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N E U R O S C I E N C E

Na+/Ca2+ exchanger mediates cold Ca2+ signaling 
conserved for temperature-compensated  
circadian rhythms
Naohiro Kon1, Hsin-tzu Wang1, Yoshiaki S. Kato2, Kyouhei Uemoto3,4, Naohiro Kawamoto5, 
Koji Kawasaki5, Ryosuke Enoki6,7, Gen Kurosawa8, Tatsuto Nakane9, Yasunori Sugiyama9, 
Hideaki Tagashira10, Motomu Endo3, Hideo Iwasaki5, Takahiro Iwamoto10*,  
Kazuhiko Kume2, Yoshitaka Fukada1*

Circadian rhythms are based on biochemical oscillations generated by clock genes/proteins, which independently 
evolved in animals, fungi, plants, and cyanobacteria. Temperature compensation of the oscillation speed is a com-
mon feature of the circadian clocks, but the evolutionary-conserved mechanism has been unclear. Here, we 
show that Na+/Ca2+ exchanger (NCX) mediates cold-responsive Ca2+ signaling important for the temperature-
compensated oscillation in mammalian cells. In response to temperature decrease, NCX elevates intracellular 
Ca2+, which activates Ca2+/calmodulin-dependent protein kinase II and accelerates transcriptional oscillations of 
clock genes. The cold-responsive Ca2+ signaling is conserved among mice, Drosophila, and Arabidopsis. The mam-
malian cellular rhythms and Drosophila behavioral rhythms were severely attenuated by NCX inhibition, indicating 
essential roles of NCX in both temperature compensation and autonomous oscillation. NCX also contributes to 
the temperature-compensated transcriptional rhythms in cyanobacterial clock. Our results suggest that NCX-
mediated Ca2+ signaling is a common mechanism underlying temperature-compensated circadian rhythms both 
in eukaryotes and prokaryotes.

INTRODUCTION
Among a wide variety of biological functions, the circadian clock is 
of particular interest because of its unique property, i.e., temperature-
compensated oscillation with a period of approximately 24 hours 
(1). Generally, an increase in temperature by 10°C accelerates rates 
of biochemical reactions by two- to threefold (Q10 = 2 to 3), whereas 
Q10 of the oscillation speed of the clock is 0.8 to 1.2. The property 
was originally termed temperature independence, but later termed 
temperature compensation on the basis of the finding of overcompen-
sation for the effect of temperature on the period length in photo-
synthetic dinoflagellates (Lingulodinium polyedra) (1). The temperature 
compensation is a common property of the circadian clocks, impli-
cating that a mechanism underlying the compensation is tightly 
associated with machinery for cell-autonomous oscillation.

Most of the overt circadian rhythms are based on biochemical 
oscillations generated by clock genes and their encoded proteins 
(2–5). Homologies of the clock genes are limited among animals, 
fungi, plants, and cyanobacteria, suggesting that the clock genes in-
dependently evolved after divergence of the lineages. In cyanobacteria, 

KaiC phosphorylation rhythms constitute a core circadian oscillator 
termed posttranslational oscillator (PTO) (5). The phosphorylation 
rhythms of KaiC in the KaiA-KaiB-KaiC protein complex are tem-
perature compensated in vitro. In eukaryotes, clock genes and their 
encoded proteins constitute transcriptional/translational feedback 
loops (TTFLs) (2–4). Because a HES (Hairy and Enhancer of Split)–
based TTFL in segmentation clock is temperature sensitive (Q10 = 2 
to 3) (6), temperature compensation is not a general property in-
trinsic to TTFLs. This suggests the existence of an important mech-
anism regulating the circadian oscillation of the TTFLs.

Historically, before the discovery of the clock genes, a feedback 
system involving ions and ion regulators in plasma membranes was 
proposed as the oscillation mechanism of the circadian clock (7). 
This “membrane model” is based on the observation that the circadian 
rhythms are notably affected by manipulating ion concentra-
tions or ion regulator activities in various eukaryotes (7). To date, 
several ions, especially Ca2+, have been shown to play an essential 
role for oscillation of the TTFLs in mammals (8), insects (9), and 
plants (10). In mice and Drosophila, intracellular Ca2+ levels were 
shown to exhibit robust circadian oscillations (11–13), which elicit 
rhythmic activation of Ca2+/calmodulin-dependent protein kinase 
II (CaMKII) (14–16). CaMKII phosphorylates CLOCK to activate 
CLOCK-BMAL1 heterodimer, a key transcriptional activator in the 
animal TTFLs (3). The upstream regulator of the Ca2+-dependent 
phosphorylation signaling has been a missing link between the TTFL 
and the membrane model.

