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Abstract

Stereotactic body radiation therapy (SBRT) has demonstrated high local control rates in early 

stage non-small cell lung cancer (NSCLC) patients who are not ideal surgical candidates. 

However, distant failure after SBRT is still common. For patients at high risk of early distant 

failure after SBRT treatment, additional systemic therapy may reduce the risk of distant relapse 

and improve overall survival. Therefore, a strategy that can correctly stratify patients at high risk 

of failure is needed. The field of radiomics holds great potential in predicting treatment outcomes 

by using high-throughput extraction of quantitative imaging features. The construction of 

predictive models in radiomics is typically based on a single objective such as overall accuracy or 

the area under the curve (AUC). However, because of imbalanced positive and negative events in 

the training datasets, a single objective may not be ideal to guide model construction. To overcome 

these limitations, we propose a multi-objective radiomics model that simultaneously considers 

sensitivity and specificity as objective functions. To design a more accurate and reliable model, an 

iterative multi-objective immune algorithm (IMIA) was proposed to optimize these objective 

functions. The multi-objective radiomics model is more sensitive than the single-objective model, 

while maintaining the same levels of specificity and AUC. The IMIA performs better than the 

traditional immune-inspired multi-objective algorithm.

Keywords

Lung SBRT; Radiomics; Multi-objective learning; Pareto-optimal solution

1. Introduction

With the development of modern imaging and radiation delivery techniques, dose escalation 

with stereotactic body radiation therapy (SBRT) has emerged as the standard of care for 

inoperable early stage non-small cell lung cancer (NSCLC) (Høyer, 2008; van Baardwijk et 
al., 2012; Timmerman et al., 2010). Primary local control rates higher than 95% were 

achieved for this tumor type after 3 years of 3-fraction SBRT (Timmerman et al., 2010) 

Nevertheless, early stage distant failure was still common with a 3-year rate of 22.1%. A 

recent update on the RTOG 0236 experience showed 5-year distant failure rates of 31% 

(Timmerman et al., 2014). Additionally, distant failure often occurs shortly after definitive 
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treatment of the primary tumor. Distant failure is considered as an important oncologic event 

because it closely correlates with mortality. For patients at high risk of early distant failure, 

additional systemic therapy after SBRT may reduce this risk and improve overall survival. 

However, because this population is often in relatively poor health, the therapy-related 

toxicity could increase mortality. Therefore, a strategy that can correctly predict patients 

with high risk distant failure in early cancer stages is needed.

By quantitatively analyzing large amounts of information from medical images, the field of 

radiomics holds great potential to predict treatment outcome (Freeman et al., 2015; Gillies et 
al., 2015; Lambin et al., 2012; Wu et al., 2016a). In a recent study (Freeman et al., 2015), the 

radiomics features extracted from joint FDG-PET and MRI were used to predict lung 

metastasis risk in soft-tissue sarcomas. After constructing the multivariable model using 

logistic regression, the AUC was found to be equal to 0.984. Hawkins et al. (Hawkins et al., 
2014) applied radiomics features extracted from CT images to predict survival time in 

NSCLC with an accuracy of 77.5%. In a study by Coroller et al. (Coroller et al., 2015), CT 

based radiomics features were added to the clinical model to predict distant metastasis in 

lung adenocarcinoma, and the performance was significantly improved.

Most currently available radiomics methods adopt a single objective, such as overall 

accuracy or AUC, as the objective function to construct the predictive model. Many 

applications adopted accuracy as the objective function and utilized a cross-validation 

strategy to train the predictive models (Wu et al., 2016b; Tan et al., 2013; Mu et al., 2015; 

Huynh et al., 2016). In (Freeman et al., 2015), AUC was taken as the objective function to 

train the model by repeated bootstrap samples for predicting lung metastasis in soft-tissue 

sarcomas of the extremities. In (Huang and Dun, 2008), a distributed particle swarm 

optimization (PSO) strategy was used to train the SVM predictive model. In this method, the 

training process was considered as a combinatorial optimization problem and the objective 

was to maximize the accuracy by combining different parameters. Similarly, clonal selection 

algorithm (CSA) and genetic algorithm were also utilized to train the predictive models 

