doses using in vitro–in vivo
extrapolation (IVIVE) models, which can be used to conduct in
vitro toxicity screening for chemical prioritization (Ring et al.
2017; Sipes et al. 2017; Wambaugh et al. 2015; Wetmore et al.
2012, 2014; Wetmore 2015). However, the prioritization was
only based on the National Institutes of Health (NIH) Toxicology
in the 21st Century (Tox21) and ToxCast HTS data, which are
far from sufficient given the overwhelmingly and ever-
increasingly large number of environmental chemicals. Thus, a
more widely applicable and high-throughput methodological
approach incorporating exposure data with toxicity data is still
needed to evaluate and prioritize chemicals for potential risk to
human health.

Besides risk prioritization, another knowledge gap for the cur-
rent human exposome database is that most of the focus is on the
prioritization for parent chemicals (Reif et al. 2010; Wambaugh
et al. 2013, 2014). Chemicals can be often biotransformed in sev-
eral organs, such as the gut and liver, and excreted through the
feces or urine (Djoumbou-Feunang et al. 2019). For example, the
biotransformation half-lives (HLBs) of the common plasticizers
bisphenol A (BPA) and phthalates are only within several hours
(Koch et al. 2004; Thayer et al. 2015). For these chemicals with a
short HLB, human biomonitoring (HBM) of the parent com-
pounds becomes challenging and even partially meaningless
without knowing their xenobiotic biotransformation products.
Biotransformation, which could either detoxify or activate the
toxic potential, greatly impacts on toxicity (Bland 2007). Thus,
this knowledge gap necessitates the human exposome database
containing possible biotransformation metabolites, which will be
very beneficial for the human exposure biomarkers biomonitoring
of epidemiological investigation and untargeted exposomics
surveys.

Consequently, in the present study, we aimed to establish an
upgraded human exposome database that includes both parent
compounds and predicted biotransformation metabolites and pri-
oritizes the parent compounds based on risk. The results will
guide the chemical management and enhance the understanding
to rapidly and effectively prioritize chemicals for HBM in epide-
miological investigations on knowledge-based risk ranking. The
specific aims were a) the buildup of a human exposome database
using comprehensive text mining and a database fusion approach;
b) prioritization of chemicals in our human exposome database
using models of exposure and toxicity prediction; c) evaluation
of the HLB of human exposome chemicals and prediction of their

biotransformation metabolites; and d) development of an interac-
tive interface for allowing access to the newly established Human
Exposome and Metabolite Database (HExpMetDB).

Methods

Compiled List of Human Exposome Database
To set up the prioritized human exposome database, we screened
as many chemicals as possible in different previously published
databases and sources relevant to exposome research including
environmental pollutants, toxicants, gut microbiome-derived
metabolites, disinfection and combustion by-products, carcino-
gens, and food nutrients and additives (Table 1). Endogenous
human metabolites and inorganic chemicals were excluded in
this study. Because publicly available databases, such as the U.S.
EPA High Production Volume (HPV) List, mostly include regis-
tered industrial chemicals, we also searched the literature for
additional chemicals in various environmental media such as
drinking water, indoor dust, and air that are closely associated
with routes of exposure. Literature mining was conducted by
manually searching research articles or reviews on the Web of
Science and PubMed using the combined keywords such as
human exposome, drinking water, air, and disinfection or com-
bustion by-products to collect studies focusing on cataloging
environmental contaminants as shown in Excel Table S1. Due to
the large numbers of search hits, we preferentially selected
review articles with an extensive summary of chemicals from
environmental matrices (e.g., indoor air exposome, dust expo-
some, or waterborne chemicals) and used their summary as the
input for the chemical database fusion if available. We compiled
the database by gathering publicly available databases and litera-
ture tabulated in Table 1. After removing the inorganic com-
pounds and organic mixtures, as well as replicates by Chemical
Abstracts Service Registry Number (CASRN) and canonical
Simplified Molecular Input Line Entry Specification (SMILES),
a total of 20,756 unique chemicals with CASRN were included in
our database. Additional information was also obtained from the
U.S. EPA Chemistry Dashboard, including chemical identifiers
[Distributed Structure-Searchable Toxicity substance identifier
(DTXSID), chemical name, CASRN, condensed version of the
International Chemical Identifier (InChIKey), and International
Union of Pure and Applied Chemistry (IUPAC) name], structures
(SMILES and InChI string), and intrinsic properties (molecular
formula, average mass, and monoisotopic mass).

Exposure Estimates
Given that most chemicals lack measured data of human expo-
sure, we obtained the human exposure predictions from the
SEEM consensus exposure model predictions, which yielded a
coefficient of determination R2 value of ∼ 0:8 (i.e., 80% of the
data fit the regression model) for high-throughput exposure
assessment as reported by Ring et al. (2019) and used by
Wambaugh et al. (2019). The prediction of median exposure
level [in milligrams per kilogram of body weight (BW) per day]
with uncertainty [95% confidence interval (CI)] for each chemi-
cal, if available, was retrieved from the subset of the Bayesian
inferences reported by Ring et al. (2019) for a consensus model
of 12 exposure predictors that were calibrated based on their abil-
ity to predict intake rates inferred from the National Health and
Nutrition Examination Survey (NHANES).

Chemical Biotransformation Half-Life (HLB) Prediction
The prediction of chemical HLB was based on the quantitative
structure−activity relationship (QSAR) approach called Iterative
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Fragment Selection (IFS) (Arnot et al. 2014). According to a pre-
vious study, the r2, r2�ext, and root-mean-square errors for the
HLB QSAR were 0.89, 0.73, and 0.75, respectively; 96% and
76%, and 82% and 52% of the predicted values were within a fac-
tor of 10 and 3 of the expected values for the training and testing
sets, respectively (Arnot et al. 2014). Because the IFS algorithm
cannot be applied to ionogenic chemicals and siloxanes, they
were not included in the training set of the IFS model (Brown
et al. 2012; Papa et al. 2014). The logKow and logKoa, which
were used to estimate HLB, were calculated using the Helmholtz
Centre for Environmental Research Linear Solvation Energy
Relationship (UFZ-LSER) database (version 3.2.1; Ulrich et al.
2017).

Chemical Toxicity Prediction
Chemical toxicities were estimated using the Toxicity Estimation
Software Tool (TEST, version 4.2.1) (U.S. EPA 2016b). The pre-
diction was applicable to compounds containing only the

following element symbols: carbon (C), hydrogen (H), oxygen
(O), nitrogen (N), fluorine (F), chorine (Cl), bromine (Br), iodine
(I), sulfur (S), phosphorus (P), silico (Si), or arsenic (As). The
QSAR-ready SMILES code for each chemical was submitted to
the models. The rat oral LD50 toxicological properties were
selected to evaluate the chemical toxicities in this study.

Due to the possible uncertainties from in silico toxicity pre-
dictions, we included the highly ranked toxicants from ToxCast
bioassay and U.S. EPA chemicals of concerns, such as flame
retardants and chemicals of interest to the U.S. EPA Endocrine
Disruption Screening Program (EDSP) for the 21st Century
(EDSP21) (Richard et al. 2016; U.S. EPA 2007). These chemi-
cals were arbitrarily included in the final exposome database as
high-risk groups.

To further expand our toxicity data, we applied the
Toxicological Priority Index (ToxPi) model in HTS data to pri-
oritize 8,845 environmental chemicals with potential toxicologi-
cal activities, providing a transparent visualization of the relative
contribution of all information sources to an overall priority

Table 1. Coverage of chemicals in different databases and resources relevant to exposome research.

Source category Source name and description Na Website Reference

Government databases U.S. EPA: High Production
Volume List

3,146 https://comptox.epa.gov/dashboard/chemical_
lists/EPAHPV

U.S. EPA 2020c

European inventory of existing
commercial chemical
substances

7,301 https://echa.europa.eu/information-on-
chemicals/ec-inventory

ECHA 2008

Candidate List of substances of
very high concern for
authorization

233 https://echa.europa.eu/candidate-list-table ECHA 2020

USDA: FoodData Central data 154 https://fdc.nal.usda.gov/index.html USDA 2019
European Commission, Food

Additives Database and Food
Flavorings Database

2,543 https://webgate.ec.europa.eu/foods_system/
main/?sector=FAD&auth=SANCAS

EC 2017

https://webgate.ec.europa.eu/foods_system/
main/?event=display

EC 2012

Toxicological databases U.S. EPA: Chemical Inventory for
ToxCast

6,350 https://comptox.epa.gov/dashboard/chemical_
lists/CHEMINV

U.S. EPA 2007

European Commission: priority list
of endocrine disruptors

385 https://ec.europa.eu/environment/chemicals/
endocrine/strategy/substances_en.htm

EC 2020

NIH: Toxicology in the 21st
Century (Tox21)

7,632 https://ncats.nih.gov/tox21 —

IARC: Agents Classified by the
IARC Monographs

845 https://monographs.iarc.fr/agents-classified-by-
the-iarc/

—

NIH: 14th Report on Carcinogens https://ntp.niehs.nih.gov/whatwestudy/
assessments/cancer/roc/index.html

—

U.S. EPA: Pesticides 3,265 https://www.epa.gov/pesticides U.S. EPA 2017b
Exposure biomarker

databases
Exposome-Explorer: database on

biomarkers of exposure to envi-
ronmental risk factors for
diseases

233 http://exposome-explorer.iarc.fr/ —

CDC: The NHANES National
Report on Human Exposure to
Environmental Chemicals

425 https://www.cdc.gov/exposurereport/ —

Literature data Environmental pollutants detected
in water

96 — Andrianou et al. 2019; Remucal
and Manley 2016; Sjerps et al.
2016; U.S. EPA 2016a;
Vikesland and Raskin 2016

