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Intralocus sexual conflict arises when the expression of shared alleles at a
single locus generates opposite fitness effects in each sex (i.e. sexually antag-
onistic alleles), preventing each sex from reaching its sex-specific optimum.
Despite its importance to reproductive success, the relative contribution of
intralocus sexual conflict to male pre- and post-copulatory success is not
well-understood. Here, we used a female-limited X-chromosome (FLX)
evolution experiment in Drosophila melanogaster to limit the inheritance of
the X-chromosome to the matriline, eliminating possible counter-selection
in males and allowing the X-chromosome to accumulate female-benefit
alleles. After more than 100 generations of FLX evolution, we studied the
effect of the evolved X-chromosome on male attractiveness and sperm com-
petitiveness. We found a non-significant increase in attractiveness and
decrease in sperm offence ability in males expressing the evolved X-chromo-
somes, but a significant increase in their ability to avoid displacement by
other males’ sperm. This is consistent with a trade-off between these traits,
perhaps mediated by differences in body size, causing a small net reduction
in overall male fitness in the FLX lines. These results indicate that the X-
chromosome in D. melanogaster is subject to selection via intralocus sexual
conflict in males.
1. Introduction
Sperm competition theory [1] predicts that males partition their energy invest-
ment between pre- and post-copulatory success when resources are limited,
leading to a trade-off between sexual attractiveness and sperm competitiveness
[2,3]. Selection on pre- and post-copulatory success in males can also lead to
sexual conflict, because traits that improve male paternity success can reduce
the fitness of their mates [4,5]. Interlocus sexual conflict (IRSC) arises when
these sex-specific strategies are mutually incompatible [6]. Reproductive
proteins that prevent selective sperm use by females and increase male fertiliza-
tion success relative to rivals at a cost to female fecundity are a classic example
of interlocus sexual conflict in Drosophila [7,8].

By contrast, intralocus sexual conflict (IASC) can arise when the expression
of shared alleles at a single locus generates opposite fitness effects in each sex
(i.e. sexually antagonistic alleles) [9], preventing them from reaching their
respective optima [10]. The unequal inheritance pattern of the X-chromosome
between the two sexes has led theoretical models to predict an accumulation
of sexually antagonistic alleles on the X-chromosome [11]. Some empirical
data support this model in Drosophila melanogaster [11–13], but not all [14,15].

IASC and IRSC are two distinct forms of sexual conflict that can interact
over a given trait (e.g. sperm competitiveness), since IASC may constrain
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Figure 1. Protocol for the female-limited X-chromosome (FLX) evolution experiment and graphical interpretation of the selection regimes’ effects on male per-
formance. (a) The FLX evolution protocol. The evolving X-chromosome (green bar) is passed from mother to daughter with the help of an FM balancer chromosome
(yellow bar). The parental cross produces four genotypes, of which the offspring above the dashed line are crossed to produce the next generation, and the offspring
under the dashed line are discarded. At generations 107, 143 and 160, males expressing the evolved X-chromosome (male offspring under the dashed line) were
used to study male pre- and post-copulatory success. The FM balancer carries several phenotypic markers, which can be used to phenotype offspring, as illustrated
by the pictures next to the genotypes (fly pictures by Qinyang Li). (b,c,d) Potential outcomes of the experiments. (b) FLX effects. If FLX males perform worse than
CFM and Cwt males, this should be a result of the FLX selection. (c) FM effects. If FLX and CFM males both perform worse than Cwt males, this suggests an effect of
the FM balancer. (d ) FLX versus FM effects. If males from the FLX regime perform worse than CFM males but similarly to Cwt males, this suggests that the
deleterious effects of a feminized X-chromosome seem to outweigh the FM effect.
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the response to IRSC [16,17]. How IASC contributes to
IRSC is still not well-understood [16,18], although there is
evidence that sexually antagonistic loci may often be sex-
biased to some extent [19,20]. In this study, we attempted
to investigate how IASC affects male reproductive success
using a female-limited X-chromosome (FLX) evolution
experiment, which has resulted in feminization of body size
and development time in males [15]. After more than 100
generations of FLX evolution, we measured three male
fitness components and analysed how male pre- and
post-copulatory success responded to the FLX evolution
experiment. We expected to see a reduction in both pre-
and post-copulatory fitness components in males expressing
a feminized FLX X-chromosome, assuming that the feminiza-
tion we observed in other traits is detrimental to male-specific
fitness (e.g. via pleiotropic effects, or if body size trades-off
with male-limited reproductive traits).
2. Material and methods
(a) Fly stocks
All experimental populations were established from a large
outbred LHM stock population and kept under standard
conditions (25°C; 12 h L : 12 h D light–dark cycle; 60% humidity;
cornmeal–molasses–yeast food [21]). The experimental protocol
for the evolution experiment is described in full detail in Lund-
Hansen et al. [15]. Briefly, an FM balancer (FM7a) was used to
control and limit the inheritance of the selected X-chromosomes
to the matriline in the female-limited X-chromosome (FLX)
selection regime (figure 1a). We also included two control
regimes: (i) Control FM (CFM), which was added to control for
any unexpected effects of the FM balancer, and (ii) Control
wild type (Cwt), which controls for other aspects of the exper-
imental protocol. The three regimes were kept in four replicate
populations each (see electronic supplementary material).

