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Abstract

Neuroimaging studies of basic achievement skills – reading and arithmetic – often control for the 

effect of IQ to identify unique neural correlates of each skill. This may underestimate possible 

effects of common factors between achievement and IQ measures on neuroimaging results. Here, 

we simultaneously examined achievement (reading and arithmetic) and IQ measures in young 

adults, aiming to identify MRI correlates of their common factors. Resting-state fMRI (rs-fMRI) 

data were analyzed using two metrics assessing local intrinsic functional properties; regional 

homogeneity (ReHo) and fractional amplitude low frequency fluctuation (fALFF), measuring local 

intrinsic functional connectivity and intrinsic functional activity, respectively. ReHo highlighted 

the thalamus/pulvinar (a subcortical region implied for selective attention) as a common locus for 

both achievement skills and IQ. More specifically, the higher the ReHo values, the lower the 

achievement and IQ scores. For fALFF, the left superior parietal lobule, part of the dorsal attention 

network, was positively associated with reading and IQ. Collectively, our results highlight 

attention-related regions, particularly the thalamus/pulvinar as a key region related to individual 

differences in performance on all the three measures. ReHo in the thalamus/pulvinar may serve as 

a tool to examine brain mechanisms underlying a comorbidity of reading and arithmetic 

difficulties, which could co-occur with weakness in general intellectual abilities.

1. Introduction

Reading and arithmetic are basic achievement skills that influence an individuals’ success at 

school and beyond. As these domain-specific achievement skills are correlated with general 

intellectual abilities (indexed by IQ scores) (Gagné & St Père, 2001; Lambert & Spinath, 

2018; Susan Dickerson Mayes, Calhoun, Bixler, & Zimmerman, 2009; Peng, Wang, Wang, 
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& Lin, 2019), neuroimaging studies often control for the effect of IQ (i.e., IQ being entered 

as a covariate of no-interest or being matched between groups) to identify unique neural 

underpinnings of the achievement skills and their impairments (Ashkenazi, Rosenberg-Lee, 

Tenison, & Menon, 2012; De Smedt, Holloway, & Ansari, 2011; Eden et al., 2004; Hoeft et 

al., 2006; Koyama et al., 2011; Pugh et al., 2008; Rosenberg-Lee, Barth, & Menon, 2011). 

Although this analytical practice has been criticized from logical, statistical, and/or 

methodological perspectives (Dennis et al., 2009), it remains a topic of debate on whether 

IQ should be controlled for when studying relationships between brain structures/functions 

and the achievement skills. This lack of consensus in the literature is evident by the fact that 

majority of most recent neuroimaging studies of reading and arithmetic have still opted to 

control for IQ (Ashburn, Flowers, Napoliello, & Eden, 2020; Bulthe et al., 2019; Jolles et 

al., 2016; Michels, O’Gorman, & Kucian, 2018; Paz-Alonso et al., 2018).

Some prior studies, addressing the role of IQ in predicting the achievement skills and 

intervention responses, have indicated that IQ is not a direct cause of either academic 

achievement (Brankaer, Ghesquiere, & De Smedt, 2014; J. M. Fletcher, Francis, Rourke, 

Shaywitz, & Shaywitz, 1992; Francis, Fletcher, Shaywitz, Shaywitz, & Rourke, 1996; 

Murayama, Pekrun, Lichtenfeld, & Vom Hofe, 2013) or intervention responses for learning 

difficulties (Stuebing, Barth, Molfese, Weiss, & Fletcher, 2009; Vellutino, Scanlon, & Lyon, 

2000). Furthermore, neuroimaging studies have demonstrated that activations in core regions 

involved in the achievement skills (e.g., the left temporoparietal junction for reading) are 

independent of IQ (Hancock, Gabrieli, & Hoeft, 2016; Simos, Rezaie, Papanicolaou, & 

Fletcher, 2014; Tanaka et al., 2011). These prior findings lead us to think that significant 

correlations observed between the achievement and IQ tests likely reflect the consequence of 

both tests measuring common latent factors. Under this circumstance, the use of IQ as a 

covariate of no-interest could remove some unspecified factors accounting for an 

achievement skill, and thus potentially producing overcorrected or counterintuitive MRI 

findings. However, it may be equally misguiding to fail to use IQ as a covariate of interest, 

which would result in disregarding possible effects of shared factors between achievement 

and IQ measures on brain activation/connectivity.

Alternatively, both achievement and IQ measures can be simultaneously examined (e.g., an 

F-test with the two measures of interest) to detect regions where brain signals can be 

explained by either measure or their combination (Mumford, Poline, & Poldrack, 2015). 

This approach can answer questions, such as “which regions show significant associations 

with either measure (e.g., reading or IQ) or both measures”. In particular, the identification 

of regions common to both measures could help to understand neuromechanisms underlying 

bidirectional interactions between the achievement and IQ measures. Such bidirectional 

interactions have been recently appreciated, with mounting evidence from longitudinal 

studies. For reading and IQ relationships, early reading performance predicts later IQ, and 

early IQ predicts later reading performance (Chu, vanMarle, & Geary, 2016; Ramsden et al., 

2013; Ritchie, Bates, & Plomin, 2015). For arithmetic and IQ relationships, 10-week 

arithmetic training improves IQ, and 13-week reasoning training improves arithmetic 

performance (Lowrie, Logan, & Ramful, 2017; Sanchez-Perez et al., 2017). Most evidently, 

a meta-analysis of longitudinal studies (Peng et al., 2019) has rendered further evidence that 

intellectual abilities and achievement skills (both reading and mathematics) predict each 
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other even after controlling for initial performance. Crucially, neural substrates underlying 

such relations, which can be mediated by shared latent factors in the achievement skills and 

IQ, cannot be delineated by common analytical practices in the literature, that is, IQ being 

either covaried out (i.e., controlled for) or excluded from analysis.

In the current resting-state functional MRI (rs-fMRI) study, we address this issue by 

simultaneously examine both achievement (either reading or arithmetic) and IQ measures. 

Our primary aim is to explore rs-fMRI correlates common to both the achievement and IQ 

measures in young adults, whose achievement and IQ scores ranged along a continuum from 

conventionally impaired to superior performance. Specifically, we address our aim in a 

twofold way; 1) entering two covariates of interest – one for an achievement measure (either 

reading or arithmetic) and the other for Full-Scale IQ (FSIQ) and 2) entering the first 

principal component (PC1) – reduced from the three measures (reading, arithmetic, and 

FSIQ) – as the covariate of interest. The first approach uses F-tests, allowing us to detect 

regions associated with either measure (i.e., specific) or those associated with the common 

variance explained by the two measures (Mumford et al., 2015). The second approach using 

principal component analysis (PCA) allows us to explore common regions (Pugh et al., 

2013), reflecting the shared variance among the three measures (i.e., two achievement 

measures and FSIQ), irrespective of the achievement domains.

When analyzing rs-fMRI data, we focus on two data-driven metrics that index local/regional 

intrinsic functional properties; the first is voxel-wise regional homogeneity (ReHo; Zang, 

Jiang, Lu, He, & Tian, 2004), and the second is fractional amplitude of low frequency 

fluctuations (fALFF; Zou et al., 2008). ReHo, which is calculated with Kendall’s coefficient 

of concordance (KCC), estimates local or short-distance intrinsic functional connectivity 

(iFC) between the time-series of a given voxel and its nearest neighboring voxels. Jiang, et al 

(2015; 2016) have postulated that a higher ReHo value, representing higher synchronization 

of regional brain activity, indicates higher functional specification in a given region (e.g., the 

primary visual cortex has the highest ReHo value among regions in the visual ventral 

pathway). Unlike ReHo, fALFF is a frequency-domain analysis to assess the relative 

contribution of specific low frequency oscillations to the whole frequency range (Zou et al., 

2008). That is, fALFF is a measure of local brain activity, and does not provide any 

information on functional connectivity. Hence, ReHo and fALFF could be complementary in 

such that they potentially reveal different brain regions associated with cognitive functions 

and dysfunctions, although similar results/regions are often reported (Bueno et al., 2019; Hu 

et al., 2016; Yuan et al., 2013).

