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Hypertension, the leading cause of death among all cardiovascular disease (CVD) risk 

factors, affects >1.1 billion adults worldwide.1,2 Fetal growth restriction (FGR), generally 

defined as fetal growth <10th percentile for gestational age and sex, is associated with 

increased risk of perinatal death and increases the risk of CVD, the leading cause of 

mortality worldwide.3–6 The annual incidence of FGR varies between 5% and 15%, 

depending on country, thus making FGR-associated CVD a major public health concern.7

Systematic reviews and meta-analyses have confirmed the inverse association between lower 

birth weight (BW) and higher blood pressure (BP) in later life, across age groups and 

independent of body mass index.8,9 BP tracking develops quite early in life. A longitudinal 

study in 1797 infants noted that BP tracking became stronger with age to 4 years.10,11 

Although experimental data strongly support the notion that FGR specifically programs 

hypertension, clinical studies remain equivocal.12,13 Furthermore, the underlying 

mechanisms are incompletely understood. Understanding these mechanisms will inform 

therapeutic approaches toward preventing or treating hypertension and attenuating CVD. 

Mechanistic links between FGR and hypertension include accelerated vascular aging, 
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programming of the renin-angiotensin system (RAS), maladaptive heart/kidney structure and 

physiology, sympathetic nervous system hyperactivity, and epigenetics.

Several studies noted the inverse association between BW and large artery stiffness across 

age groups (neonates through to ~30-year-old adults).14–19 Disrupted arterial elastin 

synthesis and deposition leads to stiffer vessels. The rate of elastin synthesis falls sharply 

after birth, leading to a low elastin reserve in affected individuals.20 The RAS, through its 

various metabolites, closely regulates arterial vasculature, and heart and kidney functions. 

FGR in human pregnancies and animal experiments of undernutrition have also been 

associated with decreased numbers of nephrons.21,22 Other possible contributors to the 

prenatal programming of hypertension include superimposed hyperfiltration with activated 

intrarenal RAS and the sympathetic nervous system.23 Last, the timing, severity, and 

duration of decreased substrate supply also impacts cardiovascular adaptations associated 

with FGR.24

This review summarizes each of these mechanisms with a focus on prevention and 

therapeutic strategies across the entire life course to mitigate hypertension and CVD.

Early Vascular Aging

Effects initiated in utero (abnormal fetoplacental blood flow) and amplified after birth 

(infancy to old age) owing to decreased arterial compliance, have an etiologic role in 

primary hypertension.25 The stiffened arteries may affect cardiac structure and function 

proximally, and high pulsatile stress may accelerate microvascular organ disease distally. 

Meta-analyses place arterial stiffness as an independent risk marker for future CVD risk 

(including hypertension) after adjusting conventional risk factors.26,27 Longitudinal 

appraisal of temporal relationships between arterial stiffness and incident hypertension 

suggests the precursor role for arterial properties.28

Interlinking FGR, Arterial Remodeling, and Endothelial Dysfunction

Alterations in the extracellular matrix of major arteries are influenced by their elastin 

content.20,29 Multiple pathways mediate vascular pathology (Figure 1; available at 

www.jpeds.com). Replacement of elastin with collagen, which is 100 times stiffer, occurs in 

FGR and permanently alters arterial compliance.20,30 With normal aging, the proportion of 

elastin is decreased and collagen is increased, making infants with FGR a classic cohort for 

studying early vascular ageing. Superimposed on “normal arterial aging,” this manifests in 

increased large artery stiffness and clinically as high BP.

Cord blood samples from FGR deliveries indicate activated RAS, especially increased 

angiotensin, contributing to increased fetoplacental vascular resistance.31 Pregnancies 

complicated by FGR with Doppler alterations are associated with higher placental 

angiotensin-converting enzyme (ACE) activity compared with those with normal fetal 

growth or low BW without Doppler abnormalities.24,32 RAS activation contributes to age-

related arterial remodeling, whereas chronic ACE inhibition (beginning at an early age) 

delays the progression, making it a monitoring/therapeutic target that requires more 

investigation.33 Decreased endothelial-derived nitric oxide bioavailability is also linked to 
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vascular pathologies and lower BW infants show early, persistent signs of endothelial 

dysfunction.34,35

Vascular Measures as Predictors of Long-term Cardiovascular Health

The advent of high-resolution B-mode ultrasound imaging has led to cardiac intima media 

thickness (cIMT) being widely used as a measure of subclinical atherosclerosis in pediatric 