All target X/Y males carried the evolved genome (X, Y
and autosomal chromosomes) and were collected directly
from the selection regimes (figure 1a, male offspring under
the dashed line) using light CO2 anaesthesia (see electronic
supplementary material).

(b) Male attractiveness
We measured male attractiveness as copulation latency (the time
for a female to accept a mating) and mating frequency (the fre-
quency with which the target male is accepted). One 5-day-old
virgin LHM female was paired with a 5-day-old target virgin
male. The female mating responses were observed over a
period of 30 min and the time until copulation (copulation
latency), and whether it occurred at all (mating frequency)
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were noted. This experiment was carried out at generation 107, in
12 blocks within a day, with 20 flies per selection regime per
replicate population in each block, estimating the attractiveness
of a total of 80 males per regime (see electronic supplementary
material).

(c) Sperm competition
Sperm competitiveness of D. melanogaster males is defined by
both the ability to displace sperm that is resident in the female’s
reproductive tract (sperm offence) and the ability to resist dis-
placement by sperm from subsequent males (sperm defence)
[1,22]. Details of the protocol can be found in the electronic
supplementary material. Briefly, virgin females are provided
with the opportunity to mate with a target or competitor male
on consecutive days. For sperm defence, the target male is the
first to mate, and for offence, the target male is the second to
mate. Competitor males carry a brown eye mutation (bw−)
while target males are wild-type. Because the wild-type red eye
colour is dominant over the brown, the number of target and
non-target offspring produced by the female is used as a
measure of paternity share.

Both the sperm defence and offence experiments were carried
out at generation 143, in 15 experimental replicates per regime
per replicate population. Females that produced no offspring
after the first mating were removed from the experiments.
To ensure sufficient sample sizes, we performed the offence
experiment again at generation 160, with an average of 26
experimental replicates per regime per replicate population.

(d) Statistical analysis
All statistical analyses were conducted in RStudio v. 1.1.463
(http://www.rstudio.com/). The mating frequency was ana-
lysed by fitting a generalized linear mixed-effects model
(GLMM) from the R package lme4 [23], with the family set as
binomial (mated/not mated), with regime and block as fixed fac-
tors, and with replicate population nested within the regime as a
random effect. Copulation latency was analysed using the same
model (GLMM), but the family set as gamma. These two models
were tested for overdispersion using the dispersion_glmer com-
mand in the blmeco package [24].

For both the sperm defence and offence analyses, we first
excluded all vials that had fewer than 10 offspring, then we
used cbind() to create a response variable matrix of successes
(number of first male’s offspring) and failures (second male’s off-
spring) as the dependent variables in a binomial zero-inflated
GLMM (glmmTMB package in R) [25]. Regime and block (for
offence) were fixed factors, and replicate population was nested
within regime as a random effect. We checked for overdispersion
by visual inspection of the plot of scaled residuals using the simu-
lateResiduals() function in the DHARMa package [25]. The Anova
command from the car package [26] was used for type 3 sums of
squares significance testing. Post hoc analysis of effects was per-
formed using the package emmeans [27].

Finally, to see if the differences we observed could be related
to changes in body size, we used Pearson correlations to analyse
the relationship between male body size (thorax size from [15])
and sperm competitive ability (both defence and offence), with
population means as the unit of analysis [28].
3. Results and discussion
Limiting the inheritance of the X-chromosome to females for
over 100 generations should allow X-linked female-beneficial
alleles to increase in frequency, and we have previously found
evidence of feminization of body size and development time
in the FLX selection regime [15]. We therefore expected that
expressing the experimentally evolved X-chromosomes
would result in a reduction in pre- and/or post-copulatory
fitness components in males, assuming phenotypic feminiza-
tion is detrimental to males. Our results were consistent with
this expectation for sperm offence, although the effect did
not quite reach significance, but not for an attractiveness or
sperm defence. We did not find any significant correlations
between body size and sperm offence or defence on the repli-
cate population level (electronic supplementary material,
figures S1 and S2), but this may not reflect patterns on the
individual level.