RESULTS
Ca2+ signaling is a key for  
temperature-compensated oscillation
To uncover key regulators involved in temperature-compensated os-
cillation in mammals, we investigated effects of various small-molecule 
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compounds targeting protein kinases or ion regulators (table S1) 
on cellular rhythms of Rat-1 fibroblasts stably expressing Bmal1-
luciferase reporter (14, 17). A Q10 value was calculated from the 
period lengths of the bioluminescence rhythms recorded at 32° and 
37°C (figs. S1, A and B, and S2A). All the screening results were 
evaluated by using a Q10 value, which was defined as a difference 
of the Q10 values between drug-treated cells and control [0.1% 
dimethyl sulfoxide (DMSO)–treated] cells (Fig. 1A). We found a 
remarkable increase in Q10 by CaMKII inhibitor KN-93 (Fig. 1A) in 
a dose-dependent manner (Fig. 1, B and C). The treatment with 
10 M KN-93 shortened the period at 37°C, whereas it lengthened 
the period at 32°C (Fig. 1D). Such a temperature-dependent bidirectional 
effect of KN-93 was unique in that many compounds showed a 
unidirectional period-modifying effect at 32° and 37°C (fig. S1C). KN-92, 
an inactive analog of KN-93, had no significant effect on Q10 value 
(Fig. 1E and fig. S2B), supporting the specific effect of KN-93 on CaMKII.

In detailed analysis of the effects of the compounds, we noticed 
that the treatment with KB-R7943, an inhibitor of Na+/Ca2+ exchanger 
(NCX) (18), increased the Q10 value in a dose-dependent manner 
(Fig. 1, B and C). Similar to the CaMKII inhibitor, KB-R7943 exhib-
ited the temperature-dependent bidirectional effect on the circadian 
period (Fig. 1D). Another NCX inhibitor, SEA0400 (18), also showed 
the bidirectional period-modifying effect (Fig. 1D) and the Q10-
increasing effect (Fig. 1E). On the other hand, none of these effects 
were observed after treatment of Rat-1 cells with nifedipine and 
verapamil, blockers of L-type Ca2+ channel, or with IC261, a period-
lengthening inhibitor of casein kinase I (Fig. 1, C and D, and fig. 
S3) (15).

The period-modifying effects of KN-93 and KB-R7943 were further 
analyzed at various temperatures between 32° and 37°C (fig. S4). As 
a control, Rat-1 cells treated with DMSO showed shorter periods at 
lower temperatures (Fig. 2A), a phenomenon termed overcompen-
sation observed in a wide range of species (1–5). In contrast, the 
oscillation speed was slowed down by decreasing the temperature in 
the presence of KN-93 or KB-R7943 (Fig.  2A), and this period-
lengthening effect was particularly obvious below 35°C (Fig.  2B). 
The Q10 value calculated from the circadian periods at 32° and 35°C 
was 0.89 (vehicle), 1.49 (20 M KB-R7943), or 2.01 (10 M KN-93). 
It is evident that the overcompensated oscillation becomes tempera-
ture sensitive by inhibiting CaMKII or NCX activity. These results 
together demonstrate that CaMKII and NCX are key players for 
temperature compensation in the mammalian cellular clock.

NCX-Ca2+-CaMKII signaling is important for cellular  
circadian oscillation
Note that the KB-R7943 treatment of Rat-1 fibroblasts decreased the 
amplitude of the cellular rhythms (Fig. 1B). Among the chemicals 
targeting ion channels and transporters, only KB-R7943 suppressed 
the relative amplitude of the rhythms (Fig. 3A), suggesting an im-
portant role of NCX in the cell-autonomous oscillation mechanism, 
in addition to the temperature compensation.

NCX exchanges 3 Na+ for 1 Ca2+ across the plasma membrane. 
NCX is a unique bidirectional regulator of cytosolic Ca2+ concen-
tration because it can mediate both Ca2+ influx and efflux, depending 
on not only the membrane potential but also local concentrations of 
Na+ and Ca2+ (18). In response to an increase in cytoplasmic Ca2+ 
levels, NCX mediates Ca2+ efflux, while NCX can maintain steady-
state levels of intracellular Ca2+ by promoting Ca2+ influx in several 
types of cells (18). We examined roles of NCX in regulation of intracellular 

Ca2+ levels in NIH3T3 fibroblasts. Fluo-4 acetoxymethyl ester 
(Fluo-4 AM)–based Ca2+ imaging revealed that the basal fluorescence 
level in the cultured cells was remarkably reduced by the addition of 
5 to 20 M NCX inhibitor KB-R7943 to the culture medium 
(Fig. 3B), indicating that NCX contributes to net Ca2+ influx in the 
quiescent state. Then, we evaluated the effect of KB-R7943 on cellular 
CaMKII activity, which reflects intracellular Ca2+ level (14). One-day 
treatment of NIH3T3 cells with 20 M KB-R7943 significantly 
decreased the CaMKII activity toward syntide-2, a model substrate 
specific to CaMKII (Fig. 3C) (14). These results reveal an important 
role of NCX in the maintenance of the activity level of Ca2+-CaM-
KII signaling in the fibroblasts.