Both ReHo and fALFF have successfully detected regions associated with individual 

differences in cognitive abilities (S. Kuhn, Vanderhasselt, De Raedt, & Gallinat, 2014; Yang 

et al., 2015), clinical diagnoses/traits (Du, Liu, Hua, & Wu, 2019; Han et al., 2018; Hoexter 

et al., 2018; Respino et al., 2019; Xu, Zhuo, Qin, Zhu, & Yu, 2015; Xue, Lee, & Guo, 2018), 

and training/experience effects (Koyama, Ortiz-Mantilla, Roesler, Milham, & Benasich, 

2017; Qiu et al., 2019; Salvia et al., 2019; Wu et al., 2019). However, to date, there are only 

a handful of studies that have applied these metrics to examination of achievement skills, IQ, 

and/or their relationships. For reading, M. Xu et al. (2015) have examined fALFF, with 

controlling for IQ, and revealed that positive associations between fALFF in reading-related 
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regions (e.g., the posterior superior temporal gyrus) and semantic reading. For arithmetic, 

Jolles et al. (2016) compared a group of children with mathematical difficulties (i.e., lower 

arithmetic abilities) and the IQ-matched control group, the first of which was characterized 

by higher fALFF in the intraparietal sulcus – a core region associated with number 

processing (Dehaene, Piazza, Pinel, & Cohen, 2003) and arithmetic (Bugden, Price, 

McLean, & Ansari, 2012; Dehaene, Molko, Cohen, & Wilson, 2004; Jolles et al., 2016; 

Menon, 2010). Regarding ReHo, no study has explored its whole-brain patterns associated 

with either achievement or IQ measures (but see Koyama et al., 2017 using a region of 

interest analysis).

We opt to use data-driven ReHo and fALFF as the primary metrics, rather than seed-based 

correlation analysis (SCA) that is the most common way to examine resting-state functional 

connectivity. This is because ReHo and fALFF require no prior knowledge or hypotheses, 

unlike SCA requiring the selection of seeds (i.e., regions of interest). Investigators typically 

select seeds based on previous task-evoked/evoked fMRI findings in relevant cognitive 

domains: for example, Koyama et al. (2011) have employed multiple seeds based on meta-

analysis studies of reading-related fMRI findings. This selection of seeds is investigator-

specific (e.g., seed location, seed size), making SCA vulnerable to bias. In other words, SCA 

potentially overlooks brain regions that are not selected by investigators, as well as brain 

regions that are not typically activated during cognitive tasks of interest. For example, when 

examining auditory processing and its disorders, SCA would typically use seeds located in 

the primary auditory cortex based on prior task-evoked fMRI results (Bartel-Friedrich, 

Broecker, Knoergen, & Koesling, 2010; Talavage, Gonzalez-Castillo, & Scott, 2014); 

however, Pluta et al. (2014) have highlighted that ReHo in the precuneus, a core region of 

the default mode network (Buckner, Andrews-Hanna, & Schacter, 2008; Raichle et al., 

2001), rather than the auditory cortex, is associated with auditory processing disorders. 

Based on above-mentioned studies, we hypothesize that the current study, which uses data-

driven ReHo/fALFF, could reveal regions outside the networks that had been reported by 

previous fMRI studies (e.g., task-evoked fMRI, resting-state fMRI using SCA) of the 

achievement skills and IQ. This possibility can be even enhanced given that we 

simultaneously examine both achievement and IQ measures (e.g., IQ as a covariate of 

interest in F-tests), rather than controlling for IQ (e.g., IQ as a covariate of non-interest) – 

the latter is a long-standing common or standard analytic practice in the neuroimaging 

literature of reading and arithmetic.

2. Materials and Methods

2.1. Participants

Seventy-two young adults (28 males; mean age 21±1.9 years, age range = 18–25) were 

selected from a larger study (N = 159) that primarily aimed to examine neural mechanisms 

of sequence learning and overnight consolidation in adolescents and young adults. The 

inclusion criteria used here were as follows; 1) young adults older than 25 2) the completion 

of a battery of standardized tests measuring cognitive abilities, at least word reading, 

arithmetic, and IQ (see “2.2. Behavioral Measures” below), 3) the completion of two rs-

fMRI scans within the same MRI session, 4) English as the first language, and 5) no 
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demonstration of either extreme left-handedness assessed by the Edinburgh Inventory 

(Oldfield, 1971) (i.e., extreme left-handedness was defined by the score falling between −13 

and −24; scores range from −24 to 24, showing the most extreme left- and right-handedness, 

respectively), and 6) no excessive in-scanner head motion, indexed by mean frame-wise 

displacement (FD) (Jenkinson, Bannister, Brady, & Smith, 2002) > 0.2mm, in either the first 

or second rs-fMRI. Demographic characteristics of the participants are given in Table 1. 

Prior to participation, written informed consent was obtained from all participants in 

accordance with the guideline provided by Yale University’s Institutional Review Board 

with the Human Investigation committee. Participants received monetary compensation for 

their time and effort.

2.2. Behavioral measures

One-on-one assessment using standardized measures took place in a quiet room, typically 

one week prior to the MRI session. Intellectual abilities was assessed using the Wechsler 

Abbreviated Scale of Intelligence Second Edition (WASI: Wechsler, 1999). In the analysis, 

we used FSIQ, comprised of both Verbal Intelligence Quotient (VIQ) and Performance 

Intelligence Quotient (PIQ). The Vocabulary and Similarities subtests are combined to form 

VIQ, whereas the combination of the Block Design and Matrix Reasoning subtests forms 

PIQ. The two achievement skills (reading and arithmetic) were assessed using two subtests 

of the Woodcock-Johnson Tests of Achievement Third Edition (WJ-III) (Woodcock, Mather, 

& McGrew, 2007); 1) Letter Word Identification (LW) where participants were asked to 

identify and sound out isolated letters and words from an increasingly difficult vocabulary 

list and 2) Calculation (Calc) where participants were given a response booklet and asked to 

complete written mathematical/numerical operations at basic (e.g., addition, division) and 

higher (e.g., geometric, logarithmic) levels. Standard scores were obtained using age-based 

norms. Summary statistics for performance on the three standardized measures (LW, Calc, 

and FSIQ), which were used as the covariates of interest for rs-fMRI analyses, are provided 

in Table 1 and Figure 1.

The current analysis included all participants without any cut-off scores on the three 

measures of interest, mainly for two reasons; 1) impairments with achievement skills, 

particularly reading, are considered to represent the lower tail of a normal distribution of the 

abilities (Jack M. Fletcher et al., 1994; Rodgers, 1983; Shaywitz, Escobar, Shaywitz, 

Fletcher, & Makuch, 1992) (But see Rutter & Yule, 1975; Stevenson, 1988) and 2) the 

Diagnostic and Statistical Manual of Mental Disorders Fifth Edition (DSM-5: 

AmericanPsychiatricAssociation, 2013) has de-emphasized specific IQ scores as a 

diagnostic criterion of Specific Learning Disabilities and Intellectual Disabilities. 