Environmental pollutants detected
in dust

470 — Dong et al. 2019

Environmental pollutants detected
in the air

205 — WHO 2016; U.S. EPA 2018a,
2018b, 2020a, 2020b

Environmental by-products (e.g.,
disinfection and combustion)

43 — Castaño-Vinyals et al. 2011;
Hebert et al. 2010;
Nieuwenhuijsen et al. 2009

Mycotoxins 40 — Shephard 2008; Warth et al. 2012
Gut microbiome-related

metabolites
26 — Donia and Fischbach 2015; Wang

et al. 2011; Wilmanski et al.
2019; Zhang and Davies 2016

Note: —, not applicable; CDC, Centers for Disease Control and Prevention; ECHA, European Chemical Agency; EPA, Environmental Protection Agency; IARC, International
Agency for Research on Cancer; NHANES, National Health and Nutrition Examination Survey; NIH, National Institutes of Health; USDA, U.S. Department of Agriculture.
aNumber of chemicals.
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ranking (Filer et al. 2014; Marvel et al. 2018; Reif et al. 2010).
For the ToxPi modeling, we used 97 in vitro HTS assays, includ-
ing the targets of the estrogen, androgen, and thyroid pathways
and the glucocorticoid receptor, peroxisome proliferator-
activated receptors (PPARs), and monoamine signaling, as well
as two physicochemical properties, the octanol-water partitioning
coefficient (log P) and bioconcentration factor (BCF) (Filer et al.
2014). We used the potency [concentration for half-maximal ac-
tivity (AC50)] and efficacy (Emax) estimates provided by the
ToxCast program (Kavlock et al. 2012), as well as estimates for
the log P and BCF retrieved from the U.S. EPA Chemistry
Dashboard to calculate the ToxPi scores of 8,845 chemicals by
ToxPi graphical user interface (GUI) (version 2.0; Marvel et al.
2018).

Chemical Risk Prioritization and Uncertainty Analysis
Noncancer risk was expressed in terms of a probabilistic hazard
quotient (PrHQ) for each substance to prioritize its risk in this
study. PrHQ is the ratio of estimated human exposure (EHE;
milligrams per kilogram of BW per day) and probabilistic refer-
ence dose (RfD), a target human dose (HDI

M); milligrams per
kilogram of BW per day) was calculated according to Equation
(1) (Chiu et al. 2018; WHO/IPCS 2017). The HDI

M is the proba-
bilistic estimate of the human dose associated with an effect mag-
nitude M and population incidence I. Using this definition, we
derived estimates for the HDI

M for a population incidence of
I = 1%, that is, the HDI=0:01

M (median) is calculated by dividing
the benchmark dose for a magnitude of effect M (BMDM) by the
product of uncertainty factors (UFs: UFA,BW, a probabilistic fac-
tor of 4.5 for interspecies BW scaling; UFA,TKTB, a probabilistic
factor of 1 for interspecies toxicokinetic (TK) and toxicodynamic
(TD) differences (after BW scaling); UFH,I, a probabilistic factor
of 9.7 for human variability in sensitivity for a population inci-
dence I) (Equation 2) (Chiu et al. 2018; WHO/IPCS 2017). A
BMD10 (a benchmark response of 10% extra risk) was considered
to estimate PrHQ, which was modeled according to calculated rat
oral LD50 by the product of UFs (UFanimal-human: a factor of 10 for
interspecies; UFED-BMD: a factor of 10 for LD50 instead of
BMD10 and UFBMD-BMDL) (Equation 3) (WHO/IPCS 2017).

PrHQ=
EHE
HDI

M
, ð1Þ

HDI
M ¼ BMDM

UFA,BW ×UFA,TKTD ×UFH,I
, ð2Þ

BMD10 =
LD50

UFanimal-human ×UFED-BMD
: ð3Þ

In addition, to further assess the distribution of uncertainty
when estimating the PrHQ, Monte Carlo (MC) simulation was
conducted to simulate the impact of exposure and LD50 uncer-
tainty on calculating the PrHQ 10,000 times, using a similar
model as in our previous studies (Jia et al. 2019; Zhang et al.
2020). Three separate MC simulations were performed referring
to another previous study (Wambaugh et al. 2019): exposure pre-
diction uncertainty only, LD50 prediction uncertainty only, and
both exposure and LD50 prediction uncertainty.

We also defined a risk index (RI) as the product of normalized
exposure and ToxPi score (Equation 4) to estimate the potential
hazard of a chemical. The log-transformed exposure values pre-
dicted by SEEM were normalized to the interval [0, 1]. Thus, the
RIs ranged from zero to one, with values near one indicating high
potential risks. The uncertainties of risk index calculated from

the ToxPi Score and Exposure followed the MC simulation men-
tioned above.

RI =Exposurenormalized × ToxPi Score: (4)

Pearson correlation coefficients were also calculated to
assess the bivariate relationship between the overlapping
substances rank-based PrHQ and RI by IBM SPSS (version
22.0; IBM).

Biotransformation Metabolite Prediction
The open-access biotransformation prediction tool BioTransformer
was used to predict the biotransformation metabolites of the chemi-
cals in the prioritized human exposome database (Djoumbou-
Feunang et al. 2019). This method offers a knowledge-based
approach to predict small-molecule biotransformation in human tis-
sues, the human gut, and the environment based on chemical struc-
ture and/or physicochemical properties. BioTransformer has been
reported to achieve a better prediction (49%) and recall (88%) than
Meteor Nexus, which is considered to be the gold standard for pre-
dicting biotransformations of xenobiotics, at the equivocal level of
confidence (35% precision, and 71% recall) (Djoumbou-Feunang
et al. 2019). Only compounds with a molecular weight ≤900 Da
and containing a limited set of 64 different structural motifs are
included in the training set of the model, whereas a number of
chemical classes, including ether lipids, glycerolipids, and glyc-
erophospholipids, sphingolipids, and acyl coenzyme A conju-
gates are excluded from the training set (Djoumbou-Feunang
et al. 2019). We retrieved biotransformation predictions and
compound identification data using the modules of a) the
Enzyme Commission-based (EC-based) transformation; b) the
CYP450 (phase I) transformation; c) the phase II transformation;
and d) human gutmicrobial transformation.

Development of a GUI of the HExpMetDB
We used Java (version 8; Oracle) to construct the HExpMetDB
GUI client program linked to a series of data that provides the abil-
ity to search for content associated with chemicals in our database.
The GUI allows users to search compounds by CASRN, formula,
mass-charge-ratio (m/z), adduct search, and accuracy (in parts per
million), and retrieve the correspondingmetadata including chemi-
cal identifiers, structures, and predicted data of HLBs, exposure
and rat oral LD50. Users can further search the candidate metabo-
lites of the searched parent compound. HExpMetDB (version 1.0)
of either Windows or Mac OS is available as an open-access Java
library in the Supplemental Material (file, HExpMetDB_for_Win.
zip or HExpMetDB_for_Mac.zip) and at https://github.com/
FangLabNTU/HExpMetDB. A user tutorial was also provided in
the Supplemental Material (Text S1, “Graphical User Interface
(GUI) installation” and Text S2, “Database functionality”).

Results

Chemical List Screening and Merging
The workflow used to compile the set of chemicals included in the
new prioritized human exposome database is illustrated in Figure
1. To enrich the database, we attempted to collect and merge rele-
vant chemicals from databases and literature for a broad
exposome-scale resource (Table 1). In total, a consolidated list of
20,756 compounds was successfully mapped to the prioritized
human exposome database in the present study. The database is
available in the Supplemental Material (Excel Table S2) and at
https://github.com/FangLabNTU/HExpMetDB. To date, U.S.
EPA HPV chemicals (U.S. EPA 2020c), European Inventory of
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Existing Commercial Chemical Substances (EINECS) (ECHA
2008), U.S. EPA Chemical Inventory for ToxCast (CHEMINV)
(U.S. EPA 2007), NIH Tox21 (https://tripod.nih.gov/tox21/samples)
chemicals andU.S. EPA pesticides (U.S. EPA 2017b) are the dom-
inant contributors of the exposome database, which covered 93%
(18,909/20,756) of the whole database (Figure 2). For each chemi-
cal compound with CASRN, we obtained metadata—such as the
InChIKey, DTXSID, IUPAC name, molecular formula, QSAR-
ready SMILES, average mass, and monoisotopic mass—from the
U.S. EPAChemistry Dashboard. The remaining prioritized chemi-
cals without CASRN were not included for downstream exposure
and toxicity evaluation.