To address the role of NCX-Ca2+-CaMKII signaling in cell-
autonomous oscillation, we investigated effects of chronic inhibition 
of the signaling on circadian rhythms in Rat-1 reporter cells (14, 17). 
The relative amplitude of the cellular bioluminescence rhythm 
detected by Bmal1-luc was markedly reduced by chronic treatment 
with KN-93, trifluoperazine (calmodulin antagonist), 1,2-bis(2-
aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA)–AM 
(intracellular Ca2+ chelator), or KB-R7943 (Fig. 3D). The amplitude-
reducing effect by chronic treatment with KB-R7943 or SEA0400 
was also observed in Per2-luc reporter cells (Fig. 3E). The severe 
damping of the transcriptional rhythms was reversed by washing 
out the drug-containing medium (Fig. 3E). On the other hand, a 
pulse treatment (for 1 to 2 hours) of Rat-1–Bmal1-luc cells with 
KN-93, KB-R7943, or SEA0400 caused a phase-dependent phase 
shift of the bioluminescence rhythms with their maximal responses 
at circadian time (CT)21 (Fig. 3F). The amplitude-reducing effects 
(Fig. 3, D and E) and the overt phase-resetting actions of the inhibi-
tors (Fig. 3F) together suggest that NCX-dependent Ca2+-CaMKII 
signaling functions as a state variable of the circadian oscillator in a 
limit cycle interpretation (fig. S5) (14, 19).

Lowering temperature activates NCX-Ca2+-CaMKII signaling
In the experiments examining the relationship between temperature 
and the cellular rhythms, we found that the amplitude of the rhythm 
was decreased by lowering temperature particularly below 34°C 
(Fig. 4A, DMSO, and fig. S6). In the same range of temperatures, 
KN-93 treatment (2 to 10 M) caused a much larger decrease in the 
amplitude in a dose-dependent manner (Fig. 4, A and B, and fig. 
S6). The results indicate that CaMKII activity compensates for am-
plitude decrease in the TTFL at temperatures below 34°C.

Note that hypothermia is clinically defined as a drop in core body 
temperature below 35°C (20). We hypothesized that Ca2+ signaling 
may be activated for cold response in mammalian cells, as reported 
for cold tolerance mechanism of insects and plant cells (21). This 
idea was tested by investigating intracellular Ca2+ levels in cultured 
fibroblasts. In Fluo-4 AM–based Ca2+ imaging, lowering of the tem-
perature from 37° to 25°C significantly increased free Ca2+ levels in 
NIH3T3 cells (Q10 = 0.73) (Fig. 4C). The hypothermic response was 
blocked by treatment with SEA0400 or KB-R7943 (Fig. 4D). We found 
that the CaMKII activity of lysates prepared from the cells cultured 
at 27°C was higher than that at 37°C (Q10 = 0.78) (Fig. 4E, DMSO). 
In addition, the hypothermic activation of CaMKII was inhibited in 
the cells cultured with 20 M KB-R7943 (Fig. 4E). These results in-
dicate that NCX enhances Ca2+ influx and activates CaMKII signaling 
in response to the temperature decrease in the mammalian cells.

We then examined how intracellular Ca2+ levels affect the clock 
gene expression rhythms. In Rat-1–Bmal1-luc cells, 1-hour treatment 
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Fig. 1. CaMKII and NCX activities are essential for temperature compensation. (A) Effects of chemical inhibitors on Q10 of bioluminescence rhythms in Rat-1–Bmal1-
luc cells. To normalize experiment-to-experiment variations, Q10 values compared to the vehicle (DMSO) control were used for comparison of the all screening data. The 
waveforms and the other parameters are shown in figs. S1 to S3. (B) Representative bioluminescence rhythms of Rat-1–Bmal1-luc cells in the presence of KN-93 (left) or 
KB-R7943 (right) at 32° or 37°C. (C) Dose-dependent effect of KN-93 or KB-R7943 on Q10. ★P < 0.05 compared to DMSO (Dunnett’s test). (D) Dose- and temperature-dependent 
effect of KN-93, KB-R7943, or SEA0400 on period length at 32° or 37°C. ★P < 0.05 compared to DMSO (Dunnett’s test). (E) Effect of KN-92, KN-93, or SEA0400 on Q10 value. 
We used a concentration of 10 M consistently in the first screening (A), and two compounds, KN-93 and KB-R7943, met our criteria. Then, we performed reproducibility 
test and dose dependency test for the two compounds with several control compounds (B to E). Representative data (B) or the means with SEM from three independent 
samples (A and C to E) are shown.
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with Ca2+ ionophore, ionomycin, or A23187 up-regulated transcripts 
of Per1, Per2, and Dec1 (Fig. 4F), which are regulated by CaMKII 
(14, 16) through E-box and/or CRE, a DNA cis-element responsive 
to Ca2+/cyclic adenosine monophosphate signaling (3). Consistently, 
a decrease in the temperature from 37°C down to 29°C elevated the 
expression levels of many E-box–regulated genes, such as Per1, Per2, 
Per3, Dec1, Dec2, Rev-erb, Rev-erb, and Cry1 (Fig. 4G). In addi-
tion, E4bp4, which is regulated by Ca2+-NFAT signaling (22), is also 
up-regulated by the temperature decrease (Fig. 4G). Consistent with 
the decrease in relative amplitude of the bioluminescence rhythms 
at lower temperatures (Fig. 4A), a peak-trough ratio of Bmal1 ex-
pression rhythm was reduced by lowering the temperature (Fig. 4G). 
We found that the hypothermic up-regulation of Per1 and Per2 
transcripts was significantly attenuated in the presence of NCX in-
hibitor KB-R7943 or CaMKII inhibitor KN-93 (Fig. 4H). These results 
together indicate that the temperature changes have a marked influence 
on the clock gene expression levels through NCX-Ca2+-CaMKII 
signaling.