We found no significant difference between regimes in
either mating frequency ( p = 0.24, electronic supplementary
material, table S1) or copulation latency ( p = 0.48, electronic
supplementary material, table S1) in the no-choice attractive-
ness experiment. This indicates that the FLX males were not
refused more or less often than the control males (figure 2a)
and were not more or less attractive than the control males
(figure 2b), despite their expression of the evolved X-chromo-
some. If anything, FLX males were actually slightly more
attractive than the other males (figure 2a,b), which is counter
to our expectations, even if the difference is not significant.
However, we have previously found that FLX males are
larger than the other males [15], and being large increases
male attractiveness and success in intrasexual competition
for access to females [29,30]. This may have compensated
for possible decreases in attractiveness in other traits (e.g.
courtship behaviour), if any exist.

For post-copulatory success, we found a significant differ-
ence between selection regimes in sperm defence (p = 0.009),
where FLX males sired a larger proportion of the offspring
than both CFM and Cwt males (figure 2c, table 1). This
increase is attributable to the selection regime and not the
presence of the FM balancer (figure 1b) and is consistent
with the previously observed increase in body size, if larger
males transfer more sperm or are preferred under cryptic
female choice [6,31]. By contrast, there was a trend towards
a significant difference between selection regimes in sperm
offence ( p = 0.08, table 1), where CFM males had higher per-
formance in sperm offence than FLX males, which sired a
similar proportion of offspring to that of Cwt males
(figure 2d ). The (non-significant) increase in sperm offence
seen in CFM males is likely to be a result of autosomal
and/or Y-linked adaptation to regain fitness in the presence
of the balancer (figure 1d ). However, the decreased offence
ability in FLX males compared with CFM males suggests
that any adaptation to regain fitness in the presence of the
balancer seems to have been outweighed by the deleterious
effects of a feminized X-chromosome in FLX males (figure 1c).
This interpretation is supported by our previous finding that
males carrying an FM balancer have substantially lower fit-
ness than wild-type males [15]. We are currently carrying
out follow-up experiments to disentangle these effects.

From previous work, we know that CFM males have a
marginally higher total reproductive fitness than FLX
and Cwt males [15]. Although this difference was not signifi-
cant, the overall pattern was very similar to the pattern seen
here in sperm offence. Collectively, these results suggest
that under normal conditions, any potential increase in
attractiveness or sperm defence in FLX males is outweighed
by other negative effects, including in sperm offence.
In addition, other research has shown that large males are
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Figure 2. Male mating attractiveness and sperm competition. (a) Counts of mated (blue) and unmated (red) males in the mating experiment for the three regimes.
(b) Comparison of copulation latency (mating speed) in minutes between regimes. (c) Sperm defence ability measured as proportion of offspring sired by the target
male. (d ) Sperm offence ability measured as proportion of offspring sired by the target male. Points with error bars represent overall means and standard errors, and
individual points are the means for the four replicate populations. FLX: red, CFM: blue, CWT: green. p-values are from Tukey’s HSD test.

Table 1. Summary of the results from ANOVA analysis of GLMM models.

fixed effects χ2 d.f. p-value

defence intercept 53.36 1 <0.001

regime 9.52 2 0.009

offence intercept 41.6 1 <0.001

regime 5.05 2 0.08

block 198.77 1 <0.001
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more harmful to females [32,33]. This may also serve to
decrease the post-copulatory success of the larger FLX males.

Several general conclusions can be drawn from our
results. First, that IASC may affect sex-specific fitness in com-
plex ways. We expected that release from intralocus sexual
conflict by a feminization of the X-chromosome would
result in a decrease in some or all male fitness components,
under the assumption that feminization is detrimental to
male fitness. Instead, we found evidence of an increase in
sperm defence ability in FLX males. This illustrates how dif-
ficult it can be to predict the outcome of releasing one sex
from IASC, which has also been shown in Timema stick
insects, where a transition to asexuality actually resulted in
masculinization of the female expression profile [34].
Second, the fact that sperm offence changed both in CFM
males relative to Cwt males, and in the FLX males relative
to the CFM males, suggests that this trait has been subject
to conflicting selection pressures under our selection regimes.
Specifically, the presence of the balancer seems to have
resulted in compensatory evolution on the Y-chromosome
and autosomes. Finally, although we cannot be sure of the
exact genetic mechanism, our results are also suggestive of
a trade-off between pre- and post-copulatory traits as pre-
dicted from sperm competition theory, specifically that an
investment in increased body size may come at a cost to
sperm offence ability (electronic supplementary material,
figure S2). This type of effect (but in the opposite direction)
was seen in Prasad et al. [28] and suggests that the large
but fast-developing FLX males [15] may trade-off body size
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against gonad development [15,35,36], although further
investigation is needed.
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