Accordingly, there were some participants whose standard scores fell below the average 

range (lower than 85, defined as “weakness’). As shown in Figure 1.A, for FSIQ, none of 

our participants scored lower than 70 (i.e., a cut-off score of intellectual disabilities), but six 

participants’ scores fell into the 71–84 range, which can be classified as borderline 

intellectual functioning (Alloway, 2010; Wieland & Zitman, 2016). For reading, two 

participants demonstrated LW weakness (i.e., standard score lower than 85), both of whom 

also scored lower than 85 on FSIQ. For arithmetic, seven participants demonstrated Calc 
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weakness, only one of whom scored lower than 85 on FSIQ. No participant scored lower 

than 85 on both LW and Calc.

2.3. Principal component analysis (PCA) for LW, Calc, and FSIQ

Consistent with previous findings (Gagné & St Père, 2001; Susan Dickerson Mayes et al., 

2009), LW, Calc, and FSIQ were strongly correlated with each other in our sample: LW with 

FSIQ (r(70) = 0.76, p < 0.01 in Figure 1.B), Calc with FSIQ (r(70) = 0.71, p < 0.01 in Figure 

1.B), and LW with Calc (r(70) = 0.64, p < 0.01). Given these strong inter-correlations among 

the three main measures, we performed PCA, into which standard scores from the three 

measures were entered. For this analysis, we used the “Scikit-learn 0.19.1” (Python library: 

Python 3.6.4). Extracted first principal component (PC1) scores were subsequently used in 

one of statistical models to gain a better understanding of how PC1, the largest shared 

variance among the three measures, is associated with rs-fMRI metrics.

2.4. MRI procedure

Participants received explicit instructions and were placed comfortably in the MRI scanner. 

To prevent excessive motion during scanning, participants’ head in the head-coil was 

surrounded by memory foam cushions. To protect their hearing in the MRI scanner, 

participants wore over-ear headphones in addition to the disposable ear plugs. The MRI 

session was primarily composed of an 8-min structural MRI scan, two rs-fMRI scans (5 

minutes for each scan), and 5-min task-evoked fMRI scans using a serial reaction time task 

(SRTT). The first rs-fMRI scan was sandwiched between the first and second SRTT scans, 

while the second rs-fMRI scans took place immediately after the second SRTT scan. During 

each rs-fMRI scan, participants were instructed to remain still and keep their eyes open. The 

SRTT employed in the current study was described elsewhere (Hung et al., 2019). Total 

duration of the MRI session was approximately 45 min.

2.5. MRI data acquisition

All MRI data were collected using a Siemens TimTrio 3.0 Tesla scanner located at Yale 

School of Medicine’s Magnetic Resonance Research Center. Each of the two rs-fMRI scans 

was comprised of 150 contiguous whole-brain functional volumes acquired using an echo-

planar imaging (EPI) sequence (effective TE = 30ms; TR = 2000ms; flip angle = 80°; 32 

axial slices; voxel-size = 3.4×3.4×4.0mm; field of view = 220mm). A high-resolution T1-

weighted structural image was also acquired using a magnetization prepared gradient echo 

sequence (MPRAGE, TE = 2.77ms; TR = 2530ms; TI = 1100ms; flip angle = 7°; 176 slices; 

acquisition voxel size = 1.0×1.0×1.0mm; field of view = 256mm). For each individual, both 

structural (MPRAGE) and functional (rs-fMRI) data were visually inspected for excessive 

motion before data preprocessing. Via this visual inspection, 9 participants were excluded 

from the initial dataset (N = 159).

2.6. MRI data preprocessing

Data preprocessing was carried out using the Configurable Pipeline for the Analysis of 

Connectomes (CPAC version 0.3.9.1 http://fcp-indi.github.io/docs/user/index.html). To 

allow for stabilization of the magnetic field, the first three volumes within each rs-fMRI 
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dataset were discarded. Our rs-fMRI data preprocessing included the following steps: 

realignment to the mean EPI image to correct for motion, grand mean-based intensity 

normalization (all volumes scaled by a factor of 10,000), nuisance regression, spatial 

normalization, temporal band-pass filtering (0.01–0.1 Hz: this application was only for 

ReHo because fALFF involves computation of the power across the entire frequency 

spectrum), and spatial smoothing. For each individual’s rs-fMRI data, mean FD was 

calculated, and participants who showed “excessive motion” (mean FD > 0.2mm) were 

excluded from further analyses.

Nuisance regression was performed to control for the effects of head motion and to reduce 

the influence of signals of no interest. The regression model included linear and quadratic 

trends, the Friston-24 motion parameters (6 head motion, their values from one time point 

before, and the 12 corresponding squared items) (Friston, Williams, Howard, Frackowiak, & 

Turner, 1996), and the signals of five principal components derived from noise regions of 

interest (e.g., white matter, cerebral spinal fluid) using a component-based noise correction 

method (CompCor) (Behzadi, Restom, Liau, & Liu, 2007). Spatial normalization included 

the following steps: (1) anatomical-to-standard registration using Advanced Normalization 

Tools (ANTs; Avants et al., 2011); (2) functional-to-anatomical registration using FLIRT 

(Jenkinson et al., 2002) with a 6-degrees of freedom linear transformation, which was 

further refined using the Boundary-based Registration implemented in FSL (Greve & Fischl, 

2009); and (3) functional-to-standard registration by applying the transformation matrices 

obtained from step (1) and (2) using ANTs. Finally, spatial smoothing was performed, via 

FSL, using a Gaussian kernel (Full width at half maximum = 8 mm).

2.7. ReHo and fALFF

At the individual level, ReHo and fALFF maps were generated for each of the two rs-fMRI 

datasets obtained, resulting in two ReHo and two fALFF maps for each participant. For 

ReHo and fALFF, we primarily focused on the first rs-fMRI data and restricted the use of 

the second rs-fMRI data only to SCA (see “2.10.”) and confirmatory analyses (see “2.11.”). 

This was because a potential effect of recent task performance would be lesser on the first 

rs-fMRI than the second rs-fMRI (i.e., participants undertook one SRTT scan prior to the 

first rs-fMRI, while they had two SRTT scans prior to the second rs-fMRI).

ReHo, an index of local iFC, is defined as KCC for the time series of a given voxel with 

those of its nearest neighboring voxels (Zang et al., 2004). KCC for each voxel was 

calculated voxel-wise by applying a cluster size of 26 voxels (faces, edges, and corners) 

according to the following formula;

w =
∑ Ri

2 − n R 2

1
12K2 n3 − n

where W was the KCC of given voxels, ranging from 0 to 1, Ri was the rank sum of the ith 
time-point; R = ((n + 1)K/2 was the mean of the Ri, K was the number of time-series within 

a measured cluster (n = 27; one given voxel plus the others inside the cluster), and n was the 

number of ranks (corresponding to time-points). For fALFF that measures the intensity of 
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intrinsic functional activity (Zou et al., 2008), we computed the power spectrum at each 

voxel by transforming the time series to the frequency domain, and then calculated the 

square root of the amplitude at each frequency (which is proportional to the power at that 

frequency). Finally, we divided the sum of the amplitude across the low frequencies (0.01 to 

0.1 Hz) by the sum of the amplitudes across the entire frequency range. For each participant, 

ReHo and fALFF were computed in the native space, registered in the MNI space, and then 

smoothed. At the group level, we used FSL’s FEAT to perform whole-brain voxel-wise 

general linear models, with a study-specific mask that included voxels (in MNI space) 

present in at least 90% of participants. Whole-brain correction for multiple comparisons was 

performed using Gaussian Random Field Theory (Z > 3.1; cluster significance of p < 0.05).