research. Children with familial hypercholesterolemia have an increased cIMT.36,37 In 

adults, cIMT predicts myocardial infarction, stroke or death, and has been used as an end 

point in clinical trials assessing the impact of antihypertensive medications on 

cardiovascular risk.38–41 In adults, arterial stiffness has a strong predictive value for CVD 

events beyond that of classical risk factors such as pulse pressure.42 Such use of cIMT in 

pediatric populations is recent. A double-blind, placebo-controlled randomized controlled 

trial (RCT) recruited 214 children with familial hypercholesterolemia (age range, 8–18 

years). After 2 years of pravastatin therapy, the mean cIMT was decreased, whereas placebo 

therapy increased cIMT.43 Recent studies in neonates have found aortic intima media 

thickness (aIMT) equally useful, with increased aIMT, stiffness, and increased BP in infants 

with FGR early in the postnatal period.14–16,44 Relevant cardiac and vascular ultrasound 

features that are useful for understanding this maladaptation have been summarized 

elsewhere.45 At 32 weeks of gestation, growth-restricted fetuses have higher maximum 

aIMT and there is a correlation between fetal assessments and those 18 months after birth.46 

Systolic BP was significantly higher in the FGR subjects, correlating with both prenatal and 

postnatal aIMT values.46 This differential trajectory, identified before birth, predisposes to 

later hypertension and CVD risk. Arterial assessments in FGR cohorts aged 8–13 years and 

young adults also noted increased stiffness, impedance, and higher central pulse pressure.
47,48

Pulse wave velocity (PWV) measures arterial stiffness and is a measure of transit time and 

distance between the carotid and femoral arteries. A faster aortic PWV is related to the 

disruption in deposition of elastin and compounded by its replacement with stiffer collagen. 

In 707 young adults (~30 years of age), BW inversely correlated with PWV and pulse 

pressure, making PWV a plausible link between BW and elevated systolic BP.19 Carotid-

femoral PWV is a good surrogate CVD end point and is recognized for its excellent 

predictive value for CVD complications by the European Society of Cardiology guidelines.
19,41 The Baltimore Longitudinal Study of Ageing as well as a 2014 analysis of 27 

longitudinal studies noted the importance of PWV predictive value.26,28 Whether PWV can 

be used to identify individuals that were born FGR, and thus, be a target for preventive 

strategies to delay the progression of subclinical arterial stiffening and the onset of 

hypertension should be studied prospectively.

Vascular Stiffness as a Therapeutic Target

Preventive strategies to decrease the burden of adult CVD are more likely to be beneficial 

when implemented in early life, rather than in adulthood (after subclinical disease is 

established or after the onset of overt disease). In a RCT, the inverse association of BW with 

cIMT was present in control children (~8 years), but abrogated in those receiving a 

docosahexaenoic acid-rich supplement from 6 months to 5 years of age.49 Dietary 
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consumption of eicosapentaenoic acid and docosahexaenoic acid has specific vascular 

benefits in children and adolescents who were born FGR (eg, lower BP, lower cIMT, and 

aIMT).50 Furthermore, breastfeeding and postnatal nutrition improved FGR-induced 

cardiovascular remodeling (reduced heart sphericity and cIMT).51 RAS blockade has a 

significant impact on arterial structure and function independent of BP control.52–55 ACE 

inhibitors reset the balance between vasoconstriction/proliferation and vasodilatation/

antiproliferation.56,57 In rodents, ACE inhibitors (but not β-blockers) caused regression of 

the media-to-lumen ratio.58 Clinical human studies confirmed these findings, indicating that 

structural arterial wall remodeling (rather than increased BP alone) underlies arterial 

stiffening, and RAS inhibitors may slow down vascular ageing.59–61 In infants with severe 

bronchopulmonary dysplasia associated hypertension ACE inhibition decreased the aIMT 

and increased pulsatility.62 The influence of prematurity and FGR on arterial structure and 

function may be intertwined. Comparing preterm born adolescent females (~16 years of age) 

with controls, BP was significantly higher in the former, whereas carotid stiffness and PWV 

were comparable with controls.63 In contrast, brachioradial artery stiffness and BP was 

significantly higher amongst preterm FGR born children but not those born preterm or term 

appropriate for gestation.64

RAS Maladaptation: Increased Angiotensin II and Decreased 

Angiotensin-(1–7)

Increased activation of the RAS and the vasoconstricting, proliferative, inflammatory, and 

fibrotic actions of angiotensin II on the vasculature may have an important role to play.