(Ding and Li, 2009; Cho et al., 2006; Avci, 2009; Wu et al., 2009). In treatment outcome 

prediction applications, treatment outcome data is often imbalanced (i.e., with and without 

distant failure after SBRT in NSCLC). Thus, overall accuracy alone may not be a good 

measure for the predictive models, especially when positive and negative events are 

imbalanced in training datasets. For example, the number of patients with distant failure in 

lung SBRT is lower than that of patients without distant failure. Although the accuracy can 

be high as it is used as the objective function, sensitivity can be low. An extreme example is 

shown in table 1. Assuming 20 samples, TP indicates true positives, FN indicates false 

negatives, FP indicates false positives, and TN indicates true negatives. According to the 

predictive results in Eq. (1) ~ (3), despite high accuracy and specificity, sensitivity is only 

0.33. In this case, the model may misclassify patients with distant failure into the category 

without distant failure. Despite high accuracy and specificity, the model does not provide 

enough information to stratify patients at high risk of distant failure eligible for additional 

systematic therapy. In contrast, a high specificity model is required to minimize false 

positives among high-risk patients receiving adjuvant systemic therapy, which could lead to 

treatment-related toxicity. Therefore, the predictive model has to be both sensitive and 

specific. Although the AUC provides a better measure than overall accuracy by taking both 
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sensitivity and specificity into account, it also summarizes the test performance over regions 

of the ROC space that would rarely be used. In addition, final prediction is determined by 

the threshold that needs to be manually selected.

Accuracy = TP + TN
TP + FN + FP + TN = 16

20 = 0.80, (1)

Sensitivity = TP
TP + FN = 1

3 = 0.33, (2)

Specificity = TN
FP + TN = 15

17 = 0.88. (3)

To overcome the limitation of the conventional single-objective model, we proposed a multi-

objective radiomics model that simultaneously considers both sensitivity and specificity as 

the objective functions. Additionally, an iterative multi-objective immune algorithm (IMIA) 

was proposed to train the model and render it more accurate and reliable. IMIA consists of 

two phases: (1) generating a Pareto-optimal solution set; (2) selecting the best of all feasible 

solutions according to the predictive results. The workflow of the multi-objective radiomics 

model is illustrated in figure 1. In this model, tumors were first segmented in PET and CT 

images. Image features such as intensity, texture, and geometry features were then extracted. 

In the following step, clinical parameters were combined with quantitative imaging features 

to construct the predictive model using IMIA. Another advantage of our proposed model is 

the flexibility to select the best solution according to the clinical needs because multiple 

solutions are generated in multi-objective radiomics. Of course, in the ideal situation, a 

model will have both very high sensitivity and specificity, but this is rarely achievable; 

instead, models can be optimized to the need; for example, in newborn screening, missing a 

correctable metabolic defect can be catastrophic, and the intervention is non-toxic, so a 

model with very high sensitivity can be employed that sacrifices some specificity. However, 

if the intervention is high risk or has significant toxicity and the benefit has not been 

established, such as the administration of cytotoxic chemotherapy to otherwise locally-

staged lung cancer patients treated with SBRT, specificity for distant metastases potential 

can be given a higher priority than sensitivity to maximize the likelihood that the 

intervention is applied to the population most likely to benefit from it.

2. Material and Method

2.1. Patients, clinical parameters and images

This study included 52 patients in early IA and IB stages, who had received SBRT from 

2006 to 2012. The follow-up range was from 6 to 64 months, with a median follow-up time 

of about 18 months. Twelve (23.1%) of these patients had distant failure.

Clinical parameters were extracted from clinical charts and were categorized into four 

groups: (1) demographic parameters; (2) tumor characteristics; (3) treatment parameters; and 
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(4) pretreatment medications (table 2). Each parameter can be used as an independent 

feature for the predictive model.

CT and PET images used in this study were all from pre-treatment scans. The median 

interval between PET/CT scan and SBRT treatment was 1 month (within 2 weeks to 2 

months for more than 80% of patients). They were acquired by the SIEMENS Biograph 

64/1094 (Siemens Medical Solution, Malvern, PA), the Philips Gemini TF/Dual GS (Philips 

Healthcare, Andover, MA), or the GE Discover ST (GE Healthcare, Waukesha, WI). The CT 

volume was composed of 274 to 355 slices (3.26 mm ~5.00 mm thick) of 512 × 512 pixels 

(0.98 × 0.98 mm or 1.17 × 1.17 mm). The PET volume was also composed of 274 to 355 

slices (2.43~5.00mm thick) of 168 × 168 pixels, 144 × 144 pixels, or 128 × 128 pixels (4.00 

× 4.00 mm or 5.00 × 5.00 mm).