Cold-responsive Ca2+ signaling compensates for slowdown 
of TTFL at lower temperature
In 1957, Hastings and Sweeney (1) hypothesized that temperature 
compensation of the circadian clock is based on a combination of 
temperature-sensitive period-shortening and period-lengthening 
processes. Most biochemical reactions in the TTFL are slowed 
down by decreasing the temperature (table S2). In an in vitro assay, 
kinase activity of purified CaMKII toward a CLOCK peptide (Ser/
Pro-rich region of CLOCK) (15) was reduced by lowering the tem-
perature (Q10 = 2.9) (Fig. 5A). In contrast, as described above (Fig. 4E), 
CaMKII activity in the cultured cells was enhanced by lowering the 
temperature (Q10 = 0.78), indicating that Ca2+ influx is a key factor 
for accelerating CaMKII-mediated processes in the circadian clock 
at lower temperatures. Overexpression of CaMKII-T286D, a con-
stitutive active form of CaMKII (14), accelerated the oscillation speed 
(shortened the period) and increased the amplitude of Bmal1-luc 
rhythms in cultured NIH3T3 cells (Fig. 5, B and C). To understand 
the experimental results theoretically, we simulated the effect of 
phosphorylation-dependent activation of CLOCK-BMAL1 on the 
gene expression rhythm by using a previously published mathematical 
model (23). In the horizontal axis of this simulation (Fig.  5D), a 
standard phosphorylation rate of CLOCK-BMAL1 estimated from 
previous experimental results was set to 1 (23). We found that an 

increase in the phosphorylation rate of CLOCK-BMAL1 accelerated 
the oscillation speed (shortened the period) and increased the am-
plitude of Bmal1 mRNA rhythm (Fig. 5D). These theoretical analysis 
and experimental data collectively indicate that the cold-responsive 
Ca2+ signaling compensates for the period lengthening and ampli-
tude reduction of the TTFL caused by lowering the temperatures. 
Considering the roles of intracellular Ca2+ in the circadian oscilla-
tion of the TTFL (Fig. 3) and in its temperature compensation 
(Figs. 1, 2, 4, and 5, A to D), we propose an oscillation model in which 
the TTFL couples with a Ca2+ oscillator for temperature-compensated 
circadian rhythms (Fig.  5E). We then examined responses of the 
Ca2+ oscillator to temperature changes. Circadian rhythms of intra-
cellular Ca2+ levels in cultured slices of the mouse suprachiasmatic 
nucleus (SCN) were monitored by using adeno-associated virus-
mediated gene transfer of GCaMP6s (11). Lowering the temperature 
from 35° to 28°C caused upward shifts of both the peak and trough 
levels of the intracellular Ca2+ (Fig. 5, F and G) with no significant 
change in the period length of the Ca2+ oscillation (Q10  =  1.02). 
These results together suggest that the circadian Ca2+ oscillator is 
highly responsive to temperature changes to maintain constant pe-
riod lengths of cellular circadian rhythms.