Mechanisms

There are 2 primary pathways within the RAS; the first consists of ACE-angiotensin II-

angiotensin II type 1 receptor. Renin converts angiotensinogen into angiotensin I, which 

ACE then converts into angiotensin II, which acts at the angiotensin II type 1 receptor to 

increase BP via vasoconstriction, kidney salt, and water retention (via stimulating 

aldosterone release), and augmenting sympathetic nervous system tone.65,66 The counter-

regulatory ACE2-angiotensin-(1–7)-Mas receptor pathway protects against angiotensin II-

mediated increased BP.67 ACE2 converts angiotensin II into angiotensin-(1–7), which acts at 

the Mas receptor to promote vasodilation, increased kidney salt and water excretion, and 

increased parasympathetic tone.65,68–70 RAS is also immunomodulatory: angiotensin II 

promotes oxidative stress leading to inflammation and ultimately fibrosis, whereas 

angiotensin-(1–7) promotes nitric oxide production and mitigates angiotensin II-mediated 

inflammation.71 ACE and ACE2 also inactivate angiotensin-(1–7) and angiotensin I by 

converting them into less bioactive peptides.72,73 Thus, the balance between these RAS 

pathways is an important mediator in the pathogenesis of organ injury, as loss of 

angiotensin-(1–7) and/or increased angiotensin II can promote organ injury and hypertension 

development.74

Maternal/placental RAS dysregulation causing increased ACE-angiotensin II pathway 

expression and activity can contribute to placental insufficiency and resultant FGR, as well 

as mediate FGR-induced programmed hypertension in the offspring.75 The same holds true 
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for ACE2-angiotensin-(1–7) pathway suppression as an important contributor to FGR-

induced hypertension.67 FGR likely impairs beneficial cardiovascular and renal effects 

mediated via the angiotensin II type 2 receptor in offspring.76 Betamethasone-exposed sheep 

fetuses demonstrated higher BP, higher circulating ACE activity, lower ACE2 activity, and 

lower renal angiotensin-(1–7) levels associated with increased oxidative stress.77 Prenatal 

glucocorticoid-induced models of FGR in sheep consistently demonstrate that RAS 

programming in the brain and kidneys contribute to development of hypertension and can 

precede overt disease.78–81

Prediction of Later Disease

In humans, clinical evidence is lacking regarding the short- and long-term effects of FGR on 

offspring RAS expression, in part owing to the lack of a widely accepted research and 

clinical definition of FGR. Being born small for gestational age (BW <10th percentile for 

gestational age and sex) is a commonly used surrogate measure of FGR.5,82,83 Recent 

evidence supports the notion that perinatal RAS programming persists across the life span. 

Among children born term, low BW was associated with increased circulating ACE activity 

and angiotensin II compared with those born appropriate for gestational age; both circulating 

ACE activity and angiotensin II also positively correlated with BP.84 Compared with term 

deliveries, adolescents who were born preterm with very low BW had lower plasma 

angiotensin-(1–7) relative to angiotensin II concentrations, lower estimated glomerular 

filtration rate and increased proportion of high BP. High BP persisted into young adulthood; 

obesity and female sex magnified these programming effects.85–89

Therapeutic Targets

Further investigations are required to establish these causal mechanisms and to develop 

preventative and therapeutic strategies aimed at blocking or reversing abnormal RAS 

programming to shift the balance away from angiotensin II and back toward angiotensin-(1–

7). RAS blockade with ACE inhibitors to block angiotensin II production, and angiotensin II 

receptor blockers to block angiotensin II’s actions via its receptor are mainstays in treating 

hypertension. Clinical trials are needed to investigate if increasing angiotensin-(1–7), in 

addition to decreasing angiotensin II, could reverse or attenuate these programmed 

alterations over the life span to prevent hypertension and CVD or to reverse subclinical 

disease. Novel therapeutics, such as angiotensin-(1–7) itself or orally available analogues as 

well as ACE2, could be administered in the neonatal or early childhood period to upregulate 

angiotensin-(1–7) at the expense of angiotensin II, especially during periods of active injury.
90–92 For example, angiotensin-(1–7) attenuated vasoconstriction and induce renal 

vasodilation in adults.93,94 However, to date no trials have attempted to reverse programmed 

RAS alterations to prevent or attenuate disease.