2.2. Tumor segmentation

Before extracting the image features, tumors need to be segmented. In this work, tumors 

were segmented in a semi-automatic way, as follows.

For the segmentation only, the slices containing tumors were denoised using the fast non-

local mean image denoising method (Darbon et al., 2008) to avoid the influence of noise. 

The middle slice was segmented using the object information based interactive segmentation 

method (OIIS) (Zhou et al., 2013a). In the OIIS, initial segmentation of the potential regions 

of interest was performed by a mean-shift method (Cheng, 1995) and the final segmentation 

was obtained by merging the similar regions according to the similarity determined by the 

Bhattacharyya coefficient (Kailath, 1967). The accuracy of OIIS has been validated in a 

previous study, where the F-score was above 0.98. Once the central slice was segmented, the 

other slices were segmented by the well-known OTSU method (Otsu, 1975) that considers 

the similarity between two adjacent slices. The segmentation results for PET and CT images 

are shown in figure 2. The segmented tumors are marked in red.

2.3. Image feature extraction

Intensity, texture, and geometry features were extracted for PET and CT images (table 3). 

All features were extracted in the segmented 3D tumors. For PET images, the standardized 

uptake value (SUV) was calculated before extracting the features (Adams et al., 2010).

For the intensity features, the mean, median, standard deviation, maximum and minimum 

value, skewness, kurtosis, and variance were calculated based on the intensity histogram. 

Skewness is used to describe the degree of distribution asymmetry around its mean. The 

skewness value can be either positive or negative and is expressed as:

Skewness = E X − μ
σ

3
, . (6)

Kurtosis indicates the flatness or the spikiness of the signal and is defined as:
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Kurtosis = E X − μ
σ

4
. (7)

Before calculating the texture features, the gray level co-occurrence matrix (GLCM) was 

constructed. The GLCM is a square matrix with the number of rows and columns equaling 

the quantized gray level denoted by Ng. Each element p(i, j) in GLCM represents the 

number of times a pixel of gray level i occurs with a neighbor pixel of gray level j in the 

image at a particular displacement distance and angle (Yang et al., 2012). We used 

histograms with 64 bins and constructed GLCM using 3D analysis of the tumor region with 

26 neighboring voxels and 13 directions of the 3D space. An example of the constructed 

GLCM for PET and CT is shown is figure 3. Twelve texture features were then calculated 

and defined as follows.

1. Energy is defined as

Energy = ∑i = 0
Ng − 1 ∑j = 0

Ng − 1
p(i, j)2, (8)

Energy is a measure of image homogeneity and a higher energy value indicates a 

more homogeneous image.

2. Entropy is defined as

Entropy = − ∑i = 0
Ng − 1 ∑j = 0

Ng − 1
p(i, j)log(p(i, j)), (9)

Entropy is used to measure the randomness of the image intensity distribution.

3. Correlation is defined as

Correlation =
∑i = 0

Ng − 1 ∑j = 0
Ng − 1 (ij) ⋅ p(i, j) − μxμy

σxσy
, (10)

where μ is the mean value and σ is the standard deviations. Correlation is a 

measure of the linear dependency of gray levels on those of either neighboring 

voxels or specified points.

4. Contrast is defined as

Contrast = ∑k = 0
Ng − 1

k2 ∑i = 0
Ng − 1 ∑j = 0

Ng − 1
p(i, j) i − j = k , (11)

Contrast is a measure of the local variations within an image and is highly 

correlated with the difference between the highest and the lowest values of a 

continuous set of voxels.

5. Variance is defined as
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V ariance = ∑i = 0
Ng − 1 ∑j = 0

Ng − 1
i − ux

2 ⋅ p(i, j) + ∑i = 0
Ng − 1 ∑j = 0

Ng − 1
i − uy

2

⋅ p(i, j),
(12)

Variance is used to measure the variation around the mean value.

6. Sum-Mean is defined as

Sum − Mean = ∑i = 0
Ng − 1 ∑j = 0

Ng − 1
i + j ⋅ p(i, j), (13)

7. Inertia is defined as

Inertia = ∑i = 0
Ng − 1 ∑j = 0

Ng − 1
i − j 2 ⋅ p(i, j), (14)

Inertia is used to measure the local variation between a voxel and its neighbors.

8. Cluster Shade is defined as

Cluster Sℎade = ∑i = 0
Ng − 1 ∑j = 0

Ng − 1
i + j − ux − uy

3p(i, j), (15)

Cluster shade is taken as the measurement of the matrix skewness.