HLB Evaluation
For the 20,756 chemicals with both CASRN and SMILES in the
database, we used the QSAR approach to predict their HLBs. The
HLBs of 19,406 chemicals listed in Excel Table S2 were success-
fully predicted; the calculation was not feasible for the rest of the
1,350 chemicals because they contained atoms outside of the
training set or have molecular weights >1,000 Da. Of those
19,406 chemicals, the median logKow and logKoa were estimated
to be 2.67 (range: −17:9 to 28.2) and 8.96 (−0:410 to 62.8),
respectively (Excel Table S2). The median HLB was predicted to
be 4.96 h. Chemicals such as matairesinol and L-cichoric acid
were predicted to have the shortest HLB of 0.05 h. On the other
hand, some perfluorinated compounds, such as perfluorotributyl-
amine and perfluorotetradecanoic acid, as well as some poly-
chlorinated biphenyls (PCBs), such as decachlorobiphenyl, were
predicted to have the longest HLB of 2× 106 h, with a wide range
of eight orders of magnitude. The HLBs of the typical environ-
mental pollutants di(2-ethylhexyl) phthalate (DEHP) and BPA
were predicted to be 4.5 h and 7.1 h, respectively, which were
close to the empirical HLBs 2.0 h and 6.4 h, respectively (Koch
et al. 2004; Thayer et al. 2015). The HLBs of persistent

bioaccumulative toxic chemicals, such as perfluorooctanoic acid
(PFOA) and 2,3,30,4,40-pentachlorobiphenyl (PCB-105), were
predicted to be 7,786 h (0.89 y) and 21,809 h (2.5 y), respec-
tively, with an order of magnitude lower than the experimentally
determined total eliminations of 4.37 y and 13.7 y, but within the
same order of magnitude (Kudo and Kawashima 2003; Seegal
et al. 2011). Overall, ∼ 70% (13,733/19,406) of the substances

Figure 1. Schematic workflow for Human Exposome and Metabolite Database (HExpMetDB) establishment. Note: CDC, Centers for Disease Control and
Prevention; FDA, U.S. Food and Drug Administration; GUI, graphical user interface; ISF, Iterative Fragment Selection; NIH, National Institutes of Health;
PrHQ, probabilistic hazard quotient; RI, risk index; SEEM3, Systematic Empirical Evaluation of Models; TEST, Toxicity Estimation Software Tool; ToxPi,
Toxicological Priority Index.

Figure 2. Overlap analysis of five major database mapping in HExpMetDB.
High production volume (HPV) chemicals, European Inventory of Existing
Commercial Chemical Substances (EINECS), U.S. EPA Chemical Inventory
for ToxCast (CHEMINV), NIH toxicology in the 21st Century (Tox21)
chemicals and U.S. EPA pesticides contain a total of 18,909 chemicals, cov-
ering 91% of the whole database (20,756). Note: EPA, Environmental
Protection Agency; HExpMetDB, Human Exposome and Metabolite
Database; NIH, National Institutes of Health.
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were estimated to have half-lives of <12 h and ∼ 80% (15,624/
19,406) with <24 h, which suggested that most of the substances
are effectively biotransformed with short HLBs.

Toxicity Estimation
We estimated oral LD50 for rat values of all substances using U.S.
EPA’s TEST software (U.S. EPA 2016b). Predicted oral LD50 of
rats were available for 14,786/20,756 substances, whereas the
LD50 values for the other 5,970 substances were unable to be
obtained through TEST (Excel Table S2). The −log10-transformed
predicted LD50 values for most of the chemicals—such as BPA
(1:85mol=kg BW), DEHP (1:10mol=kg BW), and triphenyl
phosphate (TPHP, 2:14mol=kg BW)—were similar to their exper-
imental values as retrieved by TEST, which were 1:85mol=kg
BW, 1:11mol=kg BW, and 1:97mol=kg BW, respectively (U.S.
EPA 2016b). After replacing the predicted LD50 values with the
experimental values, the median rat oral LD50 was 1:45× 10−2

(range: 2:50× 10−7 –2:48× 10−1) mol/kg BW, among which 2,3-
dibromo-7,8-dichlorodibenzo-p-dioxin (50,585-40-5) was predicted
to have the highest toxicity [1:78× 10−7 (90% prediction interval:
1:70× 10−9, 1:82× 10−5) mol/kg BW] (Figure 3A). For PFOA,
DEHP, and BPA, our LD50 values were of 176 mg=kg BW,
29,975 mg=kg BW, and 3,247 mg=kg BW, respectively, which
were consistent with the experimental data of 430− 680 mg=kg BW,
26,000 mg=kg BW, and 3,250 mg=kg BW, respectively (Kamel
et al. 2018; Kennedy et al. 2004; U.S. CPSC 2010). Our database also
provides the number of assays in which the chemical was tested as
well as the percent of assays for which the chemical was active in
ToxCast (U.S. EPA 2017a). Finally, 8,201 of the 20,756 originally
included substances were available in the database, with the percent-
age of active assays ranging from 0% to 73.8% (175/237). This infor-
mation allowed us to expand toxicity data on relevant end points,
such as endocrine disruption, carcinogenicity, and receptor binding,
among others.

Compared with the result of LD50, only 8,845 ToxPi scores of
chemicals were successfully calculated, ranging from 0.00 to
0.50 (Excel Table S3). Figure 3B shows the individual ToxPi
profiles for these reference chemicals and their ranking along
with the ToxPi score distribution for 8,845 chemicals; individual
slice scores for all 8,845 chemicals generated by ToxPi GUI (ver-
sion 2.0; Marvel et al. 2018) were available in Excel Table S3.
17a-Ethinylestradiol (EE2) and tributyltin chloride are among the
chemicals with the highest ToxPi values of 0.50 (95% CI: 0.22,
0.62) and 0.50 (95% CI: 0.26, 0.67), respectively. 2,2-Bis-(p-
hydroxyphenyl)-1,1,1-trichloroethane (HPTE) ranked third in the
present study.

Human Exposure Evaluation
A total of 15,408/20,756 substances had predicted exposure val-
ues obtained from SEEM (Excel Table S2). The estimated human
daily exposure to chemicals ranged from 3:17× 10−15 (95% CI:
3:82× 10−17, 4:19× 10−13) to 4:92× 100 (95% CI: 1:65× 10−7,
2:21× 105) mg/kg BW per day, spanning across 15 orders of
magnitude (Figure 3C). Dihexyl nonanedioate (DHND; CASRN
109-31-9), a plasticizer for food packaging material, was shown
to have the highest predicted exposure value. For BPA, DEHP,
and PFOA, the exposures were estimated to be 5:50× 10−5 (95%
CI: 1:92× 10−7, 2:04× 10−2), 2:72× 10−3 (95% CI: 1:36× 10−5,
4:55× 10−1), and 5:47× 10−8 (95% CI: 1:21× 10−10, 1:71× 10−5)
mg/kg BW per day, which were similar to the inferred exposures
of 5:05× 10−5, 4:5× 10−3, 1:70× 10−4, and 5:2× 10−7mg=kg BW
per day, respectively, in the previous studies (Lakind and Naiman
2008; Müller et al. 2003; Zhang et al. 2019).

Chemical Risk-Based Prioritization
To characterize the chemicals in the HExpMetDB according to
their potential risk, we used PrHQs that were based on both expo-
sure and toxicity estimates to prioritize the gathered chemicals
for their potential risk. Because some chemicals lack exposure or
LD50 prediction data, a total of 13,441 chemicals were prioritized
by ranking risk (Excel Table S2), among which the PrHQs ranged
from 3:32× 10−14 to 7:61× 100, covering 14 orders of magnitude
(Figure 4A). Our approach predicted that DHND would have the
highest risk ranking, and N,N0-di-2-naphthyl-p-phenylenediamine
(CASRN 93-46-9) was predicted to have the least risk potential.
Consistent with the previous study using bioactivity quotients
(BQs) for risk-based prioritization, chemicals with BQs >1 also
showed a higher risk ranking in our study, such as naphthalene
(85/13,441) and phenoxyethanol (118/13,441) (Shin et al. 2015).

In addition, we used 95th percentile PrHQ to characterize the
uncertainty of the prediction. Three MC simulations (SEEM pre-
diction uncertainty alone, LD50 prediction uncertainty alone, and
both) were performed to determine the PrHQ upper 95th percen-
tile. The ratio of the PrHQ for the 95th percentile to the median
indicates the relative contribution uncertainty with larger ratios
indicating greater uncertainty. We observed that the ratio values
of LD50 prediction uncertainty were relatively small (median
value of 5.75; Figure S1). Although the ratio of exposure predic-
tion uncertainty and both uncertainty were roughly close, which
indicated that exposure prediction predominated the main uncer-
tainty for the PrHQ estimate.

RIs of 7,770 chemicals calculated from the ToxPi Score were
observed ranging from 0 to 0.30 (Excel Table S2). Methyl linole-
ate (112-63-0, RI= 0:30) was estimated, with the highest poten-
tial risk contributed by both high prediction exposure value
(0:02 mg=kg BW per day) and ToxPi score (0.35). BPA (8/
7,770), 2,20,4,40-tetrahydroxybenzophenone (21/7,770), propyl-
paraben (33/7,770) and triclosan (TCS, 34/7,770) showed higher
priority ranking based on RI (Figure 4B). Interestingly, the ranks
based on RI were significantly correlated with the PrHQ ranking
order but with a small Pearson correlation coefficient (r=0:1,
p<0:001).

Biotransformation Metabolite Prediction
We used the BioTransformer software to predict the biotransfor-
mation metabolites of 20,756 chemicals in the our updated human
exposome database. Of which, 4,225 solicited chemicals could not
be applied to the BioTransformer algorithm because of either their
large molecular weights (>900 Da) or the nonmatched chemical
categories in the training set of the model. Thus, a total of 95,976
predicted metabolites were obtained from the prediction of 20,061
chemicals, of which, 19,212 were for EC-based metabolism,
72,193 for CYP 450 metabolism, 15,762 for phase II metabolism,
and 6,337 for human gut microbial metabolism. To provide the fur-
ther possibility for exposure biomarker development and identifi-
cation, we developed a biotransformation predicted metabolite
database of a total of 95,976 metabolites derived from the origi-
nally employed 20,756 xenobiotics.