Substrate Delivery and Fetal Heart Maladaptation

Fetal acute hypoxia leads to increased circulating noradrenaline, peripheral vasoconstriction 

and hypertension in the fetus, resulting in redistribution of blood flow are key adaptations to 

chronic hypoxemia.95,96
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Mechanisms

Although FGR sheep with chronic hypoxemia have no change in blood flow to the brain, 

heart, and adrenals (Figure 2; available at www.jpeds.com), they do have a decrease in 

oxygen and glucose delivery to the heart.97–99 This decreased substrate delivery to the heart 

is associated with a delay in cardiomyocyte maturation and a lesser number of fetal 

cardiomyocytes in the fetus that is sustained into adolescence.100–103 In addition, the mature 

cardiomyocytes that contribute to heart growth by hypertrophy are relatively larger in the 

FGR heart compared with the normally grown fetus.100 This factor is mediated by changes 

in signaling pathways that promote cardiac hypertrophy, such as angiotensin II, insulin-like 

growth factor 1 and 2 receptor, and noradrenalin.104,105

Prediction of Later Disease

The timing, severity, and duration of reduced substrate supply leading to FGR negatively 

influences the developing fetus’s cardiovascular development and physiology.24 FGR 

directly affects the heart by way of altered myofiber architecture, reduction in cardiac 

sarcomeric proteins, increased glycogen and collagen deposition, and interstitial fibrosis.
106,107 These effects are complemented by increased myocardial workload in the face of 

elevated placental resistance. FGR-induced fetal hypertension also contributes to cardiac 

hypertrophy. Human placental histopathology has recently noted vascular changes in FGR 

placentae.108 In utero cardiac remodeling has been noted by multiple investigators 

previously.109–111 Whether these early cardiovascular changes predict later-onset 

hypertension is as yet unknown.

Therapeutic Targets

Alterations in cardiac morphology are accompanied by subclinical cardiac dysfunction that 

can be demonstrated by fetal echocardiography.109–111 Several pathways have been 

identified as targets of intervention to improve heart health in the growth-restricted fetus, but 

must be tested in preclinical models to determine optimal timing and targets. In sheep 

models of chronic hypoxemia and FGR, fetal mean arterial BP is maintained but femoral 

artery blood flow is decreased compared with the normally grown fetus owing to greater 

dependence on the RAS and sympathetic tone.24,112–115 Infusion of an ACE inhibitor after 

approximately 135 days of gestation resulted in a greater hypotensive response in 

chronically hypoxemic FGR sheep fetuses when compared with normoxemic fetuses.113 

High habitual fish intake (n-3 poly unsaturated fatty acid content) has shown to increase BW, 

possibly owing to the ratio of biologically active prostacyclins to thromboxanes, reducing 

blood viscosity, and thereby facilitating placental blood flow.116–118 In an RCT of 533 

pregnant women, supplementation of 2.7 g/day of n-3 poly unsaturated fatty acid affected 

maternal thromboxane and prostacyclin production and pregnancies in the n-3 poly 

unsaturated fatty acid group weighed 107 g more (95% CI, 1–214).119,120 Although 

promising, the data are not yet sufficient to support a dietary supplementation 

recommendation. Oxidant injury is one of the proposed mechanisms. A double-blind, 

placebo-controlled RCT in FGR pregnancies is currently underway to assess the impact of 

maternal antenatal melatonin supplementation on early childhood neurodevelopmental 

Sehgal et al. Page 6

J Pediatr. Author manuscript; available in PMC 2021 April 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.jpeds.com


(ACTRN12617001515381). Whether melatonin has the potential to alter the 

cardiometabolic milieu remains to be seen.

Kidney Maladaptation and Influence of the Autonomic Nervous System

Kidneys undergo maladaptation in response to uteroplacental insufficiency and FGR with 

reduction in nephron numbers and hyperfiltration injury through the remaining nephrons. 

Delivery of high-pressure waveform, undampened by stiff major arteries, affects glomerular 

filtration. FGR has been shown to be associated with persistent aortic wall thickening and 

higher microalbuminuria during infancy.46

Mechanisms

Nephron number correlates positively with BW, and decreased in nephron numbers may 

increase the risk of hypertension.121,122 Maternal protein restriction reduced numbers of 

glomeruli, increased glomerular size, reduced glomerular filtration rate, and higher BP.21 In 

sheep, prenatal glucocorticoid administration increased offspring BP, a decreased number of 

nephrons, and reduced glomerular filtration rate related to alterations to the renal RAS and 

sodium handling, in a sex-specific manner.81,123–125 Glucocorticoid exposure from 

gestational days 15 to 19 in the rat programmed higher BP associated with a decreased 

number of nephrons in male offspring, whereas early exposure from gestational days 13 to 