2.8. Group models

We performed the following three group models to examine both ReHo and fALFF; 1) LW 

and FISQ standard scores entered as covariates of interest into an F-test, 2) Calc and FSIQ 

standard scores entered as covariates of interest into an F-test, and 3) PC1 scores entered as 

the covariate of interest. In each group model, we additionally included covariates of non-

interest; age, sex, mean FD, and whole-brain mean of each rs-fMRI metric (Yan, Milham 

2013). For both of the first and second models, we used FSIQ as a single unitary IQ 

measure, although the literature has shown that VIQ correlates more strongly with reading 

than does PIQ, whereas PIQ correlates more strongly with arithmetic skills than does VIQ 

(Ashkenazi, Rosenberg-Lee, Metcalfe, Swigart, & Menon, 2013; Strauss, Sherman, & 

Spreen, 2006). The main rationale for using FSIQ in the current study was that the 

correlation between FSIQ and LW (r(70) = 0.76, p < 0.01) was not significantly different 

from the correlation between VIQ and LW (r(70) = 0.77, p < 0.01) (Z = 0.29, p = 0.38) 

(Lenhard & Lenhard, 2014). Similarly, the correlation between FSIQ and Calc (r(70) = 0.71, 

p < 0.01) was not significantly different from the correlation between PIQ and Calc (r(70) = 
0.67, p < 0.01) (Z = 0.93, p = 0.17). For the third model, we performed PCA to detect a 

single factor (i.e., PC1) underlying common variation among the three measures that were 

significantly correlated with each other. Results of PCA showed that the PC1 accounted for 

81% of the total variance (Note that principal component 2 accounted only for 12%). PC1 

scores extracted for each individual were significantly (p < 0.01) correlated with LW (r(70) 
= 0.83), Calc (r(70) = 0.88), and FISQ (r(70) = 0.94), confirming that the PC1 is relevant to 

the achievement and intellectual abilities in the current sample. Resultant clusters were 

labelled/defined based on the Harvard-Oxford Cortical and Subcortical Structural Atlases, as 

well as the Colin27 Subcortical Atlas modified from the one described in Chakravarty, 

Bertrand, Hodge, Sadikot, and Collins (2006).

2.9. Brain-behavior relationships

F-test results need to be tested if either measure or the combination of measures is 

significant (Friston, et al. 2005). Hence, we extracted the mean ReHo/fALFF value across all 

voxels within each significant result/cluster from each participant, and then calculated R-

squared and p values that represent brain-behavior relationships. As F-test results are also 

non-directional (i.e., positive or negative), we made post-hoc visualization by plotting the 

mean ReHo/fALFF values extracted from each significant result/cluster as a function of the 

achievement skills and FSIQ. In addition, ReHo and fALFF values extracted from each 
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significant cluster identified by the model with PC1 (i.e., positively and/or negatively 

associated with PC1 scores) were plotted as a function of the achievement skills and FSIQ.

2.10. Seed-based correlation analysis (SCA)

We selected seed regions based on significant results from the whole-brain ReHo/fALFF 

analyses with the first rs-fMRI data. We performed post-hoc SCA for the second rs-fMRI 

data in order to avoid “double dipping” in our fMRI analysis (Kriegeskorte, Simmons, 

Bellgowan, & Baker, 2009). Our SCA aimed to explore whether and how global or longer-

distance iFC of given seeds (i.e., significant results from local rs-fMRI metrics) would be 

associated with LW, Calc, and/or FSIQ. At the individual level, the average time series 

across the voxels within each seed was extracted and correlated with all voxels within the 

group-specific mask, using Pearson’s correlation. Correlation values were transformed to 

Fisher Z scores to provide a whole-brain iFC map of each seed for each participant. At the 

group level, we employed the above-mentioned three models. The resultant iFC maps were 

corrected for multiple comparisons using Gaussian Random Field Theory (Z > 3.1; cluster 

significance: p < 0.05).

2.11. Confirmatory region of interest (ROI) analysis using the second rs-fMRI data

We applied ROI analysis to the second rs-fMRI data collected from the same sample, and 

then examined if results (i.e., brain-behavior relationships) from the whole-brain analysis 

using the first rs-fMRI data were significant in the second rs-fMRI data. This confirmatory 

ROI analysis aimed to test intra-individual reliability of brain-behavior relationships. For 

this purpose, we extracted the mean values of the second rs-fMRI ReHo/fALFF from each 

of significant clusters detected in the analyses using the first rs-MRI data. Subsequently, we 

calculated R-squared and p values that represent brain-behavior relationships in the second 

rs-fMRI data.

3. Results

3.1. ReHo results from the first rs-fMRI

Table 2 and Figure 2 summarize significant ReHo results from the three models. Both F-

tests (i.e., the first and second models) highlighted the thalamus with the peak voxels located 

in the left pulvinar (the “LW-Thalamus” cluster for the F-test with LW & FSIQ; the “Calc-

Thalamus” cluster for the F-test with Calc & FSIQ). Additionally, the PC1 scores were 

negatively associated with the thalamus (the “PC1-Thalamus” cluster).

3.2. ReHo-behavior relationships

We plotted the mean ReHo values (i.e., the first rs-fMRI data) extracted from each cluster as 

a function of the corresponding cognitive measures (e.g., LW and FSIQ for ReHo values in 

the LW-Thalamus cluster), as shown in the upper and middle scatter plots in Figure 2. First, 

the ReHo values from the LW-Thalamus cluster were negatively associated with LW (R2 = 

0.20, p < 0.001) and FSIQ (R2 = 0.35, p < 0.001): these two associations, with one variable 

in common (i.e., ReHo in the LW-Thalamus), were significantly different (Z = 2.1, p < 

0.05); more strongly associated with FSIQ than LW. Second, the ReHo values from the 

Calc-Thalamus cluster were negatively associated with Calc (R2 = 0.32, p < 0.001) and 
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FSIQ (R2 = 0.30, p < 0.001); these two associations, with one variable in common (i.e., 

ReHo in the Calc-Thalamus), were not significantly different (Z = 0.27, p = 0.78). In 

addition, we visualized relationships for the PC1 result by plotting the ReHo values from the 

PC1-Thalamus cluster as a function of each measure (LW, Calc, and FSIQ). There were 

significant negative associations for all three measures; LW (R2 = 0.21, p < 0.001), Calc (R2 

= 0.33, p < 0.001) and FSIQ (R2 = 0.30, p < 0.001) (The bottom scatter plot in Figure 2). 

These three associations, with one variable in common (i.e., ReHo in the PC1-Thalamus), 

were not significantly different between one another (Z = 1.14, p = 0.15 for LW and FSIQ; Z 
= 0.41, p = 0.68 for Cal and FSIQ; Z = 1.43, p = 0.15 for LW and Calc).

3.3. Common thalamus and ReHo results from the second rs-fMRI

As ReHo results from all the three models highlighted the thalamus, we identified the 

overlap among the three thalamus clusters and then created the “Common-Thalamus” 

cluster, which was located dominantly in the left hemisphere (the image on the left in Figure 

3). In the first rs-fMRI data, ReHo values from the Common-Thalamus cluster was 

significantly associated with LW (R2 = 0.13, p < 0.01), Calc (R2 = 0.21, p < 0.001), and 

FSIQ (R2 = 0.22, p < 0.001). These three associations, with one variable in common (i.e., 

ReHo in the Common-Thalamus), were not significantly different from one another (Z = 

1.47, p = 0.15 for LW and FSIQ; Z = 0.25, p = 0.80 for Cal and FSIQ; Z = 1.09, p = 0.27 for 

LW and Calc). This pattern (i.e., no significant differences in the associations) was seen at 

the thalamus cluster derived from the PC1 – the largest shared variance among the three 

measures.