HExpMetDB GUI
We used Java plugins to construct a GUI linking the series of
data above, aiming to provide the ability for fast searches from
our database. The initial interface is a search box allowing for a
chemical search using a CASRN, molecular formula, or m/z
(Figure 5). The corresponding metadata including chemical iden-
tifiers, structures, predicted HLBs, exposure, and rat oral LD50
can be retrieved for the searched chemical. The user can further
search the candidate metabolites of the searched parent
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compound. Our GUI also allows a search for candidate metabo-
lites by m/z or formula. A successful search result displays the
metabolites of the chemical entered with molecular formula or
m/z. According to the predicted metabolites, we can figure out the

possible metabolism pathways of the chemical. Figure 5 shows the
predicted metabolites using DEHP (CASRN 117-81-7) as an
example. The predicted results were consistent with the DEHP
metabolites observed in the previous study (Koch et al. 2006).

Figure 3. The cumulative distribution of (A) predicted rat oral LD50 (n=14,827); (B) Toxicological Priority Index (ToxPi) score (n=8,845); (C) Systematic
Empirical Evaluation of Model (SEEM) predicted exposure values (n=15,408). Some typical environmental pollutants are labeled. The summary data are
listed in Table S2 and Excel Table S2. Note: BCF, bioconcentration factor; BW, body weight; CI, confidence interval; Emax, efficacy; LD50, median lethal
dose; NR, nuclear receptor; PPAR, peroxisome proliferator-activated receptor; ToxPi, Toxicological Priority Index.

Environmental Health Perspectives 047014-7 129(4) April 2021



Discussion
The present study aimed to establish a database of human expo-
some for the screening of xenobiotic compounds, as well as their
possible metabolites in humans, to provide a resource for chemi-
cal annotation of the exposome and to prioritize chemicals based
on their risk. In the present study, we established a comprehen-
sive database and literature fusion to generate the HExpMetDB
with 20,756 chemicals. Besides the intrinsic physicochemical
properties, predicted HLBs, toxicity data, and exposure values
were based on the IFS approach, U.S. EPA’s TEST software/
ToxPI GUI, and SEEM, respectively. We further prioritized
13,441 chemicals in our database by both PrHQs and RIs. In
addition, we also established the predicted metabolite database
with a total number of 121,767 small molecules as the prepara-
tory database to extend the present exposome database. Our
HExpMetDB supports ongoing efforts in the field of exposomics
research with a wide range of applications, such as compound
identification in untargeted exposomics, mass spectral library de-
velopment, a meta-analysis of chemicals, prioritizing chemicals
for pollution mitigation control, and opening a new opportunity
for providing candidate exposure biomarkers for HBM in epide-
miological cohort studies (Barupal and Fiehn 2019).

Our database was established by aggregating and curating
existing chemical databases and the literature. The database
includes not only the parent compounds, but also their corre-
sponding metabolites that are likely to be present in humans.
However, given the fast-increasing number of new chemicals and
the dynamic human exposure levels with time, the need for a

systematic compilation of emerging chemicals to gain more
insight into the human exposome is highlighted. Therefore, our
database should be periodically updated to incorporate new
chemicals in the future. In addition, we also provide users with
an email inquiry service, which can be used to calculate the pre-
dicted values in our server based on the chemical information
provided by the user, and further updating our database. Similar
chemical text mining and database fusion research were carried
out in the recently published blood and dust exposome databases
(Barupal and Fiehn 2019; Dong et al. 2019). However, our data-
base focused on the external chemical exposure and excluded en-
dogenous compounds (which can be a response to xenobiotic
exposure and thus also part of the exposome), trying to avoid the
overlap with the human metabolome database. As a result, our
database contains 20,756 parent compounds, which is less than
that of the Blood Exposome Database with 41,474 compounds
(Barupal and Fiehn 2019). Hence, more detailed and comprehen-
sive data mining still need to be carried out in subsequent GUI
updates.

The prediction of chemical HLB was based on an automated
IFS approach to develop and evaluate various QSARs, which
was well used to predict human HLB (Arnot et al. 2014). The
HLBs of 19,406 chemicals were successfully predicted in the
present study. Interestingly, the median predicted HLB was rela-
tively short (5.0 h), and 70.8% (13,733/19,406) of the substances
had half-lives of <12 h, which suggests that most of the chemi-
cals in our database have the potential to be easily metabolized in
the human body. Chemicals with short HLBs show the potential

Figure 4. (A) The cumulative distribution of chemical probabilistic hazard quotients (PrHQs) (n=13,441). The inset shows the PrHQs for typical environmen-
tal pollutants represented as exposure (blue) and toxicity (green) component slices. For each slice, the distance from the origin is proportional to the normalized
value. (B) The cumulative distribution of chemical risk indexes (RIs) (n=7,770). The summary data are listed in Excel Table S2.
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Figure 5. The graphical user interface (GUI) of our developed HExpMetDB. The compound search module can perform searches based on CASRN, formula,
mass-charge-ratio (m/z), adduct search with mass accuracy (in ppm), and retrieve the corresponding metadata including chemical identifiers, structures, and
predicted data of HLBs, exposure and rat oral LD50. The biotransformation metabolite prediction module can further search the candidate metabolites of the
searched compound. Di(2-ethylhexyl) phthalate (CASRN 117-81-7) biotransformation metabolite prediction was used as an example. Note: ALogP, predicted
values of the logarithm transformed 1-octanol/water partition coefficient; CASRN, Chemical Abstracts Service Registry Number; DTXSID, Distributed
Structure-Searchable Toxicity substance identifier; EC-based, enzyme commission based; HExpMetDB, Human Exposome and Metabolite Database; HLB, bio-
transformation half-life; ID, identifier; InChI, International Chemical Identifier; InChIKey, condensed version of the InChI; IUPAC, International Union of
Pure and Applied Chemistry; LD50, median lethal dose; PrRD, probabilistic reference dose; PrHQ, probabilistic hazard quotient; RI, risk index; SEEM3,
Systematic Empirical Evaluation of Models.
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to be easily eliminated via urine or feces as their metabolite
forms. The fact that most compounds have a short HLB suggests
that the HBM of the parent compounds could be very challenging
and even meaningless without knowing their xenobiotic biotrans-
formation products. The measured levels of parent compounds in
the blood or urine might be only a snapshot of the entire expo-
sure. This highlights the need for more refined information on
urinary exposure biomarkers in holistic exposomics studies.
However, only limited metabolites were known for the chemicals
in the current exposome database. Thus, in the present study, we
included predicted biotransformation metabolites in our expo-
some database for the further application in the compound identi-
fication in untargeted exposomics and developing new exposome
biomarkers for epidemiological investigation.

To estimate the toxicity of chemicals, the predicted oral LD50
values for rats by TEST were used in the present study. The
results indicated that our predicted oral LD50 data can well sup-
port the prioritization of chemicals. For example, the HDI=0:01

M
(median) calculated by our predicted LD50 values of BPA,
DEHP, tributyl phosphate, and tris(1,3-dichloro-2-propyl) phos-
phate (TDCPP) were 2:07× 10−1, 1:36× 100, 2:44× 10−1, and
1:47× 10−1 mg=kgBW per day, respectively, which are within
10 times of the HDI=0:01

M (median) retrieved from the APROBAweb
probabilistic RfD database (Chiu 2018) of 1:12× 10−2, 5:52× 10−1,
1:25× 100, and 1:65× 10−1 mg=kg per day, calculated by different
species and toxicity end points. Such a simple and convenient
approach could be used as a first step to facilitate the assessment of
chemical priority in terms of overall toxicity. However, the disad-
vantage of this method is that it may underestimate the risk of the
chemicals for their chronic and subchronic toxicity. Some studies
have made great progress in the prioritization method based on the
Tox21/ToxCast HTS assay using IVIVE (Ring et al. 2017; Sipes
et al. 2017; Wambaugh et al. 2015; Wetmore et al. 2012, 2014;
Wetmore 2015). Therefore, we further calculated the ToxPi score in
order to more comprehensively estimate the toxicity ranking of
chemicals.

A total of 97 in vitro HTS assays, as well as BCF and Log P,
were used in our ToxPi score calculation, which could be used to
indicate the overall endocrine-disrupting toxicity of a chemical.
As seen in the ranking distribution for 8,845 chemicals in Figure
3B, similar ranking results were also observed in the previous
study, which prioritized 309 ToxCast Phase I chemicals by their
ToxPi score (Reif et al. 2010). For example, the reference chemi-
cal HPTE and BPA were shown to be high-ranked chemicals,
whereas tebuthiuron was low-ranked, which was similar to the
results from our study, with a much larger number of tested
chemicals.

Figure 4 shows the individual profiles for some well-known
typical environmental chemicals and their positions along the
exposome and toxicity distribution for the 13,441 prioritized
chemicals. DHND had the highest PrHQ among the chemicals.
DHND’s high PrHQ is due to both the high exposure and strong
toxicity predicted in our study. From the distributional dot plot, it
can be seen that the PrHQ of a compound was not determined
solely by toxicity or exposure, but by both (Figure 4). When only
the exposure was considered, 2,3-dibromo-7,8-dichlorooxan-
threne (2,3-B-7,8-CDD; CASRN: 50585-40-5) was found to rank
only 11,972nd among the 13,441 compounds using the exposure-
based chemical prioritization; however, this compound ranked
122nd using the PrHQ risk-based chemical prioritization due to
its strong toxicity. A similar pattern was also observed for chemi-
cals such as TCS (3380-34-5) and difenacoum (56073-07-5).
Although their exposure levels are relatively low, their strong
toxicity increases priority (798/13,441 for TCS, and 314/13,441
for difenacoum). Although for chemicals such as phthalates

(PAEs), organophosphate flame retardants (OPFRs), and para-
bens, their higher priority was mainly contributed by their higher
exposure. Thus, 2-ethylhexyl diphenyl phosphate, propylparaben,
dihexyl phthalate, diethyl phthalate (DEP) and DEHP showed
relatively higher priority. All three MC simulation results indi-
cated that exposure prediction uncertainties were mainly contrib-
uted by exposure prediction, rather than toxicity prediction, for
PrHQ estimate when prioritizing chemicals. This is also expected
because of the high complexity of human exposure scenarios.