9. Cluster Tendency is defined as

Cluster Tendency = ∑i = 0
Ng − 1 ∑j = 0

Ng − 1
i + j − ux − uy

4p(i, j), (16)

Cluster Tendency is used to measure asymmetry.

10. Homogeneity is defined as

Homogeneity = ∑i = 0
Ng − 1 ∑j = 0

Ng − 1 p(i, j)
1 + i − j , (17)

Homogeneity is used to measure the closeness of the elements in p(i, j) to the 

diagonal.

11. Max-Probability is defined as

Max − Probability = maxi, jp(i, j), (18)

12. Inverse Variance is defined as

Inverse V ariance = ∑i = 0
Ng − 1 ∑j = 0

Ng − 1 p(i, j)
1 + (i − j)2 . (19)
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Inverse variance is also used to measure the homogeneity of an image.

Geometry features describe the shape, size, or relative position of the tumor (Tan et al., 
2013). The major diameter is defined as the major axis length or longest diameter, while the 

minor diameter is the shortest diameter. Eccentricity is the aspect ratio, defined as the ratio 

of the length between the major and the minor axis. The features after z-score normalization 

are reported in figure 4.

2.4. Predictive model

The Support Vector Machine (SVM) was used to construct the predictive model. SVM can 

find the optimal separating hyperplane between classes by solving a constrained quadratic 

optimization problem (Zhou et al., 2016). Assuming that {xi, yi}, i = 1, ⋯, n represents the 

training set with xi as the input vector and yi ∈ {−1,1} as the label. For linear SVM, we 

assume that the classification function is

f(x) = ωTx + b, (20)

where w represents the normal vector of the hyperplane, and b is the bias term of the 

separating hyperplane. The objective function is

min1
2 ω

2
s . t . yi ωTxi + b ≥ 1, i = 1, ⋯, n, (21)

For nonlinear SVM, kernel denoted by k(xi, x) is introduced. In addition, a penalty 

parameter C is introduced to reduce the effect of the outliers. Hence, the objective function 

is

min1
2 ω

2
+ C∑i = 1

n ξi, (22)

Subjected to: yi ωTk xi, x + b + ξi − 1 ≥ 0, ξi ≥ 0, i = 1, ⋯, n, (23)

where ξi represents the non-negative slack variables. The problem above can be solved by 

introducing the Lagrange dual function as:

L(ω, b, ξ, α) = 1
2 ω

2
+ C∑i = 1

n ξi − ∑i = 1
n αi yi ωTk xi, x + b + ξi − 1

− ∑i = 1
n riξi

(24)

where α is the vector of the dual variables corresponding to each separation constraint and ri 

is the weight of ξi. After the transformation, the new objective function is expressed as:

maxα∑i = 1
n αi − 1

2 ∑i, j = 1
n αiαjyiyjk xi, xj , (25)
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s . t . 0 ≤ αi ≤ C, i = 1, ⋯, n and ∑i = 1
n αiyi = 0, (26)

where xi and xj are samples i and j, respectively. After obtaining the optimal solutions for 

Eq. (25), the predictive model was constructed. In the test stage, we assume x is a test 

sample and the discriminant function is expressed as:

f(x) = ∑i = 1
n αiyik xi, x + b, (27)

As shown in a previous study (Levman et al., 2008), the radial basis function (RBF) kernel is 

recommended as a primary choice and was used as:

k xi, xj = exp −γ xi − xj 2 . (28)

where γ is a shape parameter that determines the smoothness of the boundary between the 

groups in the original object space. To obtain the optimal predictive model, the parameters C 
and γ are trained by the proposed training algorithm, which will be described in the 

following sections.

2.5. Multi-objective radiomics model

After extracting the features, we selected those that would improve model performance and 

reduce computational complexity. In addition, the model parameters described earlier were 

also trained to achieve optimal performance. Because feature selection may influence the 

model parameter training, feature selection and model parameter training should be 

conducted simultaneously (Huang and Dun, 2008). In this work, combinatorial optimization, 

defined as finding an optimal object from a finite set of objects (Nemhauser and Wolsey, 

1988), was utilized for feature selection. During optimization, each feature has a binary label 

“0” or “1”. In a solution obtained by the IMIA algorithm described in section 2.6, a feature 

is selected if it has a label “1”. If the label is “0”, then the corresponding feature is not 

selected.