Cold-responsive phosphorylation signaling is conserved 
among animals and plants
The cold-responsive Ca2+ signaling was investigated in vivo in several 
organisms. Cold exposure of mice to 4°C for 10  min remarkably 
decreased the temperatures of the body surface (Fig. 6A) without a 
large change in the core body temperature (fig. S7A). Infrared ther-
mography revealed that the temperatures of the ear and tail dropped 
by 12.0° and 16.5°C, respectively (Fig. 6A). We found that CaMKII 
activities (toward syntide-2) in the tissue lysates were enhanced by 
1.34-fold (ear) and 2.25-fold (tail) after 90-min exposure at 4°C (Fig. 6B). 
The cold response of CaMKII was also analyzed in Drosophila 
melanogaster. CaMKII activities in the fly heads were enhanced by 
1.57-fold (Fig. 6B), when the flies (maintained at 25°C) were ex-
posed to 4°C for 90 min. In plants, Ca2+-dependent protein kinases 
(CDPKs) are the major transducers of Ca2+ signaling (24). Catalytic 
domains of CDPKs are highly homologous to animal CaMKII, and 
syntide-2 is a model substrate of CDPKs (24). The enzymatic activities 
phosphorylating syntide-2  in the shoot (leaf and stem) lysates of 
Arabidopsis thaliana (kept at 22°C) were remarkably enhanced by 
90-min exposure at 4°C (Fig. 6B). These results suggest that activation 
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of Ca2+-dependent phosphorylation signaling is a conserved mech-
anism underlying the cold responses.

Roles of NCX in circadian clockworks are conserved 
in eukaryotes and prokaryotes
Mammalian NCXs form a multigene family composed of three mem-
bers: NCX1, NCX2, and NCX3. NCX1 is ubiquitously expressed in 
a variety of tissues, while NCX2 and NCX3 are expressed in the brain 
and muscle (18, 25, 26). A previous study demonstrated that homo-
zygous knockout of NCX1 or NCX2 results in lethality (18, 25). We 
examined wheel-running activity rhythms of NCX2+/− mice and 
NCX2+/− NCX3−/− double-mutant mice. In constant dark condition, 
NCX2+/− and NCX2+/− NCX3−/− mice showed free-running rhythms 
with circadian periods significantly longer than that of wild-type 
mice (Fig. 7, A and B). One double-mutant mouse exhibited unstable 
coordination between onset and offset of the wheel-running activity 
bouts under constant darkness (Fig.  7C), a phenotype similar to 
that observed for CaMKIIK42R kinase-dead knock-in mice (14). 
These results indicate that NCX2 and NCX3 play important roles in 
maintaining normal behavioral rhythms in mice.

In D. melanogaster, NCX is encoded by a single gene, calx. We 
analyzed behavioral rhythms of two different lines of calx mutants, 
calxA deficient for Na+/Ca2+ exchange currents and calxB deficient 
for CALX protein expression (27). Both calxA and calxB homozy-
gous mutants showed severely weakened rhythmicity in locomotor 
activities at 25°C under constant darkness (Fig. 7D). Fast Fourier 
transform (FFT) analysis revealed a significant reduction in the be-
havioral rhythmicity in the calx mutants (Fig. 7, D and E), indicat-
ing an essential role of CALX in the Drosophila clock governing the 
behavioral rhythms.

Roles of Ca2+ in plant clocks were investigated in A. thaliana 
expressing CCA1::LUC reporter. Because Arabidopsis has 13 NCX 
genes (28), it is difficult to evaluate roles of NCXs genetically. In-
stead, we investigated effects of Ca2+ depletion in a growth medium 
on the bioluminescence rhythms. The Ca2+ depletion resulted in 
significant shortening of the free-running period in constant light 
condition at 22°C (Fig. 7, F and G), whereas the period-shortening 
effect was undetectable at 17°C. The Ca2+ depletion caused an in-
crease in the Q10 value from 0.80 (in the normal medium) to 0.95 
(Fig. 7H), indicating that Ca2+ signaling is required for accelerating 
the oscillation speed at lower temperatures in the plant as well.

Roles of NCX in prokaryotic circadian clocks were investigated 
by generating a cyanobacterial strain lacking yrbG, a bacterial homo-
log of NCX (28). The circadian rhythms in the yrbG strain were 
monitored with PKaiBC::luxAB reporter under constant light condition 
(Fig. 7I). We found that yrbG deficiency caused significant shorten-
ing of the period length at 30°C, whereas the period was lengthened 
at 25°C when compared with the wild-type strain (Fig. 7, I and J). 
Hence, the Q10 value of the bioluminescence rhythms was increased 
from 1.19 to 1.49 by the depletion of yrbG (Fig. 7K). These results 
demonstrate that NCX-dependent Ca2+ signaling plays a conserved 
role in both the TTFL-based eukaryotic clock and the PTO-based 
prokaryotic clock systems.