RI was calculated based on the combination of ToxPi score
(i.e., the results of various assays and parameters) and the assess-
ment of human exposure. Compared with PrHQ, RI could better
reflect the overall risk evaluation for multiple specific toxicity
end points. However, it should be noted that we only used the
predicted external exposure to calculate RI, and external expo-
sure to internal exposure estimation conversion is much needed
in future studies although we considered BCF and log P when
calculating ToxPi. The results further implied that there was
some consistency between PrHQ and ToxPi RI-based ranking,
but the ranking of some substances can be very different due to
the different priority principles. Both prioritization methods
should be considered in the risk assessment. Users can select ei-
ther PrHQ or RI or both provided in “my database” to filter out
the substances that meet their requirements.

In the present study, we also constructed a GUI that can con-
duct searches for chemical-specific results documented in our
database. Due to the integrated content, the dashboard can be fur-
ther used to search for the following information: a) a parent
compound and its intrinsic properties by m/z, CASRN or formula;
b) predicted data of HLB, toxicity and exposure through m/z,
CASRN or formula; c) predicted metabolites of a chemical in our
database; and d) candidate metabolites by m/z or formula of
metabolites. Our database opens a new opportunity to develop
exposure biomarkers for environmental epidemiology and to pro-
pose probable identifications for untargeted exposomics surveys.
The usage examples for our software can be found in the
Supplemental Material (Text S2, “Database functionality”).

This study has several limitations. First, the SEEM database
was unable to cover all the compounds summarized in the present
study, and SEEM merely represents the exposure of the general
Americans for their historical exposure. This highlights the need
for more studies on exposure estimates. Second, as our HTS
method is based on the U.S. EPA Chemistry Dashboard, only
chemicals with CASRN were successful in retrieving diverse
types of relevant domain data from the U.S. EPA Chemistry
Dashboard. Third, we cannot predict the HLBs of chemicals with
a metal atom or molecular weight of >1,000 using the IFS
approach and the portion of chemicals that failed to meet the
applicability domain of LD50 prediction. Fourth, the risk score
was calculated using the external exposure, and the IVIVE model
should be considered in future studies. Fifth, it should be also
noted that the risk assessment of chemicals in the present frame-
work is only based on each individual one and we cannot exclude
its toxicity due to chemical interaction (e.g., synergistic effect) in
the mixture effects, which has been shown in several recent stud-
ies (Hsieh et al. 2021; Liu et al. 2020; Zhang et al. 2020). Last,
BioTransformer cannot predict all metabolites, and the prediction
results may also be inaccurate for some chemicals. In addition,
there is still a knowledge gap on the identification of the exposure
biomarker among all possible biotransformation products.

In conclusion, we have established a human prioritized expo-
some database, which included both parent compounds and pre-
dicted potential metabolites, and developed a systematic approach
that integrates exposure and toxicity information in a holistic
framework for chemical risk-based prioritization. Our study would
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assist in a broad array of human exposure research by facilitating
chemical and metabolite identification. Nonbiased targeted and
untargeted chemical screening is still needed in the future to fully
prioritize the chemicals.

Acknowledgments
This work was funded by the Singapore Ministry of Education

Academic Research Fund Tier 1 (04MNP000567C120), the
Nanyang Technological University Harvard Sus Nano (M4082370),
and the Singapore Ministry of Health’s National Medical Research
Council under its Clinician-Scientist Individual Research Grant (CS-
IRG) (MOH-000141) and Open Fund-Individual Research Grant
(OFIRG/0076/2018).

References
Andrianou XD, van der Lek C, Charisiadis P, Ioannou S, Fotopoulou KN, Papapanagiotou

Z, et al. 2019. Application of the urban exposome framework using drinking water
and quality of life indicators: a proof-of-concept study in Limassol, Cyprus. PeerJ 7:
e6851, PMID: 31179170, https://doi.org/10.7717/peerj.6851.

Arnot JA, Brown TN, Wania F. 2014. Estimating screening-level organic chemical half-
lives in humans. Environ Sci Technol 48(1):723–730, PMID: 24298879, https://doi.org/
10.1021/es4029414.

Barupal DK, Fiehn O. 2019. Generating the Blood Exposome Database using a com-
prehensive text mining and database fusion approach. Environ Health
Perspect 127(9):97008, PMID: 31557052, https://doi.org/10.1289/EHP4713.

Bland J. 2007. Managing biotransformation: introduction and overview. Altern Ther
Health Med 13(2):S85–S87, PMID: 17405682.

Brown TN, Arnot JA, Wania F. 2012. Iterative fragment selection: a group contribu-
tion approach to predicting fish biotransformation half-lives. Environ Sci
Technol 46(15):8253–8260, PMID: 22779755, https://doi.org/10.1021/es301182a.

Castaño-Vinyals G, Cantor KP, Villanueva CM, Tardon A, Garcia-Closas R, Serra C,
et al. 2011. Socioeconomic status and exposure to disinfection by-products in
drinking water in Spain. Environ Health 10(1):18, PMID: 21410938, https://doi.org/10.
1186/1476-069X-10-18.

Chiu WA. 2018. APROBAweb: an interactive web application for probabilistic haz-
ard characterization/dose-response assessment. https://wchiu.shinyapps.io/
APROBAweb/ [accessed 12 February 2020].

Chiu WA, Axelrad DA, Dalaijamts C, Dockins C, Shao K, Shapiro AJ, et al. 2018.
Beyond the RfD: broad application of a probabilistic approach to improve
chemical dose–response assessments for noncancer effects. Environ Health
Perspect 126(6):067009, PMID: 29968566, https://doi.org/10.1289/EHP3368.

Dai D, Prussin AJ II, Marr LC, Vikesland PJ, Edwards MA, Pruden A. 2017. Factors
shaping the human exposome in the built environment: opportunities for engi-
neering control. Environ Sci Technol 51(14):7759–7774, PMID: 28677960,
https://doi.org/10.1021/acs.est.7b01097.

Djoumbou-Feunang Y, Fiamoncini J, Gil-de-la-Fuente A, Greiner R, Manach C,
Wishart DS. 2019. BioTransformer: a comprehensive computational tool for
small molecule metabolism prediction and metabolite identification. J
Cheminform 11(1):2, PMID: 30612223, https://doi.org/10.1186/s13321-018-0324-5.

Dong T, Zhang Y, Jia S, Shang H, Fang W, Chen D, et al. 2019. Human indoor expo-
some of chemicals in dust and risk prioritization using EPA’s ToxCast data-
base. Environ Sci Technol 53(12):7045–7054, PMID: 31081622, https://doi.org/10.
1021/acs.est.9b00280.

Donia MS, Fischbach MA. 2015. Human microbiota. Small molecules from the
human microbiota. Science 349(6246):1254766, PMID: 26206939, https://doi.org/
10.1126/science.1254766.

EC (European Commission). 2012. Food flavorings database: part I of Annex I of
Regulation (EC) NO 1334/2008. https://webgate.ec.europa.eu/foods_system/
main/?event=display [accessed 20 July 2019].

EC. 2017. Food additives database: Annex II of Regulation (EC) no 1333/2008. https://
webgate.ec.europa.eu/foods_system/main/?sector=FAD&auth=SANCAS [accessed
20 July 2019].

EC. 2020. Priority list of endocrine disruptors. https://ec.europa.eu/environment/
chemicals/endocrine/strategy/substances_en.htm [accessed 12 February 2020].

ECHA (European Chemical Agency). 2008. EC Inventory. https://echa.europa.eu/
information-on-chemicals/ec-inventory [accessed 12 February 2020].

ECHA. 2020. Candidate list of substances of very high concern for authorisation.
https://echa.europa.eu/candidate-list-table [accessed 12 February 2020].

Filer D, Patisaul HB, Schug T, Reif D, Thayer K. 2014. Test driving ToxCast: endo-
crine profiling for 1858 chemicals included in phase II. Curr Opin Pharmacol
19:145–152, PMID: 25460227, https://doi.org/10.1016/j.coph.2014.09.021.

Hebert A, Forestier D, Lenes D, Benanou D, Jacob S, Arfi C, et al. 2010. Innovative
method for prioritizing emerging disinfection by-products (DBPs) in drinking

water on the basis of their potential impact on public health. Water Res
44(10):3147–3165, PMID: 20409572, https://doi.org/10.1016/j.watres.2010.02.004.

Hsieh NH, Chen Z, Rusyn I, Chiu WA. 2021. Risk characterization and probabilistic
concentration–response modeling of complex environmental mixtures using
new approach methodologies (NAMs) data from organotypic in vitro human
stem cell assays. Environ Health Perspect 129(1):17004, PMID: 33395322,
https://doi.org/10.1289/EHP7600.

Jia S, Sankaran G, Wang B, Shang H, Tan ST, Yap HM, et al. 2019. Exposure and
risk assessment of volatile organic compounds and airborne phthalates in
Singapore’s child care centers. Chemosphere 224:85–92, PMID: 30818198,
https://doi.org/10.1016/j.chemosphere.2019.02.120.