We assume that the model parameters are denoted by α = {α1, ⋯, αM}, where M is the 

number of model parameters. All the features are denoted by β = {β1, ⋯, βN}, where N is 

the number of features. The objective functions include both sensitivity and specificity, 

denoted by fsen, fspe, respectively, as:

fsen = TP
TP + FN , (29)

fspe = TN
TN + FP , (30)

where TP is the number of true positives, TN is the number of true negatives, FP is the 

number of false positives, and FN is the number of false negatives (Zhou et al., 2013a). The 
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goal of the proposed model is to simultaneously maximize fsen and fspe to obtain the Pareto-

optimal solutions:

f = maxα, β fsen , fspe . (31)

The best predictive result is selected according to the clinical needs. The solution 

corresponding to the selected features and model parameters can also be obtained. In the 

following subsection, a new algorithm named as IMIA was described to solve the multi-

objective optimization problem.

2.6. Iterative multi-objective immune algorithm

Because two objective functions are defined in equation (31), a multi-objective optimization 

algorithm is needed. Multi-objective evolutionary algorithms (MOEA) have recently shown 

superior performance for multi-objective optimization (Deb, 2001).We selected the artificial 

immune system (AIS) inspired MOEA, a highly distributed, adaptive, self-organizing 

algorithm with learning characteristics, memory features (Zhou et al., 2013b), and improved 

performance. Moreover, to improve the accuracy and reliability of the predictive model, an 

enhanced AIS inspired algorithm called IMIA was proposed. IMIA consists of two phases: 

(1) Generating the Pareto-optimal solution set; (2) selecting the best solution according to 

the clinical needs. The first phase includes the following key steps:

Step 1: Initialization—Because feature selection and model parameter training are 

performed simultaneously, a hybrid initialization of the selected features and model 

parameters is needed. In MOEA, an initial solution set is always needed. In our method, the 

initial solution set was generated randomly. One particular solution consists of a group of 

binary or integer values, named as “individuals”. Each individual in one particular solution 

represents one feature or one model parameter. The features are encoded by a binary 

encoding method. A value of “1” indicates that the corresponding feature has been selected, 

while “0” denotes that the corresponding feature has not been selected. Model parameters 

are optimized directly because the value is continuous. We use Gmax to denote the maximal 

number of generations and D(j) = {d1, ⋯, dP}, j = 0 to denote a solution set, where di, i = 1, 

⋯, P is the particular solution.

Step 2: Clonal operation—We used proportional cloning to keep the best solutions 

(Gong et al., 2008). The solution with a larger crowding-distance was reproduced multiple 

times, with the clonal time qi for each solution calculated as:

qi = nc × δ di, D
∑j = 1

P δ dj, D
, (32)

where nc is the expectant value of the clonal solution set and ⌈ ⌉ is the ceiling operator. δ(di, 

D) represents the crowding distance of the particular solution di, calculated as:
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δ d, D =Δ ∑
i = 1

k δi d, D
fi

max − fi
max , (33)

where fi
max and fi

min are the maximal and minimal value of the ith objective function and 

δi(d, D) is calculated as (Gong et al., 2008):

δi(d, D) =
∞, if fi(d) = min fi d′ ∣ d′ ∈ D or fi(d) = max fi d′ ∣ d′ ∈ D
min fi d′ − fi d′′ ∣ d′, d′′ ∈ D:fi d′′ < fi(d) < fi d′ , otℎerwise .

(34)

After performing the clonal operation for each solution, all the newly generated solutions 

constitute the cloned solution set denoted by C(j).

Step 3: Mutation operation—To generate better solutions, the mutation operation is 

performed on the cloned solution set C(j). Assume that the mutation probability is denoted 

by MP. For each individual in one particular solution, a random mutation probability (RPi) is 

first generated. If MP > RPi, the mutation will be performed. After completing the mutation 

operation for each solution, all the new particular solutions form the mutated solution set 

M(j). The original solution set D(j) and M(j) are combined to get a new solution set denoted 

by F(j).

Step 4: Deleting operation—The same solutions may exist in the new generated 

solution set F(j) after performing the two steps described above. To avoid a reduction of the 

search space for the same solutions, only the unique one is kept. The remaining solutions 

constitute the new solution set DF(j). If size(DF(j)) < P, step 2 should be applied; otherwise, 

step 5 should be applied.