To test reliability of our thalamus results, we performed confirmatory ROI analyses, using 

the second rs-fMRI data, for four clusters identified by the whole-brain analysis using the 

first rs-fMRI data: 1) LW-Thalamus, 2) Calc-Thalamus, 3) PC1-Thalamus, and 4) Common-

Thalamus. Results showed significant (p < 0.001) ReHo-behavior relationships in the second 

rs-fMRI data: 1) the LW-Thalamus cluster with LW (R2 = 0.19) and FSIQ (R2 = 0.24), 2) the 

Calc-Thalamus cluster with Calc (R2 = 0.20) and FSIQ (R2 = 0.29), 3) the PC1-Thalamus 

cluster with LW (R2 = 0.19), Calc (R2 = 0.24), and FSIQ (R2 = 0.30), and 4) the Common-

Thalamus cluster with LW (R2 = 0.16), Calc (R2 = 0.20) and FSIQ (R2 = 0.21). Taken 

together, the results from both the first and second rs-fMRI datasets suggest that higher 

ReHo in the thalamus is reliably associated with lower LW, Calc, and FSIQ.

3.4. fALFF results from the first and second rs-fMRI

As shown in Figure 4, the F-test with LW and FSIQ highlighted the left superior parietal 

lobule (L.SPL: peak voxel at x = −42, y = −54, z = 51 in MNI). The fALFF values extracted 

from the L.SPL cluster exhibited a significant positive association with LW (R2 = 0.25, p < 

0.01) and FSIQ (R2 = 0.06, p < 0.05); these two associations, with one variable in common 

(i.e., fALFF in L.SPL), were significantly different (Z = 3.55, p < 0.001); more strongly 

associated with LW than FSIQ. These results remained significant in the second rs-fMRI (R2 

= 0.24, p < 0.001 for LW; R2 = 0.09, p < 0.05 for FSIQ). There was no significant result 

from either the F-test with Calc and FSIQ or PC1.
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3.5. SCA with the common thalamus cluster

Across the three models (i.e., two F-tests and PC1), ReHo results highlighted the thalamus, 

but there was no such a common region identified by the fALFF analysis. Therefore, we 

used only the Common-Thalamus cluster as the seeds in post-hoc SCA. As shown in Figure 

3, the F-test with LW and FSIQ highlighted a significant cluster with the peak voxel at x = 

−46, y = −52, z = 26 (MNI), which can be considered as centered in left angular gyrus based 

on the Harvard-Oxford Cortical Structural Atlas (i.e., the maximum probability of 0.25). 

However, we labelled it as the left temporoparietal junction (L.TPJ) because it 1) included 

both parietal and superior temporal regions, and 2) spatially corresponded to a subregion of 

the left temporoparietal junction identified by rs-fMRI parcellation analysis (Igelstrom, 

Webb, & Graziano, 2015). Note that the closest similarity between the given two regions/

clusters was defined by the smallest Euclidean distance (d = 10.4) calculated using the voxel 

peak MNI coordinates. The post-hoc analysis and visualization revealed a significant 

negative relationship between the thalamus-L.TPJ iFC and LW (R2 = 0.21, p < 0.001), that 

is, the higher the iFC, the worse the reading. This negative iFC-behavior relationship was 

not significant for FSIQ (R2 = 0.04, p = 0.08); the two associations, with one variable in 

common (i.e., iFC), were significantly different (Z = 3.27, p < 0.001).

We found no significant SCA results from either the model with F-test with Calc/FSIQ or 

the PC1 model. This absence of significant SCA results was somewhat surprising given that 

ReHo in the Common-Thalamus cluster was significantly associated with all the three 

measures (LW, Calc and FSIQ). Thus, we performed post-hoc analyses to examine whether 

and the degree of which iFC values in the thalamus-L.TPJ connectivity would be associated 

with Calc and FSIQ scores. We found a significant connectivity-behavior association only 

with Calc (R2 = 0.10, p < 0.01) but not with FSIQ (R2 = 0.04, p = 0.08).

4. Discussion

The current study simultaneously examined the achievement (reading, arithmetic) and IQ 

measures in young adults, aiming to identify MRI correlates of their common factors. For 

this aim, we used F-tests, into each of which an achievement measure and FSIQ were 

entered, as well as investigating the effect of PC1 among the three measures (reading, 

arithmetic, and FSIQ). The main finding, which was reliable across these analytic models, is 

that lower ReHo in the thalamus (the peak voxel in the left pulvinar) was associated with 

higher performance on each of the three measures. This indicates that the thalamus 

represents a neural correlate of the shared factor among reading, arithmetic, and FSIQ. This 

ReHo result centered to the thalamus is partially consistent with our hypothesis that our 

approach could identify regions outside the networks that had been reported by prior fMRI 

studies of reading arithmetic, and IQ. The thalamus may not be a core region implied for 

reading, arithmetic, or IQ, but the neuroscientific community has increasingly recognized 

potentially important role of the thalamus in learning (T. Rose & Bonhoeffer, 2018) and 

language processes (Klostermann, Krugel, & Ehlen, 2013; Llano, 2013), particularly reading 

(Achal, Hoeft, & Bray, 2016; Diaz, Hintz, Kiebel, & von Kriegstein, 2012; Gaab, Gabrieli, 

Deutsch, Tallal, & Temple, 2007; Pugh et al., 2013; Stein, 2018a). We discuss more details 

and implications of these findings, as well as other findings, in the following sections.
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4.1. ReHo in thalamus/pulvinar

ReHo results from all the three models suggest that higher ReHo in the thalamus is 

associated with lower performance on word reading, arithmetic, and FSIQ measures. This 

pattern of negative brain-behavior relationships is consistent with previous rs-fMRI studies, 

which have reported that higher ReHo in subcortical regions (and higher mean ReHo in the 

entire brain) is associated with worse outcomes, such as lower abilities (Dajani & Uddin, 

2016; S. Kuhn et al., 2014; Zhao et al., 2019). In particular, Zhao et al. (2019) have 

demonstrated that higher ReHo in the thalamus was associated with severer symptoms in 

schizophrenic patients. This finding, together with our ReHo finding, indicates that higher 

ReHo in the thalamus may index lower functions, possibly across different behavioral 

domains. Although ReHo is considered to index local functional coupling and reflects the 

degree of local functional specialization (Jiang et al., 2015; Jiang & Zuo, 2016), the 

underlying mechanism of ReHo-behavior relationships remains largely unknown. In the next 

paragraphs, we will debate a possible scenario that could explain the observed negative 

ReHo-behavior relationships (i.e., the higher the ReHo, the worse the performance).

The brain adaptively reconfigures or changes its functional connectivity between globally 

distributed regions/networks in response to task demands (Cohen & D’Esposito, 2016; Cole, 

Bassett, Power, Braver, & Petersen, 2014; Hearne, Cocchi, Zalesky, & Mattingley, 2017; 

Krienen, Yeo, & Buckner, 2014). Yet, functional connectivity patterns detected at rest 

correspond well with co-activation patterns during tasks; only ~40% of connections change 

(Cole et al., 2014; Krienen et al., 2014; S. M. Smith et al., 2009). Such relatively small but 

reliable changes in functional network reconfiguration between rest and task seem to 

contribute to individual differences in behavior. For example, Schulz and Cole (2016) have 

demonstrated that smaller differences in functional connectivity between rest and task, 

which reflect more efficient reconfiguration (i.e., less energy required for the change/shift), 

are associated with higher performance on a variety of cognitive tasks (e.g., language, 

reasoning). This can be interpreted in such that, in high-performing individuals, their 

functional connectivity patterns during rest are “preconfigured” similar to those during tasks, 

and that greater similarity may facilitate more efficient or less energy-costing 

reconfiguration in the presence of task demand.