Kamel AH, Foaud MA, Moussa HM. 2018. The adverse effects of bisphenol A on
male albino rats. J Basic Appl Zool 79:6, https://doi.org/10.1186/s41936-018-
0015-9.

Kavlock R, Chandler K, Houck K, Hunter S, Judson R, Kleinstreuer N, et al. 2012.
Update on EPA’s ToxCast program: providing high throughput decision support
tools for chemical risk management. Chem Res Toxicol 25(7):1287–1302, PMID:
22519603, https://doi.org/10.1021/tx3000939.

Kennedy GL, Butenhoff JL, Olsen GW, O’Connor JC, Seacat AM, Perkins RG, et al.
2004. The toxicology of perfluorooctanoate. Crit Rev Toxicol 34(4):351–384,
PMID: 15328768, https://doi.org/10.1080/10408440490464705.

Koch HM, Bolt HM, Angerer J. 2004. Di(2-ethylhexyl)phthalate (DEHP) metabolites
in human urine and serum after a single oral dose of deuterium-labelled DEHP.
Arch Toxicol 78(3):123–130, PMID: 14576974, https://doi.org/10.1007/s00204-003-
0522-3.

Koch HM, Preuss R, Angerer J. 2006. Di(2-ethylhexyl)phthalate (DEHP): human me-
tabolism and internal exposure—an update and latest results. Int J Androl
29(1):155–165, PMID: 16466535, https://doi.org/10.1111/j.1365-2605.2005.00607.x.

Kudo N, Kawashima Y. 2003. Toxicity and toxicokinetics of perfluorooctanoic acid in
humans and animals. J Toxicol Sci 28(2):49–57, PMID: 12820537, https://doi.org/10.
2131/jts.28.49.

Lakind JS, Naiman DQ. 2008. Bisphenol A (BPA) daily intakes in the United States:
estimates from the 2003–2004 NHANES urinary BPA data. J Expo Sci Environ
Epidemiol 18(6):608–615, PMID: 18414515, https://doi.org/10.1038/jes.2008.20.

Liu M, Jia S, Dong T, Zhao F, Xu T, Yang Q, et al. 2020. Metabolomic and transcrip-
tomic analysis of MCF-7 cells exposed to 23 chemicals at human-relevant lev-
els: estimation of individual chemical contribution to effects. Environ Health
Perspect 128(12):127008, PMID: 33325755, https://doi.org/10.1289/EHP6641.

Marvel SW, To K, Grimm FA, Wright FA, Rusyn I, Reif DM. 2018. ToxPi Graphical
User Interface 2.0: dynamic exploration, visualization, and sharing of integrated
data models. BMC Bioinformatics 19(1):80, PMID: 29506467, https://doi.org/10.
1186/s12859-018-2089-2.

Müller AK, Nielsen E, Ladefoged O. 2003. Human Exposure to Selected Phthalates
in Denmark. Glostrup, Denmark: Danish Veterinary and Food Administration.

Neveu V, Moussy A, Rouaix H, Wedekind R, Pon A, Knox C, et al. 2017. Exposome-
explorer: a manually-curated database on biomarkers of exposure to dietary
and environmental factors. Nucleic Acids Res 45(D1):D979–D984, PMID:
27924041, https://doi.org/10.1093/nar/gkw980.

Nieuwenhuijsen MJ, Martinez D, Grellier J, Bennett J, Best N, Iszatt N, et al. 2009.
Chlorination disinfection by-products in drinking water and congenital anoma-
lies: review and meta-analyses. Environ Health Perspect 117(10):1486–1493,
PMID: 20019896, https://doi.org/10.1289/ehp.0900677.

Papa E, van der Wal L, Arnot JA, Gramatica P. 2014. Metabolic biotransformation
half-lives in fish: QSAR modeling and consensus analysis. Sci Total Environ
470–471:1040–1046, PMID: 24239825, https://doi.org/10.1016/j.scitotenv.2013.10.
068.

Reif DM, Martin MT, Tan SW, Houck KA, Judson RS, Richard AM, et al. 2010.
Endocrine profiling and prioritization of environmental chemicals using
ToxCast data. Environ Health Perspect 118(12):1714–1720, PMID: 20826373,
https://doi.org/10.1289/ehp.1002180.

Remucal CK, Manley D. 2016. Emerging investigators series: the efficacy of chlo-
rine photolysis as an advanced oxidation process for drinking water treat-
ment. Environ Sci Water Res Technol 2(4):565–579, https://doi.org/10.1039/
C6EW00029K.

Richard AM, Judson RS, Houck KA, Grulke CM, Volarath P, Thillainadarajah I, et al.
2016. ToxCast chemical landscape: paving the road to 21st century toxicology.
Chem Res Toxicol 29(8):1225–1251, PMID: 27367298, https://doi.org/10.1021/acs.
chemrestox.6b00135.

Ring CL, Arnot JA, Bennett DH, Egeghy PP, Fantke P, Huang L, et al. 2019.
Consensus modeling of median chemical intake for the U.S. population based
on predictions of exposure pathways. Environ Sci Technol 53(2):719–732,
PMID: 30516957, https://doi.org/10.1021/acs.est.8b04056.

Ring CL, Pearce RG, Setzer RW, Wetmore BA, Wambaugh JF. 2017. Identifying
populations sensitive to environmental chemicals by simulating toxicokinetic
variability. Environ Int 106:105–118, PMID: 28628784, https://doi.org/10.1016/j.
envint.2017.06.004.

Environmental Health Perspectives 047014-11 129(4) April 2021

https://www.ncbi.nlm.nih.gov/pubmed/31179170
https://doi.org/10.7717/peerj.6851
https://www.ncbi.nlm.nih.gov/pubmed/24298879
https://doi.org/10.1021/es4029414
https://doi.org/10.1021/es4029414
https://www.ncbi.nlm.nih.gov/pubmed/31557052
https://doi.org/10.1289/EHP4713
https://www.ncbi.nlm.nih.gov/pubmed/17405682
https://www.ncbi.nlm.nih.gov/pubmed/22779755
https://doi.org/10.1021/es301182a
https://www.ncbi.nlm.nih.gov/pubmed/21410938
https://doi.org/10.1186/1476-069X-10-18
https://doi.org/10.1186/1476-069X-10-18
https://wchiu.shinyapps.io/APROBAweb/
https://wchiu.shinyapps.io/APROBAweb/
https://www.ncbi.nlm.nih.gov/pubmed/29968566
https://doi.org/10.1289/EHP3368
https://www.ncbi.nlm.nih.gov/pubmed/28677960
https://doi.org/10.1021/acs.est.7b01097
https://www.ncbi.nlm.nih.gov/pubmed/30612223
https://doi.org/10.1186/s13321-018-0324-5
https://www.ncbi.nlm.nih.gov/pubmed/31081622
https://doi.org/10.1021/acs.est.9b00280
https://doi.org/10.1021/acs.est.9b00280
https://www.ncbi.nlm.nih.gov/pubmed/26206939
https://doi.org/10.1126/science.1254766
https://doi.org/10.1126/science.1254766
https://webgate.ec.europa.eu/foods_system/main/?event=display
https://webgate.ec.europa.eu/foods_system/main/?event=display
https://webgate.ec.europa.eu/foods_system/main/?sector=FAD&auth=SANCAS
https://webgate.ec.europa.eu/foods_system/main/?sector=FAD&auth=SANCAS
https://ec.europa.eu/environment/chemicals/endocrine/strategy/substances_en.htm
https://ec.europa.eu/environment/chemicals/endocrine/strategy/substances_en.htm
https://echa.europa.eu/information-on-chemicals/ec-inventory
https://echa.europa.eu/information-on-chemicals/ec-inventory
https://echa.europa.eu/candidate-list-table
https://www.ncbi.nlm.nih.gov/pubmed/25460227
https://doi.org/10.1016/j.coph.2014.09.021
https://www.ncbi.nlm.nih.gov/pubmed/20409572
https://doi.org/10.1016/j.watres.2010.02.004
https://www.ncbi.nlm.nih.gov/pubmed/33395322
https://doi.org/10.1289/EHP7600
https://www.ncbi.nlm.nih.gov/pubmed/30818198
https://doi.org/10.1016/j.chemosphere.2019.02.120
https://doi.org/10.1186/s41936-018-0015-9
https://doi.org/10.1186/s41936-018-0015-9
https://www.ncbi.nlm.nih.gov/pubmed/22519603
https://doi.org/10.1021/tx3000939
https://www.ncbi.nlm.nih.gov/pubmed/15328768
https://doi.org/10.1080/10408440490464705
https://www.ncbi.nlm.nih.gov/pubmed/14576974
https://doi.org/10.1007/s00204-003-0522-3
https://doi.org/10.1007/s00204-003-0522-3
https://www.ncbi.nlm.nih.gov/pubmed/16466535
https://doi.org/10.1111/j.1365-2605.2005.00607.x
https://www.ncbi.nlm.nih.gov/pubmed/12820537
https://doi.org/10.2131/jts.28.49
https://doi.org/10.2131/jts.28.49
https://www.ncbi.nlm.nih.gov/pubmed/18414515
https://doi.org/10.1038/jes.2008.20
https://www.ncbi.nlm.nih.gov/pubmed/33325755
https://doi.org/10.1289/EHP6641
https://www.ncbi.nlm.nih.gov/pubmed/29506467
https://doi.org/10.1186/s12859-018-2089-2
https://doi.org/10.1186/s12859-018-2089-2
https://www.ncbi.nlm.nih.gov/pubmed/27924041
https://doi.org/10.1093/nar/gkw980
https://www.ncbi.nlm.nih.gov/pubmed/20019896
https://doi.org/10.1289/ehp.0900677
https://www.ncbi.nlm.nih.gov/pubmed/24239825
https://doi.org/10.1016/j.scitotenv.2013.10.068
https://doi.org/10.1016/j.scitotenv.2013.10.068
https://www.ncbi.nlm.nih.gov/pubmed/20826373
https://doi.org/10.1289/ehp.1002180
https://doi.org/10.1039/C6EW00029K
https://doi.org/10.1039/C6EW00029K
https://www.ncbi.nlm.nih.gov/pubmed/27367298
https://doi.org/10.1021/acs.chemrestox.6b00135
https://doi.org/10.1021/acs.chemrestox.6b00135
https://www.ncbi.nlm.nih.gov/pubmed/30516957
https://doi.org/10.1021/acs.est.8b04056
https://www.ncbi.nlm.nih.gov/pubmed/28628784
https://doi.org/10.1016/j.envint.2017.06.004
https://doi.org/10.1016/j.envint.2017.06.004


