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Abstract

Ultrasound shear wave elastography (SWE) is a technique used to measure mechanical properties 

to evaluate healthy and pathological soft tissues. SWE typically employs an acoustic radiation 

force (ARF) to generate laterally propagating shear waves that are tracked in the spatiotemporal 

domains, and algorithms are used to estimate the wave velocity. The tissue viscoelasticity is often 

examined through analyzing the shear wave phase velocity dispersion curves, which is the 

variation of phase velocity with frequency or wavelength. A number of available methods to 

estimate dispersion exist, which can differ in resolution and variance. Moreover, most of these 

techniques reconstruct dispersion curves for a limited frequency band. In this work, we propose a 

novel method used for dispersion curve calculation. Our unique approach uses a generalized 

Stockwell transformation combined with a slant frequency-wavenumber analysis (GST-SFK). We 

tested the GST-SFK method on numerical phantom data generated using a finite-difference-based 

method in tissue-mimicking viscoelastic media. In addition, we evaluated the method on 

numerical shear wave motion data with different amounts of white Gaussian noise added. 

Additionally, we performed tests on data from custom-made tissue-mimicking viscoelastic 

phantom experiments, ex vivo porcine liver measurements, and in vivo liver tissue experiments. 

We compared results from our method with two other techniques used for estimating shear wave 

phase velocity: the two-dimensional Fourier transform (2D-FT) and the eigenvector (EV) method. 

Tests carried out revealed that the GST-SFK method provides dispersion curve estimates with 

lower errors over a wider frequency band in comparison to the 2D-FT and EV methods. In 

addition, the GST-SFK provides expanded bandwidth by a factor of two or more to be used for 

phase velocity estimation, which is meaningful for a tissue dispersion analysis in vivo.
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I. Introduction

Ultrasound shear wave elastography (SWE) has been used in numerous clinical applications 

in order to make noninvasive, quantitative measurements of different mechanical properties 

in soft tissues [1]. Among the many ultrasound-based elastography methods are those that 

utilize acoustic radiation force (ARF) [2]. After the ARF is applied, a propagating shear 

wave results from the medium perturbation [3]. For estimation of the shear wave motion, 

ultrafast ultrasound imaging techniques are then applied for data recording [4]. Next, shear 

wave velocity is estimated, which is related to the mechanical properties of the tissue, using 

various techniques.

Many SWE approaches consider tissue to be strictly elastic while ignoring viscous 

properties. It has been shown that ignoring tissue viscosity results in elasticity measurement 

bias [5], [6]. One characteristic of viscoelastic materials is that the shear wave phase velocity 

varies with frequency, which is named dispersion. Viscoelastic properties of tissues can be 

estimated by fitting the shear wave dispersion curves to a rheological model [7]–[9]. They 

can also be evaluated using data driven techniques [10]–[14].

Shear wave phase velocity dispersion has been measured in many different applications [7], 

[8], [15]–[18]. Measurement of the phase velocity dispersion curve has commonly been 

carried out with either a phase gradient [19] or a two-dimensional Fourier transform (2D-

FT) [20]. Other approaches used for shear wave phase velocity calculation is a Radon sum 

method, a multiple-signal classification (MUSIC) approach and a two-point continuous 

wavelet transform (2P-CWT) [17], [21], [22]. However, with these shear wave phase 

velocity measurement methods, the main drawback is the resulting frequency bandwidth. 

Differentiation of viscoelastic tissues can be accomplished when higher frequencies can be 

used, so maximization of the bandwidth for computing the dispersion curves is essential.

The 2D-FT methods which transform spatiotemporal data (x, t) to wavenumber-frequency 

(k, f) domain have been used to measure the dispersion. The peaks of the magnitude 

distribution of the (k, f) spectrum is used to measure the phase velocities using the 

relationship c = 2πf/k. Estimated dispersion curves either from the phase gradient, 2D-FT or 

other technique can be fit to rheological models to evaluate the viscoelastic parameters of the 

medium [8], [9], [17], [19].

In this work, we propose a novel method used for shear wave dispersion curves calculation 

applicable in viscoelastic tissues. The unique approach used in this method considers a 

generalized form of the Stockwell transform (S-transform) [23] along with the slant 

wavenumber-frequency analysis [24]. The proposed technique is an extension of a method 

described in [24]. The authors used the original form of the S-transform whereas, we applied 

a modified version of the S-transform for controlling the time-frequency resolution of a 

time-frequency decomposition of a signal. The S-transform has been used in many 

disciplines including medicine [25], [26], geophysics [27], [28], oceanography [29], 

hydrogeology [30], physics [31], and mechanical engineering [32], among others. In this 

paper we adopt this theory for shear wave phase velocity dispersion curve estimation for 

biomedical applications.
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The rest of the paper is structured as follows. First, we present a generalized Stockwell 

transformation combined with a slant frequency-wavenumber analysis (GST-SFK) method 

used for shear wave phase velocity estimation. The GST-SFK method is provided as an 

alternative to the 2D-FT and eigenvector (EV) methods to calculate the phase velocity 

dispersion curve. This approach was studied using shear wave particle velocity data from 

numerical simulations of shear wave propagation in viscoelastic media. The robustness of 

the GST-SFK approach was examined by adding white Gaussian noise to these data. In 

addition, we utilized the method on experimental data from custom-made tissue-mimicking 

(TM) viscoelastic elastography phantoms, ex vivo porcine livers, and in vivo liver studies 

from six healthy subjects. Results from these numerical and physical phantoms and human 

subjects will be shown. Discussion and conclusions follow presentation of the results.