Step 5: Updating solution set—To maintain the size of the solution set, P particular 

solutions are selected from the solution set DF(j). Before performing any updates, the 

performance of each solution is evaluated. Model parameters C and γ in SVM are extracted 

from each particular solution to construct the model. The samples with the selected features 

in one solution are used to calculate fsen and fspe through 5-cross-validation. In most 

traditional MOEAs, the crowding distance is used to update the solution set to increase the 

diversity of the Pareto-optimal solutions (Deb et al., 2002). In our study, we proposed 

obtaining the Pareto-optimal set with a higher AUC as it is one of the most important criteria 

to evaluate the performance of a model or system. Therefore, in this step the solution in D(j) 
is sorted in the descending order using the fast nondominated sorting approach (Deb et al., 
2002), according to the AUC of each solution. The P solutions are chosen from solution set 

DF(j)to constitute the new solution set UD(j). An example of the workflow is illustrated in 

figure 5. First, the two best non-dominated solution sets F1 and F2 are selected. If all the 

solutions from F3 are selected, the present solution number will be exceeded. Therefore, 

only some of the solutions are selected according to AUC sorting, and the new solution set is 

generated.

Zhou et al. Page 10

Phys Med Biol. Author manuscript; available in PMC 2021 April 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Step 6: Termination—If j ≥ Gmax, UD(j) is considered as the output and the algorithm 

ends; Otherwise, let j = j + 1 and D(j) = UD(j), and go to step 2.

In the second phase, the best solution is selected after generating the Pareto-optimal solution 

set. In this work, the best solution is selected according to sensitivity, specificity, and AUC. 

Assume that the thresholds for sensitivity and specificity are denoted by Tsen and Tspe, 

respectively. The Pareto-optimal solution is denoted by D = {D1,D2, ⋯, DP} and the 

corresponding sensitivity, specificity, and AUC for each solution Di, i = 1,,2, ⋯, P are 

denoted by Di
sen, Di

spe, Di
AUC, i = 1,2, ⋯, P, respectively. The procedure to select the best 

solution is described as follows.

Step 1: For each particular solution Di, i = 1,2, ⋯, P, if Di
sen > Tsen , and Di

spe > Tspe , it is 

selected as the candidate solution. All the selected solutions constitute the candidate set, 

which is denoted by DC = DC
1 , DC

2 , ⋯, DC
Q , where Q is the number of selected solutions.

Step 2: The best solution DC*  is selected with the highest AUC in DC.

As compared with the most commonly available immune-inspired algorithm, the deleting 

operation is a new step in IMIA; after performing clonal and mutation operations, the same 

solutions may exist in a solution set, narrowing the search space. After performing the 

deleting operation, additional solutions can be added into the solution set, increasing the 

diversity of the solution set and the chances of obtaining better solutions.

3. Experimental results

3.1. Experimental setup

The multi-objective radiomics model and the IMIA were evaluated for distant failure 

prediction in lung SBRT patients. The traditional immune multi-objective algorithm (TIMA) 

was used for comparison. Two differences between TIMA and IMIA are listed as follows: 

(1) TIMA does not have a deleting operator; (2) when updating the population in TIMA, the 

fast non-dominated sorting was calculated according to the crowding distance (Deb et al., 
2002). In IMIA, the population was sorted according to the AUC.

Furthermore, we compared the proposed model with a single-objective model, with the AUC 

as the single objective function. For fair comparison, the optimization strategy employed in 

the single objective with AUC (SO-AUC) is also an immune-inspired algorithm that consists 

of the following steps: 1) Initialization. This step is based on hybrid initialization as for 

IMIA. 2) Clonal operation. Proportional cloning also was used. 3) Mutation operation, as for 

IMIA. 4) Evaluation and selection. In this step, AUC was considered as the objective 

function to update the population. 5); Termination test. In this step, the individual with the 

highest AUC was considered as the final output.

The population number was set to 100 in all three methods, while the maximal generation 

number was set to 200. In the clonal operator, nc was set to 200. In the mutation operator, the 

mutation probability was set to 0.9. The five-folder cross-validation was performed. To study 
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the influence of the different features, seven combinations of the three feature groups 

(clinical parameters, and PET and CT imaging features) were used to build the predictive 

models. Sensitivity, specificity, and AUC were used to evaluate the performance of the 

different models and compared with the unpaired t test at a significance level of 0.05. All 

experiments were performed 10 times, including the calculation of the mean and standard 

deviation for each evaluation criteria.