Such reconfiguration efficiency or optimized preconfiguration at rest is likely to vary 

significantly across individuals in the thalamus that exhibits the most notable differences 

between functional connectivity at rest (i.e., temporal correlations) and on task (i.e., co-

activation patterns) (Di, Gohel, Kim, & Biswal, 2013). Specifically, the thalamus is more 

globally connected during task performance, but is more locally connected at rest (Di et al., 

2013). Based on these observations and the aforementioned finding (Schultz & Cole, 2016), 

we consider that higher ReHo in the thalamus at rest may reflect less optimized/efficient 

local preconfiguration (i.e., more energy-costing reconfiguration in the presence of a task), 

which in turn is associated with lower performance. In other words, individuals whose local 

intrinsic functional connectivity patterns of the thalamus are more similar between rest and 

tasks are likely to perform better on the achievement and IQ measures. Further studies are 

needed to test this possibility by analyzing fMRI data collected during both rest and relevant 

tasks (e.g., word reading, numerical operations) in the same individuals.
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A question arising here is the common role of the thalamus among reading, arithmetic, and 

IQ measures. Recent efforts in the rs-fMRI field have highlighted the thalamus as an 

integrative hub that is connected with multiple cortical networks (Garrett, Epp, Perry, & 

Lindenberger, 2018; Greene et al., 2019; Hwang, Bertolero, Liu, & D’Esposito, 2017; 

Seitzman et al., 2020). As such, meta-analysis of a large database of fMRI activations has 

revealed that the thalamus is involved in multiple cognitive functions (Hwang 2017). 

Activation of the thalamus has been sometimes (but not always) reported during tasks that 

require higher cognitive processing, such as language (Crosson, 2013; Klostermann et al., 

2013; Llano, 2013), reading (Gaab et al., 2007; Houde, Rossi, Lubin, & Joliot, 2010; 

Maisog, Einbinder, Flowers, Turkeltaub, & Eden, 2008; Martin, Schurz, Kronbichler, & 

Richlan, 2015; Pugh et al., 2008; Pugh et al., 2013), arithmetic (Arsalidou & Taylor, 2011), 

and intelligence/reasoning (Fangmeier, Knauff, Ruff, & Sloutsky, 2006). Although the 

thalamus is not typically considered as a core region for reading, arithmetic or intellectual 

abilities, thalamic abnormalities (i.e., geniculate nuclei) have been noted in individuals with 

reading disorders (Diaz et al., 2012; Stein, 2018b), as well as those with ADHD (Ivanov et 

al., 2010; X. Li et al., 2012) that is often comorbid with learning difficulties in reading 

and/or arithmetic (S. D. Mayes, Calhoun, & Crowell, 2000; Wadsworth, DeFries, Willcutt, 

Pennington, & Olson, 2015).

Our ReHo results emphasize the left posterior thalamus, corresponding to the location of the 

left pulivnar (the peak voxels from the three models); thus our discussion here focuses on the 

role of pulvinar and its possible contribution to reading, arithmetic, and intellectual skills. 

The pulvinar has been most intensively examined in its relation with selective attention 

(Fischer & Whitney, 2012; Halassa & Kastner, 2017; Kastner et al., 2004; Smith, Cotton, 

Bruno, & Moutsiana, 2009) – the ability to filter/suppress distracting information and 

enhance relevant information for goal-oriented task performance. Selective attention is not 

only a survival instinct across all species (Krauzlis, Bogadhi, Herman, & Bollimunta, 2018) 

but also implicated in higher cognitive abilities unique to humans, including phonological 

processing (Yoncheva, Maurer, Zevin, & McCandliss, 2014), reading (Commodari, 2017), 

and intelligence (Kirk, Gray, Ellis, Taffe, & Cornish, 2016; Unsworth, Fukuda, Awh, & 

Vogel, 2014). The importance of selective attention in reading, arithmetic, and language is 

extensively reviewed and discussed elsewhere (Stevens & Bavelier, 2012). In particular, 

close relationships between selective attention and reading (e.g., visual word recognition) 

has been well-documented (Commodari, 2017; Graboi & Lisman, 2003). For example, 

during visual word recognition, selective attention enables a reader to compare the visual/

orthographic representation of a written word to his/her mental lexicon (i.e., a list of many 

relevant and irrelevant words stored in memory) until the match is found. Without selective 

attention, book and web pages would be merely full of visual clutter. Importantly, selective 

attention occurs in the auditory (Pugh et al., 1996; von Kriegstein, Eger, Kleinschmidt, & 

Giraud, 2003) and semantic domains (Rogalsky & Hickok, 2009), as well as integrated 

domains (i.e., audiovisual semantic) (Y. Li et al., 2016); selective attention in these domains, 

rather than the visual domain, can be more relevant to the VIQ and numerical operations 

measures.

Returning to neurobiological mechanisms of selective attention, which requires the 

involvement of multiple functions in a coordinate fashion and efficient cortico-cortical 
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communications (Yantis, 2008), the pulvinar has been suggested to play a role in selective 

attention by regulating cortical synchrony (Saalmann & Kastner, 2011; Saalmann, Pinsk, 

Wang, Li, & Kastner, 2012; Zhou, Schafer, & Desimone, 2016). Such cortical regulation of 

the pulvinar is most likely to achieved by its extensive interconnection with cortical regions 

(Greene et al., 2019; Hwang et al., 2017; Seitzman et al., 2020). Although the pulvinar has 

been prominently examined and discussed in the visual domain (Kaas & Lyon, 2007; Zhou 

et al., 2016), emerging evidence has suggested its involvement in auditory attention (e.g., 

speech segmentation) (Dietrich, Hertrich, & Ackermann, 2013, 2015; Erb, Henry, Eisner, & 

Obleser, 2012). Hence, selective attention, regulated by the pulvinar, is likely to be a 

common latent factor associated with the reading, arithmetic, and IQ measures. Here, we 

postulate that higher ReHo in the thalamus (centered in the left pulvinar), reflecting less 

optimized local preconfiguration at rest, may be associated with lower selective attention 

across multiple domains, which may exert negative impact on the achievement and IQ 

performance. This view could, in turn, contribute to the debate as to why some (but not all) 

individuals with impaired selective attention, such as ADHD (Brodeur & Pond, 2001; 

Mueller, Hong, Shepard, & Moore, 2017), perform poorly on the achievement and IQ tests 

(Frazier, Demaree, & Youngstrom, 2004). Validation of this hypothesis deserves further 

investigation, particularly given that learning difficulties with reading/arithmetic and 

attention deficits are often understudied or underestimated in people with borderline 

intellectual functioning (Al-Khudairi, Perera, Solomou, & Courtenay, 2019; Baglio et al., 

2014; Di Blasi, Buono, Cantagallo, Di Filippo, & Zoccolotti, 2019; Jansen, De Lange, & 

Van der Molen, 2013; E. Rose, Bramham, Young, Paliokostas, & Xenitidis, 2009); such 

individuals are not often granted eligibility to access specialized healthcare or social/

educational services they might need (Martinez & Quirk, 2009).