14 programmed higher BP that was not associated with a change in nephron number.126 A 

decreased glomerular filtration rate was associated with decreased numbers of nephrons in 

male rats exposed to glucocorticoids but not maternal protein restriction.21,127 Once again, 

the timing and the type of insult seems critical. The relative contribution of the sympathetic 

and/or the parasympathetic nervous system to increased hypertension or CVD risk 

originating in early life remains unclear. Furthermore, a significant increase in heart rate in 

response to stress is associated with increased sympathetic and decreased parasympathetic 

nervous system activity in low BW women but not men, suggesting that discrepancies in 

sex-specific outcomes may be due to age or puberty status.128 Increased sympathetic 

nervous system activity is a mediator of increased heart rate in response to stress in low BW 

children and adolescents.129

Prediction of Later Disease and Therapeutic Targets

The role of the kidney in the developmental origins of hypertension extends beyond the 

contribution of nephron endowment. BP is regulated by activation of the RAS and 

sympathetic nervous systems. The reliance on either of these systems differs in growth-

restricted FGR fetuses compared with normally grown fetuses. Many regulatory systems 

contribute to sodium and fluid balance and vascular and nervous system tone in the long-

term BP control, including the RAS, and are therefore potential targets for therapeutic 

interventions.67,86,130,131 The promising potential of ACE inhibition has already been 

indicated elsewhere in this article. Prenatal exposure to maternal high salt intake programs 

sympathetic activation and increased BP response to stress in female but not male 

littermates, indicating that sex alters the developmental origins of sympathetic nervous 

system activation in a manner that is insult-specific.132 Infusion of an α-adrenergic 

antagonist, phentolamine, resulted in a greater fall in fetal BP in the FGR vs control fetuses 
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that was related to the degree of hypoxemia.112 An inverse relationship between the 

magnitude of the fetal hypotensive response to α-adrenergic blockade and arterial PO2 

suggested increased reliance on sympathetic tone to regulate BP in FGR. Chronic 

maintenance of BP through α-adrenoceptor activation in fetal life has long-term 

consequences for cardiovascular health. Renal denervation abolishes placental insufficiency- 

or perinatal dexamethasone-exposed programmed hypertension, implicating a role for the 

renal nerves.133–135 A summary of therapeutic constructs is presented in Figure 3 (available 

at www.jpeds.com).

Collectively, these studies indicate a critical role for the sympathetic nervous system in the 

etiology of increased BP in offspring exposed to FGR and other perinatal risk factors. 

Despite differences in the type of developmental insult, common mechanistic pathways 

contribute to the developmental origins of hypertension. Further investigation into the 

mechanisms involved in sympathetic activation and hypertension in individuals with FGR 

may lead to therapeutics and pharmacological targets to diminish CVD risk in this 

population.

Epigenetics: Generational Maladaptations

The role of epigenetic mechanisms in the developmental origins of cardiorenal disease is not 

yet clearly understood. Epigenetics implies inherited changes that do not alter the underlying 

DNA sequence, but ensure minute regulation of gene expression that may influence disease 

susceptibility in later life. Alcohol exposure during pregnancy is an example that alters the 

methylation patterns of several imprinted genes.136 Programming is initiated very early via 

epigenetic phenomena that occur preconception, periconception, or during gestation.
105,137,138 Dietary protein restriction of pregnant rats induces, and folic acid 

supplementation prevents, epigenetic gene expression modification in offspring.139 FGR rats 

have changes in lung expression of specific microRNA that increase RAS molecules.140 

Epigenetic processes can have a graded effect (as opposed to all-or-none), similar to the 

graded association between BW and chronic disease.141 In a study done on maternal low-

protein rats, Bogdarina et al noted that alteration of DNA methylation of one or more RAS 

component genes might result in the development of hypertension. angiotensin AT1b 

receptor gene expression is highly dependent on promoter methylation; upregulation by the 

first week of life resulted in increased receptor protein expression.142

Limitations to Current Knowledge

The relatively low prevalence of FGR in most birth cohorts, the heterogeneity in definitions 

of FGR, and the heterogeneity of causes of FGR have limited clinical studies to date.
4,13,82,83 Furthermore, it is crucial to accurately and consistently measure BP and define 

hypertension and related cardiac, kidney, and vascular outcomes to aid in comparing 

different clinical studies and pooling analyses. Developing reliable biomarkers to identify 

early or subclinical alterations in these mechanisms is vital. Inherent to this point is the 

reproducible measurement of components of the RAS that depend upon appropriate and 

rigorous blood and urine sample collection, processing, storage, and analytic methodologies.
143 An improved understanding of the epidemiology of developmental origins of disease will 
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aid in differentiating the risk imparted by FGR relative to other perinatal factors. This 

process should be the precursor to define that risk and enact therapeutic strategies to prevent 

or attenuate the early development of disease throughout the life span.