DISCUSSION
Circadian TTFLs are an elaborate system that drives a wide range of 
overt rhythms with various phase angles and amplitudes. The oscil-
lation speed of the TTFLs is temperature compensated, although 

many of the biochemical reactions in TTFLs are slowed down by 
decreasing temperature (table S2). The present study demonstrates 
that the temperature compensation of the TTFL in mammalian cells 
was compromised when Ca2+-dependent phosphorylation signaling 
was inhibited (Fig. 2A). We found an important role of NCX-CaMKII 
activity as the state variable of the circadian oscillator (Fig. 3, D to F, 
and fig. S5). The present study and a series of preceding works 
demonstrate that the Ca2+ oscillator plays essential roles in the cir-
cadian oscillation mechanism (Fig. 5E) (8–16). Functional studies 
clearly demonstrated essential roles of NCX-dependent Ca2+ signaling 
in the three important properties of the circadian clock, i.e., cell-
autonomous oscillation (Figs. 3, A to E, and 7, A to C), temperature 
compensation (Figs. 1, 2, 4, and 5), and entrainment (Fig. 3F). The 
circadian Ca2+ oscillation is observed in mice lacking Bmal1 or Cry1/
Cry2 (11, 12), implicating that the Ca2+ oscillator is an upstream 
regulator of the TTFL in mammals.

The effects of NCX2 and NCX3 deficiencies on the regulation of 
mouse behavioral rhythms (Fig. 7, A to C) suggest involvement of 
Na+/Ca2+ exchanging activity in the Ca2+ dynamics of the SCN. Previous 
studies showed that L-type Ca2+ channel (LTCC) and voltage-gated 
Na+ channel (VGSC) are required for high-amplitude Ca2+ rhythms 
in the SCN (11, 12). Because NCX activities are regulated by local 
concentrations of Na+/Ca2+ and the membrane potential (18), co-
operative actions of LTCC, VGSC, and NCX seem to play impor
tant roles in generation mechanism of the robust Ca2+ oscillations 
in the SCN.

It should be emphasized that the role of Ca2+/calmodulin-dependent 
protein kinases is conserved among clockworks in insects (9, 13, 16), 
fungi (29), and plants (10, 24), suggesting that the Ca2+ oscillator might 
be a core timekeeping mechanism in their common ancestor (Fig. 8, 
Eukaryota). After divergence of each lineage, a subset of clock genes 
should have independently evolved in association with the Ca2+ os-
cillator. It is noteworthy that NCX is also required for temperature 
compensation of PTO-based cyanobacterial clock (Fig. 7,  I  to K). 
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dependent kinase (CaMK), are involved in posttranslational regulation of clock gene 
products. In cyanobacteria, posttranslational oscillator by KaiA/KaiB/KaiC drives 
the TTFL. NCX, a highly conserved molecule among three domains of life, is a com-
mon circadian timekeeping element in the eukaryotes and prokaryotes, and its 
original function is regulation of Ca2+ homeostasis.
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Because intracellular Ca2+ in cyanobacteria is elevated in response 
to temperature decrease (30), YrbG-mediated Ca2+ signaling may 
regulate the PTO in vivo. Conservation of NCX among eukaryotes, 
eubacteria, and archaea (Fig. 8) (31) suggests that NCX-dependent 
temperature signaling is essential for adaptation of a wide variety of 
organisms to environment. Further studies on NCX-regulated Ca2+ 
flux will provide evolutionary insights into the origin of the circa-
dian clocks.

MATERIALS AND METHODS
Real-time monitoring of gene expression rhythms 
in mammalian cells
Real-time monitoring of gene expression rhythms in mammalian 
cells was performed by using Rat-1 fibroblasts stably expressing 
Bmal1-luciferase reporter (14, 15, 17). The fibroblasts were plated on 
35-mm dishes (1.0 × 106 cells per dish) and cultured at 37°C under 
5% CO2 in a culture medium of Dulbecco’s modified Eagle’s medi-
um (DMEM) (Sigma-Aldrich, catalog no. 5796) supplemented with 
10% fetal bovine serum (FBS; Equitech-Bio Inc.), penicillin (50 U/ml), 
and streptomycin (50 g/ml). One day after the plating, the cells 
were treated with 0.1 M dexamethasone for 2 hours, and the medium 
was replaced with a recording medium of DMEM (Sigma-Aldrich, 
catalog no. D2902) supplemented with 10% FBS, glucose (3.5 mg/ml), 
penicillin (25 U/ml), streptomycin (25 g/ml), 0.1 mM luciferin, and 
10 mM Hepes-NaOH (pH 7.0). The bioluminescence signals were 
continually recorded from the cells cultured under air in a dish-type 
bioluminescence detector, Kronos (ATTO, AB-2500), or LumiCycle 
(Actimetrics). For overexpression of constitutive active CaMKII, 
pcDNA3.1-rat CaMKII-T286D was transfected to NIH3T3 cells 
expressing the Bmal1 reporter 1 day after plating of the cells (0.5 × 
106 cells per 35-mm dish) (14). The bioluminescence rhythms from 
the cells were monitored (as described above) from 1 day after the 
transfection.