3.2. Results

Sensitivity, specificity, and AUC for different methods are summarized in table 4. As 

compared with SO-AUC, IMIA can obtain similar specificity and AUC results, but greater 

sensitivity. The difference between sensitivity and specificity for the three methods is 

reported for seven combinations (figure 6). The difference between sensitivity and 

specificity in IMIA is smaller than SO-AUC in all cases, and smaller than TMIA in most of 

cases. IMIA can obtain better performance than TMIA for most combinations of the three 

evaluation criteria. The p-values of the unpaired t test between IMIA and each of other two 

methods for three evaluation criteria are shown in table 5. These results show that there is a 

statistically significant difference between IMIA and each of other two methods for 

sensitivity, specificity and AUC in all seven combinations. For the different predictive 

methods, the highest prediction accuracy based on the AUC measure is achieved when all 

the features (clinical parameters, PET feature, and CT feature) are combined.

One group of the Pareto-optimal solution set and the selected final solution in IMIA is 

shown in figure 7. The selected final solution was marked in red, while the selected feasible 

solutions were marked in green. The unselected labels were marked in blue. The best 

solutions for all combinations were in the Pareto-optimal surface. Meanwhile, figure 8 

shows one group of the Pareto-optimal solution set for TMIA. The number of Pareto 

solutions in TMIA is less than IMIA shown in figure 8. This is because TMIA keeps the 

same solutions, which reduces the diversity of feasible solutions.

4. Discussion and Conclusions

A multi-objective radiomics model was proposed to predict distant failure in early stage 

NSCLC treated with SBRT and overcome the disadvantages of the single objective 

predictive model in radiomics. Both sensitivity and specificity were simultaneously 

considered as the objects to guide the predictive model construction. Moreover, an iterative 

multi-objective immune algorithm (IMIA) was developed to train the model and increase 

accuracy and reliability. As compared with the traditional method, the deleting operation 

was added in IMIA, and AUC was adopted as a non-dominated sorting criterion upon 

updating of the solution set. The solution set diversity can be kept when adding the deleting 

operation in IMIA. With this approach more optimal solutions were obtained. In addition, 

because AUC is used as a criterion to update the solution set, the solution with higher AUC 

was also kept.

Several studies have attempted to predict distant failure after SBRT (Clarke et al., 2012; 

Timmerman et al., 2014; Zhou et al., 2016), although they mainly focused on individual 

factors or clinical parameters (Zhou et al., 2016). In this work, we combined image features 
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and clinical parameters to improve the prediction accuracy for distant failure in lung SBRT. 

For seven combinations of the input features, we showed they can perform better than single 

group features. The best performance was obtained when all three group features were 

combined within the three methods because the addition of new group features allowed the 

selection of positive features, improving the performance of all the predictive models. As 

part of the goal of this work is to investigate the influence of different imaging modalities for 

the prediction accuracy, we segmented tumors in CT and PET separately and then extracted 

features from each imaging modality for different predictive models. This allows us to 

examine the prediction performance of each imaging modality by solely using its own 

information. Due to the image resolution difference between PET and CT, the two 

segmentations could be slightly different. We may obtain a single segmented volume by co-

segmentation of anatomical and functional images (Bagci et al., 2013). The influence of 

different segmentation strategies is warranted in a future study.

To validate the performance of the proposed model and IMIA in the short term, independent 

patient cohorts from other institutions are needed. However, data sharing from another 

institution is still a challenge due to many practical and regulatory issues. Alternatively, 

rather than asking for submission of patient clinical and imaging data from potential 

collaborators, we may share our model to them for validation internally, and thus no patient 

data will be required to leave their institutions. We are planning to implement this strategy in 

a future study. Ultimately, an optimized and robust model will need to be validated in a 

prospective study. In addition, in the currently proposed method, the best solution was 

selected from the Pareto-optimal set by setting the thresholds for sensitivity and specificity. 

However, the manual setting of an optimal threshold is challenging, indicating the need for 

automatic selection.
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Figure 1. 
Multi-objective radiomics workflow.
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Figure 2. 
Tumor segmentation results for PET and CT images. (a)-(c) Examples of PET image 

segmentation results in one patient; (d)-(f) CT image segmentation results.
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Figure 3. 
Example of the constructed GLCM. (a) GLCM for PET; (b) GLCM for CT.
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Figure 4. 
Features from PET, CT images, and clinical parameters after z-score normalization.
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Figure 5. 
AUC based non-dominated sorting.
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Figure 6. 
Difference in sensitivity and specificity between SO-AUC, TMIA, and IMIA.
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Figure 7. 
Pareto-optimal solution set and best solution selection for IMIA using different 

combinations of the feature sets. Red label: final selected solution; Green labels: selected 

feasible solutions; Blue labels: unselected solutions. Note that the ranges of the x and y axes 

are different in each figure.
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Figure 8. 
Pareto-optimal solution set and best solution selection for TMIA using different 

combinations of the feature sets. Red label: final selected solution; Green labels: selected 
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feasible solutions; Blue labels: unselected solutions. Note that the ranges of the x and y axes 

are different in each figure.
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Table 1.