II. Methods

In this section, the 2D-FT and EV methods are recalled for dispersion curves calculation. 

They are used for comparison purposes in this work. Then, the GST-SFK method is 

developed and a theoretical background of the method is introduced in the following section. 

Main steps of the approach are also displayed in a flow chart in Fig. 1. The resolution 

capabilities of GST-SFK are tested with the numerical viscoelastic models, and 

experimentally using the CIRS viscoelastic tissue-mimicking phantoms, ex vivo porcine and 

in vivo human subject liver data, respectively.

A. Two-dimensional Fourier Transform (2D-FT) Method

The frequency-wavenumber (f–k) domain distribution of ultrasound shear wave axial 

particle velocity motion data measured at different lateral locations was processed in a way 

that a two-dimensional Fourier transform (2D-FT) was performed in temporal and spatial 

domains to create the frequency-wavenumber distribution. Next, phase velocity curves were 

computed from finding the peaks in the f–k distribution. From the 2D f–k maps peaks were 

detected for each frequency. In order to extract the main shear wave mode from the detected 

peaks, the peaks corresponding to the shear wave mode were tracked by searching for the 

nearest value. The coordinates of the localized peaks were used to calculate the phase 

velocity as c = 2πf/k. No thresholding was used.

B. The Eigenvector (EV) Method

The Eigenvector (EV) approach is strongly associated with the MUSIC method [21], [33], 

[34]. It ensures asymptotically unbiased estimates of a general set of signal parameters. The 

EV approach, same as MUSIC, is based on the orthogonality between signal and noise 

subspaces spanned by the eigenvectors of the correlation matrix. Using the noise subspace 

eigenvectors (M–p) the power spectrum of a signal can be computed through the following 

equation

PEV ejω = 1
∑i = p + 1

M 1
λi

eHvi
2 ,

(1)
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where, ē is the vector of complex exponentials ejω, and λi is the eigenvalue associated with 

the eigenvector vi. The superscript H indicates the Hermitian operator. The eigenvectors vi
coincide with the M − p smallest eigenvalues that span the noise subspace. M is the size of 

the autocorrelation matrix, and p is a number of complex exponentials in white noise [21], 

[34]–[37]. The EV method and the MUSIC algorithm are distinct in a way that MUSIC uses 

unity weighting whereas, EV applies inverse eigenvalues. Hence, the MUSIC algorithm 

yields more spurious peaks than the EV method. EV is considered to shape the noise 

spectrum better than MUSIC [33]. The constant p = 1 was selected in our studies because 

one propagating shear wave mode is expected to be found in the examined bulk media [34]. 

The parameter M = 128 was selected based on our preliminary analysis in [34], where the 

influence of the autocorrelation matrix size on the dispersion curves calculation was 

examined.

C. Slant Frequency Wavenumber Generalized S-transform Method (GST-SFK)

1) A Generalized S-transform: The Stockwell transform, referred to as the S-

transform, was developed as a time-frequency decomposition method [23]. The S-transform 

produces a time-frequency decomposition of a signal with a frequency-dependent Gaussian 

window used for spectral localization [23]. The Gaussian window width scales inversely, 

and height scales linearly, with the frequency controlling the time-frequency resolution. The 

S-transform, in its original form, is given as [23]

S[ℎ(τ)](τ, f) = ∫
−∞

+∞
ℎ(t) f

2πe− f2(τ − t)2
2 e−i2πftdt, (2)

where S denotes the time-frequency S-transform of time variable h(t) signal, where f is a 

frequency and τ is a parameter which controls the position of the Gaussian window on the 

time vector, t.

Many modifications to the original form of the S-transform have been proposed in order to 

improve its robustness [38]–[43]. In our work we used the generalized S-transform to 

manipulate the time-frequency resolution [38], [40]. The Gaussian window is replaced with 

a generalized window in a form

S[ℎ(τ)](τ, f, β) = ∫
−∞

+∞
ℎ(t)w(τ − t, f, β)e−i2πftdt, (3)

where, w is the scaled Gaussian window given as

w(τ − t, f, β) = f
2πβ e− f2(τ − t)2

2β , (4)

where, β is a scaling factor. After substituting Eq. (4) into Eq. (3) the generalized S-

transform becomes
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S[ℎ(τ)](τ, f, β) = ∫
−∞

+∞
ℎ(t) f

2πβ e− f2(τ − t)2
2β e−i2πftdt . (5)

The scaling factor β changes the width of the window and controls the time-frequency 

resolution by altering the number of oscillations in the window [40]. A narrower window in 

the time domain widens in the frequency domain, losing S-transform resolution in the 

frequency. For larger β values, the Gaussian window is widened in the time domain 

increasing the frequency resolution [40]. Based on trial analysis a value of β = 0.5 was used 

in this work.