For normalization of dish-to-dish variation of the bioluminescence 
levels, the raw data were divided by the mean bioluminescence sig-
nals recorded for 7 days. The normalized rhythms were detrended 
by subtracting 24-hour centered moving averages, and the areas un-
der the curves (arbitrary units) were used for calculating the relative 
amplitudes of the rhythms (14). Period lengths were calculated us-
ing the average value of peak-to-peak periods and trough-to-trough 
periods 1 day after the dexamethasone treatment of cultured cells. 
Q10 value was calculated by the following equation

	​​ Q​ 10​​  = ​ (1 / 2)​​ 10/(T2‐T1)​​	

where 1 and 2 are the periods at temperature T1 and T2, respectively.

Real-time monitoring of gene expression rhythms in plants
Monitoring of bioluminescence rhythms of A. thaliana (ecotype 
Columbia-0) expressing CCA1::LUC was performed as described pre-
viously (32). The plants were grown on a growth medium containing 
10 mM KCl, 0.6 mM NH4NO3, 0.5 mM H3BO3, 0.75 mM MgSO4, 
0.015 mM ZnSO4, 0.05 mM MnSO4, 0.05 mM FeSO4, 1.5 mM CaCl2, 
0.05 mM Na2-EDTA, 10 mM NH4NO3, and 0.8% agar (pH 6.3) at 
22°C under 12-hour light (approximately 80 mol m−2 s−1)/12-hour 
dark cycles for 2 weeks. Then, the plants were transferred to the 
growth medium without CaCl2. Two days after the transfer, lucifer-
in (final concentration of 0.125 mM) was added to the medium, and 

bioluminescence signals were measured with photomultiplier tubes 
under continuous light conditions.

Real-time monitoring of gene expression rhythms 
in cyanobacteria
A strain that harbored a PkaiBC::luxAB reporter cassette with a chlor-
amphenicol resistance gene at the targeting site (neutral site I) on 
the genome (ILC 976) was used as a wild-type strain. To disrupt the 
yrbG gene, a plasmid (pIL 1000) was constructed to harbor up-
stream and downstream regions of yrbG (Synpcc7942_0242) with a 
gentamicin resistance gene in the pGEM-T Easy backbone (Promega). 
The ∆yrbG strain (ILC 1383) was generated by transformation of 
ILC 976 with pIL 1000. Cells were grown in BG-11 media in the 
absence of calcium source (250 M CaCl2). The bioluminescence 
profiles were measured with photomultiplier tubes under continu-
ous light (LL, 40 mol/m2 s) conditions after 2 days of 12-hour 
light/12-hour dark cycles (33).

Reverse transcription polymerase chain reaction analysis
Total RNA was prepared from cultured cells using TRIzol reagent 
(Invitrogen) according to the manufacturer’s protocol. Reverse 
transcription polymerase chain reaction analysis was performed as 
described previously (14, 17).

Intracellular Ca2+ imaging
For Ca2+ imaging in cultured cells, NIH3T3 cells were plated on 35-mm 
dishes (1.0 × 106 cells per dish) and cultured at 37°C under 5% CO2 
in the culture medium. One day after the plating, the medium was 
replaced by an imaging buffer of Hanks’ balanced salt solution (Sigma-
Aldrich, catalog no. H8264) containing 0.04% Pluronic F-127 and 
1.25 mM probenecid. One hour after loading of 2 M Fluo-4 AM at 
37°C, the fluorescence intensity of the cells was monitored by a flu-
orescence microscope (Olympus, BX51W1) equipped with an elec-
tron multiplying charge-coupled device digital camera (Hamamatsu 
Photonics, C9100-13 ImagEM) in the imaging buffer. The buffer 
was perfused by using a peristatic pump (Gilson, MINIPULS 3) for 
control of the buffer temperature, which is continuously monitored 
by thermoelectric couple and controlled by a dual automatic tem-
perature controller (Warner, TC-344B).

Circadian Ca2+ imaging in the SCN was performed as described 
previously (11). Briefly, the SCN slices were prepared from neonate 
mice (C57BL/6, 5 days old, both male and female). Ca2+ indicator 
protein GCaMP6s and control fluorescence protein mRuby were 
expressed under the control of the human synapsin-1 promoter by 
using adeno-associated virus (Addgene, 50942-AAV1).