It is worth mentioning that ReHo-behavior relationships may be true only in adults given the 

reported difference in the amplitude of whole-brain ReHo between children and adults (i.e., 

lower in adults than children) (Dajani & Uddin, 2016), which is possibly due to pruning of 

local connections (Jiang et al., 2015). Furthermore, developmental changes have been 

observed in thalamocortical iFC (Fair et al., 2010) and its relationships with reading (e.g., 

negatively and positively associated with reading in adults and children, respectively) 

(Koyama et al., 2011); these prior findings implicate possible child-adult differences in 

patterns of ReHo in the thalamus. Furthermore, given that the thalamus is vulnerable 

following preterm birth (Ball et al., 2012; Ball et al., 2013; Smyser et al., 2010; Toulmin et 

al., 2015; Volpe, 2009) and that smaller thalamic volumes at term-equivalent age predict 

childhood neurodevelopmental deficits (in reading, arithmetic, and IQ) in preterm-born 

individuals (Loh et al., 2017), early alterations in thalamic functional connectivity may also 

indicate higher risk for later neurodevelopmental disorders, including learning and 

intellectual disabilities. It is of great interest to explore the nexus between the development 

of the thalamus/pulvinar and neurodevelopmental outcomes; this effort would potentially 

add further evidence for brain mechanisms underlying the comorbidity in reading and 

arithmetic difficulties (Skeide, Evans, Mei, Abrams, & Menon, 2018; Willcutt et al., 2013), 

which could co-occur with cognitive weakness in domain-general skills, such as attention, 

working memory, and speed processing (Gathercole et al., 2016; Willcutt et al., 2013) – 

these cognitive components are often embedded in IQ tests.
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4.2. fALFF in L.SPL

The result of the F-test with LW and FSIQ measures suggests that higher fALFF in L.SPL 

characterizes better word reading and IQ. This positive relationship between local intrinsic 

activity and reading/IQ is in line with prior task-evoked activation seen in L.SPL during 

reading (Martin et al., 2015; Meyler, Keller, Cherkassky, Gabrieli, & Just, 2008; Peyrin, 

Demonet, N’Guyen-Morel, Le Bas, & Valdois, 2011; Reilhac, Peyrin, Demonet, & Valdois, 

2013; Vigneau, Jobard, Mazoyer, & Tzourio-Mazoyer, 2005) and intelligence/reasoning 

tasks (Fangmeier et al., 2006; Goel & Dolan, 2001; Jung & Haier, 2007; Wendelken, 2014). 

This finding might provide an additional support for evidence that local intrinsic activity, 

represented by low-frequency oscillations during rs-fMRI, predicts local task activation and 

relevant behaviors (Kalcher et al., 2013; Mennes et al., 2011). It is well-documented that 

SPL is a highly heterogeneous region in its patterns of functional connectivity and activation 

(Caspers & Zilles, 2018; Mars et al., 2011; Scheperjans, Eickhoff, et al., 2008; Wang et al., 

2015). Wang et al. (2015) have used a connectivity-based parcellation scheme and detected 

multiple subregions of SPL, one of which is similar to the cytoarchitectonically defined area 

7A (Scheperjans, Eickhoff, et al., 2008; Scheperjans, Hermann, et al., 2008) and appears to 

correspond to the L.SPL cluster identified in this study. This SPL subregion, particularly in 

the left hemisphere, has been found to be associated with visuospatial attention, reading, and 

reasoning (Wang et al., 2015), via the application of forward and reverse inferences to the 

BrainMap database (Laird et al., 2009).

SPL is part of the dorsal attention network (Corbetta & Shulman, 2002; Shomstein, 2012; 

Vossel, Geng, & Fink, 2014), which has a significant overlap with task-positive networks 

(Dosenbach, Fair, Cohen, Schlaggar, & Petersen, 2008; Dosenbach et al., 2007; Dosenbach 

et al., 2006; Fox, Corbetta, Snyder, Vincent, & Raichle, 2006), including the frontoparietal 

network. More recently, Dixon et al. (2018) have differentiated the frontoparietal network in 

two subsystems, one of which coactivates and is more strongly connected with the dorsal 

attention network, including SPL. This attention-related subsystem is contrasted to another 

subsystem that is prominently connected with distributed components of the default mode 

network. These authors have further explored associations between each subsystem and 

different cognitive processes, finding that “reading” exhibits a strong positive association 

with the attention-related subsystem (Dixon et al., 2018). Although some processes (e.g., 

“working memory”), which can be components measured by IQ tests, are also strongly 

associated with the attention-related system, these associations are not as strong as the 

“reading” association. These association patterns are consistent with our finding that the 

correlation between fALFF in L.SPL and FSIQ were significant but weaker than that for 

reading. Taken together, our fALFF result suggests that higher local intrinsic activity in 

L.SPL indexes higher reading and IQ, most likely due to the L.SPL’s involvement in 

visuospatial attentional control (Corbetta & Shulman, 2002; Wang et al., 2015). This 

assumption needs to be tested in future research in which aspects of attention (e.g., sustained 

attention, selective attention) are linked to fALFF in L.SPL (and other attention-related 

regions).

To date, neurobiological mechanisms of fALFF may be the least understood among rs-fMRI 

metrics, but recent efforts have revealed that fALFF and ReHo exhibit high correlations with 
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each other (Nugent, Martinez, D’Alfonso, Zarate, & Theodore, 2015; Yuan et al., 2013) and 

with cerebral blood flow (Z. Li, Zhu, Childress, Detre, & Wang, 2012) at the whole-brain 

level. Nevertheless, these two local rs-fMRI metrics do not always yield similar or consistent 

brain regions (and their relationships with behavior in the same populations) (Y. Xu et al., 

2015; Yang et al., 2015). This indicates that fALFF and ReHo can provide complementary 

information about local intrinsic properties, and this is the case in the present study in such 

that ReHo and fALFF revealed different regions associated with reading (i.e., the thalamus 

for ReHo and L.SPL for fALFF), as well as different brain-behavior relationships (i.e., 

positive for ReHo in the thalamus but negative for fALFF in L.SPL).

4.3. SCA with the common-thalamus cluster

We found that iFC between the Common-Thalamus cluster and L.TPJ exhibited a significant 

negative association with LW. That is, individuals with weaker positive correlations (and 

stronger negative correlations) between these subcortical-cortical regions tended to perform 

better on the reading measure. This SCA finding is largely consistent with prior rs-fMRI 

work showing that connections between subcortical (i.e., caudate, thalamus) and left 

temporoparietal/parietal regions are negatively associated with reading skills in adults 

(Achal et al., 2016; Koyama et al., 2011). L.TPJ has been widely reported in reading 

research, particularly due to its hypoactivation in individuals with reading difficulties 

(Maisog et al., 2008; Martin et al., 2015; Richlan, Kronbichler, & Wimmer, 2009). However, 

L.TPJ is not specific to reading but is involved in the number of different cognitive functions 

(Bzdok et al., 2016; Igelstrom & Graziano, 2017), including social reasoning (Samson, et al. 

2004) that relies on the default mode network (Buckner, et al. 2008; Li, et al. 2014).

The term “TPJ” is an abstract label that has been commonly used in the neuroimaging 

literature. Notably, there are differences in labeling the location of TPJ across studies (e.g., 

different labels describe the same or similar location). As such, Church, Coalson, Lugar, 

Petersen, and Schlaggar (2008) have reported that, during reading tasks, adult readers show 

no activation in the left angular gyrus, which is within close proximity of (or overlap with) 

our L.TPJ cluster: the Euclidean distance = 10.8 based on the peak voxel MNI coordinates. 

This task-evoked fMRI finding implies that our SCA result of the thalamus-L.TPJ iFC 

cannot be explained by coactivation patterns, which are thought to underlie iFC maps (Liu, 

Zhang, Chang, & Duyn, 2018; S. M. Smith et al., 2009). Instead, it is possibly linked with 

the default mode network considering that the L.TPJ cluster identified in this study 

resembles most closely one of the L.TPJ subdivisions reported in Igelstrom et al. (2015), 

which is strongly connected and coactivated with the default mode network. Given that 

stronger negative correlations between task-positive and default mode networks during rest 

can reflect higher cognitive efficiency (Kelly, Uddin, Biswal, Castellanos, & Milham, 2008), 

stronger negative iFC (and weaker positive iFC) between the thalamus (i.e., a task-positive 

region) and our L.TPJ cluster (i.e., a L.TPJ subdivision as part of the default mode network) 

may reflect improved cognitive efficiency, which is likely to facilitate automaticity, which is 

an important component of skilled reading (M. R. Kuhn, Schwanenflugel, & Meisinger, 

2010; Logan, 1978; Wolf, 2018).
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Although the thalamus cluster used in SCA was commonly associated with the three 

measures in the ReHo analysis, the F-test with Calc and FSIQ yielded no significant result in 

SCA. However, post-hoc analyses revealed that iFC values extracted from the thalamus-

L.TPJ connectivity were significantly associated with arithmetic scores (but not FSIQ). This 

may imply that there was a possible association between the thalamus-L.TPJ iFC and 

arithmetic, but it failed to survive correction for multiple comparisons when examining at 

the whole-brain level (i.e., fMRI data comprising numerous voxels). This result from the 

post-hoc analysis encourages a future research to have a larger sample size and perform a 

whole-brain analysis, testing if the thalamus-L.TPJ connectivity could be commonly 

associated with reading and arithmetic. In addition, given that coactivation patterns of the 

pulvinar are different according to task types (Barron, Eickhoff, Clos, & Fox, 2015), it will 

be of great interest to investigate global/long-distance functional connectivity of the 

thalamus/pulvinar during different tasks, including reading, arithmetic, and intellectual 

tasks.

