Skip to main content
. 2021 Jan 5;2(2):100019. doi: 10.1016/j.xhgg.2020.100019

Table 4.

Mean prediction performance of genes predicted in METS by all 4 of the prediction algorithms for each training population

Population EN RF SVR KNN Number of genes
AFA 0.1210 0.1150 (p = 3.0 × 10−3) 0.0959 (p = 4.5 × 10−23) 0.0723 (p = 1.9 × 10−47) 1,640
HIS 0.0880 0.1066 (p = 5.3 × 10−11) 0.0896 (p = 5.9 × 10−1) 0.0648 (p = 1.4 × 10−12) 1,809
CAU 0.0620 0.0770 (p = 1.3 × 10−7) 0.0699 (p = 4.0 × 10−3) 0.0475 (p = 5.4 × 10−6) 2,091
AFHI 0.1111 0.1068 (p = 1.1 × 10−2) 0.0944 (p = 8.8 × 10−16) 0.0695 (p = 9.6 × 10−50) 2,290
ALL 0.1074 0.1046 (p = 1.2 × 10−1) 0.0944 (p = 1.3 × 10−11) 0.0659 (p = 9.0 × 10−49) 2,315

For each training population, we took only intersection genes predicted by EN, RF, SVR, and KNN. Focusing on these intersects for each training population, we calculated the mean prediction performance (ρ). The paired t test p value between EN and each other model is shown in parentheses. EN, elastic net; RF, random forest; SVR, support vector regression; KNN, K nearest neighbor; AFA, MESA African American; HIS, MESA Hispanic American; CAU, MESA European American; AFHI, MESA African American and Hispanic American; ALL, all MESA.