Moving Forward: Prevention and Therapeutics to Attenuate Maladaptation

Improving nutrition and living conditions between conception and early childhood and 

avoiding rapid increased in body size is key.144 In effect, the concept of mitigation through 

nutrition starts much earlier. Increased breast milk intake improved the metabolic and 

cardiovascular outcomes of growth-restricted animals.145 FGR was the strongest predictor of 

cardiovascular remodeling and BP at 4–5 years of age, breastfeeding for >6 months, and 

healthy fat dietary intake were associated with improved cardiac geometry and lower cIMT. 

Furthermore, overweight/obesity was associated with higher cIMT in FGR children 

compared with children born appropriate for gestational age.51 Evidently, postnatal nutrition 

ameliorates FGR-associated cardiovascular remodeling, identifying itself as an intervention 

option. A recent RCT indicates that micronutrient intervention in infancy (such as iron 

supplements) may modify the inverse association between BW and risk of hypertension.146

Monitoring childhood body weight and BP are essential for those whose BW were toward 

the lower end of the normal range or <10th percentile. The 2017 American College of 

Cardiology/American Heart Association and the American Academy of Pediatrics Clinical 

Practice Guidelines for High Blood Pressure in Adults and Children recommend screening 

BP in patients with a significant perinatal history; however, FGR per se is not included as a 

perinatal risk factor.147,148 This high-risk population includes those whose body mass index 

increases across percentiles. Prevention is paramount as the BP of patients with hypertension 

who had lower BW may be more difficult to control, often requiring multiple 

antihypertensive medications.149,150

Conclusions

Through the multiple mechanistic links outlined above, FGR is an important risk factor for 

later-onset hypertension. Better maternal periconception nutrition and health as well as 

management of preeclampsia, a common cause of FGR, are key toward prevention. Low-

cost interventions such as breastfeeding and targeted early nutritional interventions need to 

be reinforced, and large-scale population-based studies are needed to assess their impact on 

future incidence of hypertension and CVD. Establishment of clinical normative values of 

arterial thickness and PWV could aid in identifying subclinical disease and identify 

appropriate therapeutic windows. Existing drugs (ACE inhibitors, angiotensin II receptor 

blockers) or novel therapies that can target the RAS to decrease angiotensin II’s actions and 

promote angiotensin-(1–7) may be useful in preventing hypertension or CVD or treating 

subclinical disease. Whether ACE inhibitors, with their arterial wall-modulating properties, 

may be beneficial to nephron preservation in this population remains to be determined. 

Measures of vasculature tone/function as end points for clinical assessments and 

therapeutics seem plausible as biomarkers, as are RAS measurements. Physical activity 

(avoidance of sedentary lifestyle) and improved lean-fat ratio may be key to attenuate the 

development of the metabolic syndrome and hypertension. Age-appropriate interventions, 
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covering the life course nature of the disease (and its progression), may have a significant 

impact on preventing or delaying adult-onset CVD in this population.
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Glossary

ACE Angiotensin-converting enzyme

aIMT Aortic intima media thickness

BW Birth weight

BP Blood pressure

cIMT Carotid intima media thickness

CVD Cardiovascular disease

FGR Fetal growth restriction

PWV Pulse wave velocity

RAS Renin-angiotensin system

RCT Randomized controlled trial
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Figure 1. 
Mechanisms involved in increased arterial thickness and stiffness (central role of the RAS). 

ACE2, angiotensin-converting enzyme 2; Ang-(1–7), angiotensin-(1–7); AT1R, angiotensin 

II type 1 receptor; MasR, Mas receptor; NO, nitric oxide; TGF, transforming growth factor.
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Figure 2. 
There is no change in blood flow to the brain or heart but an increase in blood flow to the 

adrenal glands in the chronically hypoxemic intrauterine growth restriction (IUGR) (black 

bars) compared with the control (white bars) fetus, A. However, there is a decrease in 

oxygen and glucose delivery to the heart of the IUGR fetus compared with controls, B and 

C.
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Figure 3. 
Summary of therapeutic constructs. Ang, angiotensin; SNS, sympathetic nervous system; 

PNS, parasympathetic nervous system.
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