Seegal RF, Fitzgerald EF, Hills EA, Wolff MS, Haase RF, Todd AC, et al. 2011.
Estimating the half-lives of PCB congeners in former capacitor workers meas-
ured over a 28-year interval. J Expo Sci Environ Epidemiol 21(3):234–246, PMID:
20216575, https://doi.org/10.1038/jes.2010.3.

Shephard GS. 2008. Determination of mycotoxins in human foods. Chem Soc Rev
37(11):2468–2477, PMID: 18949120, https://doi.org/10.1039/b713084h.

Shin HM, Ernstoff A, Arnot JA, Wetmore BA, Csiszar SA, Fantke P, et al. 2015. Risk-
based high-throughput chemical screening and prioritization using exposure
models and in vitro bioactivity assays. Environ Sci Technol 49(11):6760–6771,
PMID: 25932772, https://doi.org/10.1021/acs.est.5b00498.

Sipes NS, Wambaugh JF, Pearce R, Auerbach SS, Wetmore BA, Hsieh JH, et al.
2017. An intuitive approach for predicting potential human health risk with the
Tox21 10k library. Environ Sci Technol 51(18):10786–10796, PMID: 28809115,
https://doi.org/10.1021/acs.est.7b00650.

Sjerps RMA, Vughs D, van Leerdam JA, ter Laak TL, van Wezel A. 2016. Data-
driven prioritization of chemicals for various water types using suspect
screening LC-HRMS. Water Res 93:254–264, PMID: 26921851, https://doi.org/10.
1016/j.watres.2016.02.034.

Thayer KA, Doerge DR, Hunt D, Schurman SH, Twaddle NC, Churchwell MI, et al. 2015.
Pharmacokinetics of bisphenol A in humans following a single oral administration.
Environ Int 83:107–115, PMID: 26115537, https://doi.org/10.1016/j.envint.2015.06.008.

U.S. CPSC (Consumer Product Safety Commission). 2010. Toxicity review
of di(2-ethylhexyl) phthalate (DEPH). https://www.cpsc.gov/s3fs-public/
ToxicityReviewOfDBP.pdf [accessed 21 April 2020].

U.S. EPA. 2007. Chemical inventory for ToxCast. https://comptox.epa.gov/dashboard/
chemical_lists/CHEMINV [accessed 12 February 2020].

U.S. EPA. 2016a. The Data Management and Quality Assurance/Quality Control
Process for the Third Six-Year Review Information Collection Rule Dataset.
https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P100QO9Q.TXT [accessed 10
October 2020].

U.S. EPA. 2016b. User’s Guide for T.E.S.T. (version 4.2) (Toxicity Estimation Software
Tool): A Program to Estimate Toxicity from Molecular Structure. https://www.epa.
gov/chemical-research/users-guide-test-version-42-toxicity-estimation-software-
tool-program-estimate [accessed on 5th Feb. 2020].

U.S. EPA. 2017a. Chemistry dashboard. https://comptox.epa.gov/dashboard/dsstoxdb/
batch_search [accessed 12 February 2020].

U.S. EPA. 2017b. EPA: Pesticide Chemical Search Database. https://comptox.epa.
gov/dashboard/chemical_lists/EPAPCS [accessed 13 April 2022].

U.S. EPA. 2018a. ICIS-Air. https://ofmpub.epa.gov/sor_internet/registry/substreg/
searchandretrieve/searchbylist/search.do?search=&searchCriteria.substanceList=
79&searchCriteria.substanceType=-1 [accessed 10 October 2020].

U.S. EPA. 2018b. Organic Hazardous Air Pollutants National Emission Standards.
https://ofmpub.epa.gov/sor_internet/registry/substreg/searchandretrieve/searchbylist/
search.do?search=&searchCriteria.substanceList=180&searchCriteria.substanceType=-1
[accessed 10 October 2020].

U.S. EPA. 2020a. CAA112(b) HAP—Hazardous Air Pollutants. https://ofmpub.epa.
gov/sor_internet/registry/substreg/searchandretrieve/searchbylist/search.do?
search=&searchCriteria.substanceList=165&searchCriteria.substanceType=-
1 [accessed 10 October 2020].

U.S. EPA. 2020b. List of Lists: Consolidated List of Chemicals Subject to the Emergency
Planning and Community Right-to-Know Act (EPCRA), Comprehensive
Environmental Response, Compensation and Liability Act (CERCLA) and
Section 112(R) of the Clean Air Act. https://www.epa.gov/sites/production/
files/2015-03/documents/list_of_lists.pdf [accessed 10 October 2020].

U.S. EPA. 2020c. EPA: High Production Volume List. https://comptox.epa.gov/dashboard/
chemical_lists/EPAHPV [accessed 12 February 2020].

Ulrich N, Endo S, Brown TN, Watanabe N, Bronner G, Abraham MH, et al. 2017.
UFZ-LSER database v 3.2.1 [internet]. http://www.ufz.de/lserd [accessed on 4th
Feb. 2020].

USDA (U.S. Department of Agriculture). 2019. FoodData Central. https://fdc.nal.
usda.gov/index.html [accessed 12 February 2020].

Vikesland P, Raskin L. 2016. The drinking water exposome. Environ Sci Water Res
Technol 2(4):561–564, https://doi.org/10.1039/C6EW90016J.

Wambaugh JF, Setzer RW, Reif DM, Gangwal S, Mitchell-Blackwood J, Arnot JA,
et al. 2013. High-throughput models for exposure-based chemical prioritization
in the ExpoCast project. Environ Sci Technol 47(15):8479–8488, PMID: 23758710,
https://doi.org/10.1021/es400482g.

Wambaugh JF, Wang A, Dionisio KL, Frame A, Egeghy P, Judson R, et al. 2014. High
throughput heuristics for prioritizing human exposure to environmental chemicals.
Environ Sci Technol 48(21):12760–12767, PMID: 25343693, https://doi.org/10.1021/
es503583j.

Wambaugh JF, Wetmore BA, Pearce R, Strope C, Goldsmith R, Sluka JP, et al.
2015. Toxicokinetic triage for environmental chemicals. Toxicol Sci 147(1):55–
67, PMID: 26085347, https://doi.org/10.1093/toxsci/kfv118.

Wambaugh JF, Wetmore BA, Ring CL, Nicolas CI, Pearce RG, Honda GS, et al. 2019.
Assessing toxicokinetic uncertainty and variability in risk prioritization. Toxicol Sci
172(2):235–251, PMID: 31532498, https://doi.org/10.1093/toxsci/kfz205.

Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, et al. 2011. Gut flora
metabolism of phosphatidylcholine promotes cardiovascular disease. Nature
472(7341):57–63, PMID: 21475195, https://doi.org/10.1038/nature09922.

Warth B, Sulyok M, Fruhmann P, Mikula H, Berthiller F, Schuhmacher R, et al.
2012. Development and validation of a rapid multi-biomarker liquid chromatog-
raphy/tandem mass spectrometry method to assess human exposure to myco-
toxins. Rapid Commun Mass Spectrom 26(13):1533–1540, PMID: 22638970,
https://doi.org/10.1002/rcm.6255.

Wetmore BA. 2015. Quantitative in vitro-to-in vivo extrapolation in a high-throughput
environment. Toxicology 332:94–101, PMID: 24907440, https://doi.org/10.1016/j.tox.
2014.05.012.

Wetmore BA, Allen B, Clewell HJ III, Parker T, Wambaugh JF, Almond LM, et al.
2014. Incorporating population variability and susceptible subpopulations into
dosimetry for high-throughput toxicity testing. Toxicol Sci 142(1):210–224,
PMID: 25145659, https://doi.org/10.1093/toxsci/kfu169.

Wetmore BA, Wambaugh JF, Ferguson SS, Sochaski MA, Rotroff DM, Freeman K,
et al. 2012. Integration of dosimetry, exposure, and high-throughput screening
data in chemical toxicity assessment. Toxicol Sci 125(1):157–174, PMID: 21948869,
https://doi.org/10.1093/toxsci/kfr254.

WHO (World Health Organization). 2016. Ambient Air Pollution: A Global Assessment
of Exposure and Burden Of Disease. Geneva, Switzerland: WHO.

WHO/IPCS (International Programme on Chemical Safety). 2017. Guidance Document
on Evaluating and Expressing Uncertainty in Hazard Characterization. 2nd ed.
Geneva, Switzerland: WHO. https://apps.who.int/iris/bitstream/handle/10665/
259858/9789241513548-eng.pdf;jsessionid=751F81EC4EAD03E3C58D59BC1EE5ECB1?
sequence=1 [accessed 17 November 2020].