Illustration of imbalanced dataset for prediction results.

Positive Negative

Positive TP=1 FN=2

Negative FP=2 TN=15
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Table 2.

Clinical parameters.

Demographic parameters Tumor characteristics Treatment parameters Pretreatment medicine

Age Primary diagnosis Number fractions Antiinflammatories

Ethnicity Central tumor or not Dose per fraction Anitdiabetic

Gender Tumor size BED Metformin

Histology Statin

Location ACE inhibitor

Stage ASA

Abbreviation – BED: biological equivalent dose; ACE inhibitor: Angiotensin-converting-enzyme inhibitor; ASA: Acetylsalicylic acid.
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Table 3.

Image features.

Intensity features Texture features Geometry features

Minimum Energy Volume

Maximum Entropy Major diameter

Mean Correlation Minor diameter

Stand deviation Contrast Eccentricity

Sum Texture Variance Elongation

Median Sum-Mean Orientation

Skewness Inertia Bounding Box Volume

Kurtosis Cluster Shade Perimeter

Variance Cluster Prominence

Homogeneity

Max-Probability

Inverse Variance
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Table 4.

Results of different prediction methods.

Modality Method Sensitivity Specificity AUC

Clinic

SO-AUC 0.59±0.14 0.88±0.05 0.84±0.01

TMIA 0.63±0.09 0.82±0.04 0.76±0.05

IMIA 0.76±0.03 0.88±0.02 0.81±0.04

PET

SO-AUC 0.65±0.15 0.75±0.06 0.78±0.03

TMIA 0.70±0.04 0.72±0.03 0.69±0.04

IMIA 0.76±0.08 0.75±0.08 0.75±0.04

CT

SO-AUC 0.68±0.11 0.86±0.04 0.82±0.02

TMIA 0.79±0.05 0.84±0.03 0.80±0.03

IMIA 0.81±0.06 0.79±0.05 0.78±0.03

Clinic and PET

SO-AUC 0.54±0.06 0.94±0.02 0.86±0.04

TMIA 0.75±0.01 0.97±0.02 0.84±0.03

IMIA 0.77±0.04 0.91±0.04 0.82±0.06

Clinic and CT

SO-AUC 0.54±0.14 0.94±0.02 0.85±0.06

TMIA 0.58±0.01 0.98±0.02 0.68±0.03

IMIA 0.77±0.04 0.90±0.03 0.83±0.05

PET and CT

SO-AUC 0.47±0.14 0.96±0.05 0.84±0.02

TMIA 0.73±0.04 0.86±0.08 0.75±0.07

IMIA 0.75±0.01 0.81±0.04 0.81±0.04

Clinic, PET and CT

SO-AUC 0.46±0.12 0.97±0.03 0.87±0.02

TMIA 0.62±0.06 0.98±0.03 0.84±0.04

IMIA 0.76±0.03 0.94±0.03 0.83±0.04
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Table 5.

Results of p-values compared between IMIA and TMIA or SO-AUC for three evaluation criteria in seven 

combinations

Method Criterion Clinic PET CT Clinic/PET Clinic/CT PET/CT Clinic/PET/CT

TMIA

Sensitivity p=0.002 p=0.03 p=0.007 p<0.0001 p<0.0001 p<0.0001 p<0.0001

Specificity p=0.003 p=0.003 p<0.001 p=0.007 p=0.01 p<0.0001 p<0.04

AUC p=0.02 p<0.001 p=0.001 p<0.0001 P<0.0001 p=0.01 p=0.007

SO-AUC

Sensitivity p<0.001 p=0.006 p=0.008 p=0.007 P<0.0001 p<0.0001 p<0.0001

Specificity p<0.0001 p=0.007 p=0.005 p<0.0001 p<0.0001 p<0.0001 p<0.02

AUC p<0.001 p<0.001 p=0.004 p<0.0001 P<0.0001 p=0.04 p=0.03
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