Measurement of CaMKII activity
For analysis of CaMKII activities in cultured cells, NIH3T3 cells were 
plated on 100-mm dishes (1.0 × 107 cells per dish) and cultured at 
37°C under 5% CO2 in the culture medium. One day after the plat-
ing, the medium was replaced by the recording medium containing 
the NCX inhibitor or 0.1% DMSO (vehicle), and the cells were cul-
tured at 27° or 37°C. One day after the culture, cells were harvested 
by a cell scraper with 2 ml of a sampling buffer [20 mM tris-HCl, 5 mM 
EDTA, 1 mM EGTA, 10 mM sodium pyrophosphate, 50 mM NaF, 
1 mM Na3VO4, 1 mM dithiothreitol (DTT), 0.1 mM phenylmethylsulfonyl 
fluoride, leupeptin (0.04 mg/ml), and aprotinin (0.04 mg/ml), pH 7.5]. 
For analysis of tissues, the tails or ears of C57BL/6 mice (7 weeks 
old, male), the heads of D. melanogaster (W1118, male), or the shoots 
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of A. thaliana (ecotype Columbia-0, 14 days old) were prepared at 
ZT5, and 1 mg of the tissue was homogenized in 1 ml of the sam-
pling buffer. The cells or tissues were homogenized by using a glass/
Teflon homogenizer (20 strokes). CaMKII activity levels of the lysates 
phosphorylating syntide-2 were measured by using CaM-kinase II 
Assay kit (CycLex, catalog no. CY-1173) according to the manufac-
turer’s protocol.

For analysis of purified CaMKII activity phosphorylating a CLOCK 
peptide (GST-SP), CaM and rat brain CaMKII were prepared as de-
scribed previously (15, 34). The assay was carried out at 5°, 10°, 15°, 
or 20°C in a reaction mixture (10 l) composed of 40 mM tris-HCl 
(pH 8.0), 2 mM DTT, 5 mM MgCl2, 0.5 mM CaCl2, 1 mM [-32P]
ATP, 1 M CaM, 100 ng of rat brain CaMKII, and 500 ng of GST-SP 
peptide. After incubation for 30 min, the reaction was stopped by 
the addition of 10 l of 2× SDS sample buffer. Phosphorylated pro-
teins or peptides were resolved by SDS–polyacrylamide gel electro-
phoresis and detected by autoradiography. We found that CaMKII 
activity purified from the rat brain was inactivated by incubation 
above 30°C, as reported by the previous study (34). Thus, the activ-
ity levels of the purified CaMKII were analyzed in the range of 5° 
to 20°C.

Animal experiments
The animal experiments were conducted in accordance with the guide-
lines of the University of Tokyo. NCX2 heterozygous knockout 
mice (NCX2+/−) were produced as described previously (25). NCX3 
homozygous knockout mice (NCX3−/−) were generated as follows: 
The targeting vector was constructed by replacing the 1.9 kilo–base 
pairs Eco RI–Mun I fragment containing exon 2 of the NCX3 gene 
with a PGK (Phosphoglycerate kinase promoter)–neo cassette. The 
targeted ES (embryonic stem cell) clones were confirmed by Southern 
blot analysis and used for the generation of germline chimeras. Chimeric 
male mice were crossed with female C57BL/6 mice to establish the 
germline transmission and backcrossed to C57BL/6 mice for more 
than 10 generations. The mutant mice (C57BL/6 background, male, 
6 to 8 weeks old) were housed individually at 23°C in cages (13 × 23 × 
15 cm) equipped with a running wheel (diameter, 10 cm) with food 
and water available ad libitum. Wheel-running rhythms were mon-
itored under constant dark condition after housing under 12-hour 
light/12-hour dark cycles for at least 2 weeks. The numbers of wheel 
revolution were collected every minute into a computer system. All the 
behavioral data were analyzed by using ClockLab software (Actimetrics). 
For measurement of the internal body temperature, the activity- and 
temperature-measuring device, nano tag (KISSEI COMTEC Co. Ltd.), 
was implanted into the peritoneal cavity or subcutaneous site in mice 
(C57BL/6 background, male, 8 weeks old). For measurement of the 
surface body temperature, an infrared camera (FLIR, E6) was used, 
and the image data were analyzed by FLIR Tools software (FLIR).

Locomotor activity rhythms of D. melanogaster were monitored 
as described previously (35). Male flies (2 to 5 days old) were individ-
ually housed in glass tubes (length, 65 mm; inside diameter, 3 mm) 
containing sucrose-agar (1% agar supplemented with 5% sucrose) 
food at one end and a cotton plug on the other end. The glass tubes 
were placed in the Drosophila activity monitor system (TriKinetics), 
and the locomotor activity of each fly was recorded as the numbers 
of infrared beam crossing in 1-min bin. Free-running rhythms were 
recorded under constant dark condition after housing under 12-hour 
light/12-hour dark cycles for at least 3 days. calxA or calxB mutant 
flies were obtained from the Bloomington Drosophila Stock Center.

Mathematical analysis
By using a previously published mathematical model (23), we inves-
tigated an effect of CaMKII activation on the TTFL of the mammalian 
circadian clock. Because CaMKII phosphorylates CLOCK to acti-
vate transcriptional activity of the CLOCK-BMAL1 complex (14–17), 
we varied the corresponding parameter, which was represented as 
“phos” in the original model (23). Ordinary differential equations were 
solved numerically by using the Euler method with delta t = 0.001.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/18/eabe8132/DC1

View/request a protocol for this paper from Bio-protocol.
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