5. Limitations

There are several limitations in the current study. The most evident was a lack of task-

evoked fMRI data in the domain of reading, arithmetic, and IQ/reasoning, which restricted 

direct comparisons of ReHo-behavior relationships during rest and task. Given that our 

primary ReHo finding sits in the thalamus, which is the region exhibiting the most dynamic 

differences in functional network configuration between rest and task (i.e., more globally 

connected during task than at rest), examination of both intrinsic and task-evoked functional 

connectivity of the thalamus in the same sample could enable us to illustrate comprehensive 

connectivity-behavior relationships (e.g., a possibility that global/long-distance task-evoked 

connectivity of the thalamus is positively associated with cognitive abilities). Similarly, 

although we attributed the ReHo result in the thalamus to the common involvement of 

selective attention in the achievement and IQ measure, we administered no selective 

attention skills to be linked to the ReHo result in the thalamus. Given that results from both 

ReHo and fALFF (i.e., L.SPL in the dorsal attention network) highlight regions involved in 

attention, which is a prerequisite of learning (Merkley, Matusz, & Scerif, 2018; Reynolds & 

Besner, 2006; Shaywitz & Shaywitz, 2008), future research studies should consider the 

measurement of different aspects of attention (e.g., sustained attention, selective attention) 

and relate them to brain’s functional profiles that characterize reading, arithmetic, and/or IQ. 

Finally, our results should be interpreted with caution when studying the developing brain 

(i.e., children); activation and connectivity patterns of the regions identified in the current 

study are known to be developmentally sensitive and differentially associated with children 

and adults when reading (Church et al., 2008; Koyama et al., 2011) and arithmetic (Rivera, 

Reiss, Eckert, & Menon, 2005) abilities are examined.

6. Conclusions

We simultaneously examine both achievement (reading, arithmetic) and IQ measures, using 

rs-fMRI metrics that characterize local intrinsic functional properties. The main finding 

highlights that ReHo (i.e., local functional connectivity) in the thalamus, particularly the left 

pulvinar implied in selective attention, is a common neural correlate or convergence site for 
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cognitive variation in reading, arithmetic, and IQ measures. Specifically, the higher the 

ReHo, the lower the performance on all the three measures. Considering that the thalamus is 

more locally connected at rest than during tasks, negative ReHo-behavior relationships 

indicate that higher ReHo in the thalamus at rest may reflect less optimized/efficient local 

preconfiguration (i.e., more energy-costing reconfiguration in the presence of a task), which 

in turn is associated with lower performance on each dimension. In addition, the fALFF 

result suggests that higher local intrinsic functional activity in the left superior parietal 

lobule (in the dorsal attention network) characterizes better reading and IQ performance. To 

summarize, our findings provide additional support to claims that attentional components are 

critical for achievement skills and IQ. In particular, the ReHo finding that the thalamus is a 

common locus for the three measures could provide a new perspective on brain mechanisms 

underlying a type of comorbidity between reading and arithmetic difficulties, which could 

co-occur with weakness in general intellectual abilities.
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Figure 1. Performance on three cognitive measures.
A) Dot plot describing the mean and standard deviation of each measure – Letter Word 

Identification (LW), Calculation (Calc), and Full-Scale IQ (FSIQ). The horizontal line in A) 

represents the standard score of 85 (− 1 standard deviation [−1SD]). B) Scatter plot 

illustrating relationships between FSIQ and the two achievement skills (LW and Calc).
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Figure 2. Significant ReHo results from the three models.
Results from all the models, mapped on the MNI coordinates (x = −12, y = −27, z = −3), 

highlight the thalamus, centered in the left pulvinar. Model 1 performs an F-test with two 

covariates of interests – Letter Word Identification (LW) and Full-Scale IQ (FSIQ). Model 2 

performs an F-test with Calculation (Calc) and FSIQ. In Model 3, the first principal 

component (PC1) among three measures (LW, Calc, and FSIQ) is entered as the covariate of 

interest. In scatter plots on the right, the ReHo values extracted from the respective thalamus 

cluster are plotted as a function of LW, Calc, and FSIQ. ** p < 0.001.
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Figure 3. Common-Thalamus cluster and significant seed-based correlation analysis (SCA) 
results.
The overlap among the three thalamus clusters is highlighted in green (the left image). The 

result from an F-test with Letter Word Identification (LW) and Full-Scale IQ (FSIQ), 

mapped on the MNI coordinates (x=−46, y=−52, z=26), highlights intrinsic functional 

connectivity (iFC) between the Common-Thalamus cluster and left temporoparietal junction 

(L.TPJ). In the scatter plot on the right, iFC values extracted from the thalamus-L.TPJ 

connectivity are plotted as a function of LW and FSIQ. ** p < 0.001, n.s. = not significant
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Figure 4. Significant fALFF result.
The result from an F-test with Letter Word Identification (LW) and Full-Scale IQ (FSIQ), 

mapped on the MNI coordinates (x = −42, y = −54, z = 51), highlights the left superior 

parietal lobule (L.SPL). In the scatter plot on the right, fALFF values extracted from the 

L.SPL cluster are plotted as a function of LW and FSIQ. ** p < 0.001, * p < 0.05.
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Table 1.

Demographic and cognitive characteristics of the participants (N=72: 28 males).

Mean SD Range

Age (years) 21 1.9 18.1 – 25.1

Family Income 2.9 1.5 1 – 5

Handedness 12.4 1.3 −12 – 24

WJ Letter Word (s) 103.2 11.2 76 – 124

WJ Calculation (s) 102.2 15.9 68 – 138

WASI FSIQ (s) 107.3 15.0 75 – 145

Mean FD Rest 1 0.077 0.041 0.024 – 0.191

Mean FD Rest 2 0.079 0.038 0.025 – 0.178

“Range” describes the lowest and highest values/scores for each variable in the sample of the current study. The scale of “Family Income” ranges 
from 1 (the lowest) to 5 (the highest), and the handedness score ranges from −24 (the most extreme left-handedness) to 24 (the most extreme right-
handedness). SD = Standard Deviation, s = standard score, WJ = Woodcock Johnson, WASI = Wechsler Adult Intelligence Scale, FSIQ = Full-
Scale IQ, FD = Framewise Displacement, Rest = resting-state fMRI
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Table 2.

Significant ReHo results from the three models.

Contrast Brain Region Peak MNI Coordinates # of Voxels

LW & FSIQ (F-test) Thalamus/L.Pulvinar −12 −27 −3 171

Calc & FSIQ (F-test) Thalamus/L.Pulvinar −12 −27 −6 144

PC1 (Negative) Thalamus/L.Pulvinar −12 −27 −3 168

LW = Letter Word Identification, Calc = Calculation, FSIQ = Full-Scale IQ, PC1 = Principal Component 1. L = Left
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