Wild CP. 2005. Complementing the genome with an “exposome”: the outstanding chal-
lenge of environmental exposure measurement in molecular epidemiology. Cancer
Epidemiol Biomarkers Prev 14(8):1847–1850, PMID: 16103423, https://doi.org/10.1158/
1055-9965.EPI-05-0456.

Williams AJ, Grulke CM, Edwards J, McEachran AD, Mansouri K, Baker NC, et al.
2017. The CompTox Chemistry Dashboard: a community data resource for envi-
ronmental chemistry. J Cheminform 9(1):61, PMID: 29185060, https://doi.org/10.
1186/s13321-017-0247-6.

Wilmanski T, Rappaport N, Earls JC, Magis AT, Manor O, Lovejoy J, et al. 2019. Blood
metabolome predicts gut microbiome α-diversity in humans. Nat Biotechnol
37(10):1217–1228, PMID: 31477923, https://doi.org/10.1038/s41587-019-0233-9.

Zhang LS, Davies SS. 2016. Microbial metabolism of dietary components to bioac-
tive metabolites: opportunities for new therapeutic interventions. Genome Med
8(1):46, PMID: 27102537, https://doi.org/10.1186/s13073-016-0296-x.

Zhang S, Kang Q, Peng H, Ding M, Zhao F, Zhou Y, et al. 2019. Relationship
between perfluorooctanoate and perfluorooctane sulfonate blood concentra-
tions in the general population and routine drinking water exposure. Environ
Int 126:54–60, PMID: 30776750, https://doi.org/10.1016/j.envint.2019.02.009.

Zhang Y, Liu M, Peng B, Jia S, Koh D, Wang Y, et al. 2020. Impact of mixture effects
between emerging organic contaminants on cytotoxicity: a systems biological
understanding of synergism between tris(1,3-dichloro-2-propyl)phosphate and
triphenyl phosphate. Environ Sci Technol 54(17):10722–10734, PMID: 32786581,
https://doi.org/10.1021/acs.est.0c02188.

Environmental Health Perspectives 047014-12 129(4) April 2021

https://www.ncbi.nlm.nih.gov/pubmed/20216575
https://doi.org/10.1038/jes.2010.3
https://www.ncbi.nlm.nih.gov/pubmed/18949120
https://doi.org/10.1039/b713084h
https://www.ncbi.nlm.nih.gov/pubmed/25932772
https://doi.org/10.1021/acs.est.5b00498
https://www.ncbi.nlm.nih.gov/pubmed/28809115
https://doi.org/10.1021/acs.est.7b00650
https://www.ncbi.nlm.nih.gov/pubmed/26921851
https://doi.org/10.1016/j.watres.2016.02.034
https://doi.org/10.1016/j.watres.2016.02.034
https://www.ncbi.nlm.nih.gov/pubmed/26115537
https://doi.org/10.1016/j.envint.2015.06.008
https://www.cpsc.gov/s3fs-public/ToxicityReviewOfDBP.pdf
https://www.cpsc.gov/s3fs-public/ToxicityReviewOfDBP.pdf
https://comptox.epa.gov/dashboard/chemical_lists/CHEMINV
https://comptox.epa.gov/dashboard/chemical_lists/CHEMINV
https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P100QO9Q.TXT
https://www.epa.gov/chemical-research/users-guide-test-version-42-toxicity-estimation-software-tool-program-estimate
https://www.epa.gov/chemical-research/users-guide-test-version-42-toxicity-estimation-software-tool-program-estimate
https://www.epa.gov/chemical-research/users-guide-test-version-42-toxicity-estimation-software-tool-program-estimate
https://comptox.epa.gov/dashboard/dsstoxdb/batch_search
https://comptox.epa.gov/dashboard/dsstoxdb/batch_search
https://comptox.epa.gov/dashboard/chemical_lists/EPAPCS
https://comptox.epa.gov/dashboard/chemical_lists/EPAPCS
https://ofmpub.epa.gov/sor_internet/registry/substreg/searchandretrieve/searchbylist/search.do?search=&searchCriteria.substanceList=79&searchCriteria.substanceType=-1
https://ofmpub.epa.gov/sor_internet/registry/substreg/searchandretrieve/searchbylist/search.do?search=&searchCriteria.substanceList=79&searchCriteria.substanceType=-1
https://ofmpub.epa.gov/sor_internet/registry/substreg/searchandretrieve/searchbylist/search.do?search=&searchCriteria.substanceList=79&searchCriteria.substanceType=-1
https://ofmpub.epa.gov/sor_internet/registry/substreg/searchandretrieve/searchbylist/search.do?search=&searchCriteria.substanceList=180&searchCriteria.substanceType=-1
https://ofmpub.epa.gov/sor_internet/registry/substreg/searchandretrieve/searchbylist/search.do?search=&searchCriteria.substanceList=180&searchCriteria.substanceType=-1
https://ofmpub.epa.gov/sor_internet/registry/substreg/searchandretrieve/searchbylist/search.do?search=&searchCriteria.substanceList=165&searchCriteria.substanceType=-1
https://ofmpub.epa.gov/sor_internet/registry/substreg/searchandretrieve/searchbylist/search.do?search=&searchCriteria.substanceList=165&searchCriteria.substanceType=-1
https://ofmpub.epa.gov/sor_internet/registry/substreg/searchandretrieve/searchbylist/search.do?search=&searchCriteria.substanceList=165&searchCriteria.substanceType=-1
https://ofmpub.epa.gov/sor_internet/registry/substreg/searchandretrieve/searchbylist/search.do?search=&searchCriteria.substanceList=165&searchCriteria.substanceType=-1
https://www.epa.gov/sites/production/files/2015-03/documents/list_of_lists.pdf
https://www.epa.gov/sites/production/files/2015-03/documents/list_of_lists.pdf
https://comptox.epa.gov/dashboard/chemical_lists/EPAHPV
https://comptox.epa.gov/dashboard/chemical_lists/EPAHPV
http://www.ufz.de/lserd
https://fdc.nal.usda.gov/index.html
https://fdc.nal.usda.gov/index.html
https://doi.org/10.1039/C6EW90016J
https://www.ncbi.nlm.nih.gov/pubmed/23758710
https://doi.org/10.1021/es400482g
https://www.ncbi.nlm.nih.gov/pubmed/25343693
https://doi.org/10.1021/es503583j
https://doi.org/10.1021/es503583j
https://www.ncbi.nlm.nih.gov/pubmed/26085347
https://doi.org/10.1093/toxsci/kfv118
https://www.ncbi.nlm.nih.gov/pubmed/31532498
https://doi.org/10.1093/toxsci/kfz205
https://www.ncbi.nlm.nih.gov/pubmed/21475195
https://doi.org/10.1038/nature09922
https://www.ncbi.nlm.nih.gov/pubmed/22638970
https://doi.org/10.1002/rcm.6255
https://www.ncbi.nlm.nih.gov/pubmed/24907440
https://doi.org/10.1016/j.tox.2014.05.012
https://doi.org/10.1016/j.tox.2014.05.012
https://www.ncbi.nlm.nih.gov/pubmed/25145659
https://doi.org/10.1093/toxsci/kfu169
https://www.ncbi.nlm.nih.gov/pubmed/21948869
https://doi.org/10.1093/toxsci/kfr254
https://apps.who.int/iris/bitstream/handle/10665/259858/9789241513548-eng.pdf;jsessionid=751F81EC4EAD03E3C58D59BC1EE5ECB1?sequence=1
https://apps.who.int/iris/bitstream/handle/10665/259858/9789241513548-eng.pdf;jsessionid=751F81EC4EAD03E3C58D59BC1EE5ECB1?sequence=1
https://apps.who.int/iris/bitstream/handle/10665/259858/9789241513548-eng.pdf;jsessionid=751F81EC4EAD03E3C58D59BC1EE5ECB1?sequence=1
https://www.ncbi.nlm.nih.gov/pubmed/16103423
https://doi.org/10.1158/1055-9965.EPI-05-0456
https://doi.org/10.1158/1055-9965.EPI-05-0456
https://www.ncbi.nlm.nih.gov/pubmed/29185060
https://doi.org/10.1186/s13321-017-0247-6
https://doi.org/10.1186/s13321-017-0247-6
https://www.ncbi.nlm.nih.gov/pubmed/31477923
https://doi.org/10.1038/s41587-019-0233-9
https://www.ncbi.nlm.nih.gov/pubmed/27102537
https://doi.org/10.1186/s13073-016-0296-x
https://www.ncbi.nlm.nih.gov/pubmed/30776750
https://doi.org/10.1016/j.envint.2019.02.009
https://www.ncbi.nlm.nih.gov/pubmed/32786581
https://doi.org/10.1021/acs.est.0c02188

	Risk-Based Chemical Ranking and Generating a Prioritized Human Exposome Database
	Introduction
	Methods
	Compiled List of Human Exposome Database
	Exposure Estimates
	Chemical Biotransformation Half-Life (HLB) Prediction
	Chemical Toxicity Prediction
	Chemical Risk Prioritization and Uncertainty Analysis
	Biotransformation Metabolite Prediction
	Development of a GUI of the HExpMetDB

	Results
	Chemical List Screening and Merging
	HLB Evaluation
	Toxicity Estimation
	Human Exposure Evaluation
	Chemical Risk-Based Prioritization
	Biotransformation Metabolite Prediction
	HExpMetDB GUI

	Discussion
	Acknowledgments
	References