2) Slant Frequency-Wavenumber Analysis: A shear wave wavefield h(x, t) can be 

transformed using the generalized S-transform to the time-frequency domain [40]. For a 

selected frequency range, a series of 2D complex-valued functions of the time and distance 

can be obtained, which can be written as [24]

H(x, τ) = S[ℎ(x, t)](τ, f, x) . (6)

By taking slant slices of the H(x, τ) function, for a selected frequency f, and steering group 

velocity u = x/τ, and the constant time, the one-dimensional complex-valued, slant-phase 

function (P), can be considered in a form [24]

P (x) = H x, x
um

= τ  for um = xm
tm − mΔt . (7)

The P function is computed for a series of steering group velocity values um, for a maximum 

distance, xm, and a maximum time, tm, of the recorded shear wave motion data. Δt is the 

time sampling rate. Then, the amplitude of the P function is computed as [24]

Λ(u, f, k) = ∫
−∞

+∞
P (x)e−2iπkxdx , (8)

which is a three-dimensional spectral amplitude distribution with the coordinates of the 

steering group velocity, frequency, and wavenumber. The spectral amplitude peaks of the P 
correspond to distribution of the wavenumbers of elastic waves, which travel away from the 

source [24]. To obtain the dispersion curves, a maximum amplitude of Λ(u, f, k) over all 

steering group velocities is considered, which can be written as [24]

K(f, k) = max
u

[Λ(u, f, k)] (9)

The peaks of K(f, k) for an impulsive ARF push are related to the phase velocities of 

different wave propagation modes [22]. Phase velocity curves were computed from finding 

the peaks in the K(f, k) distribution. These peaks were found at each frequency, f by 

searching in an orthogonal direction along the k direction. Then, the phase velocity mode 
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curves for the main shear wave mode were localized in a similar way as for the 2D-FT 

method described in Sec. II-A.

III. Materials

In this section descriptions of the numerical, TM viscoelastic phantoms, the experimental 

custom-made TM phantoms, the ex vivo porcine liver data, and the in vivo human liver data 

are introduced.

A. Numerical Phantoms Description

Finite-difference-based modeling was used to create numerical phantoms of viscoelastic 

materials with known mechanical properties. A finite difference staggered grid (SGFD) 

scheme was implemented and used to generate particle velocity shear wave motion data 

[44]. In the SGFD scheme, the velocity-stress first-order hyperbolic system of equations is 

applied. In order to mitigate undesired reflections from model boundaries, the complex-

frequency shifted perfectly matched layer based on recursive integration was applied [45]. 

The FOCUS software package was used to simulate the acoustic radiation force push beam 

[46]–[48]. A linear array was simulated with element width, kerf, height, and elevation focus 

of 0.283, 0.035, 7.000, and 25 mm, respectively. A center frequency of 4.0 MHz was used 

and 32 elements were active for the push beam. The medium had an attenuation, α, of 0.5 

dB/cm/MHz and sound velocity, c, of 1540 m/s. The intensity of the ARF used in the body 

force, F = 2αI/c, was computed as I = 〈p〉2 /ρc where, p is the pressure. The push beams 

were focused at a focal depth of 20 mm, with a fixed f-number (F/N) of 2.21. The focal 

configuration of the transmitted excitation beam can be tailored by changing the f-number. 

The F/N dictates the depth of field and beam width which can be written as F/N = z/D, 

where z is the focal depth and D is the aperture width.

The simulations were evaluated in MATLAB (Mathworks, Natick, MA, USA). In order to 

reduce the solution time, the CUDA parallel computing platform (Nvidia, Santa Clara, CA, 

United States) was used for calculations. The spatial domains of the numerical models were 

uniformly sampled at 0.1 mm. The cells were considered to be adequately small for a good 

approximation to realistic tissue-mimicking media. The simulated domain dimensions are, in 

the lateral direction, x = ±60 mm, and in the axial dimension, z = 0–60 mm. We applied the 

Kelvin-Voigt (KV) material model with a constant μ2 of 2 Pa·s, and varying μ1 = 2 kPa 

(Model 1), 6 kPa (Model 2), and 10 kPa (Model 3), respectively. Poisson’s ratio was 

0.499999(7), ensuring a compressional wave speed of 1500 m/s. In our models we set a CFL 

number (the Courant-Friedrichs-Lewy condition) to be a constant value (CFL = 0.45), and 

the time step was calculated from the CFL condition. The CFL condition, in its simplest 

form, can be described as CFL ⩽ V max
Δt
Δx  where, Δt is the time step, Δx is the spatial 

discretization step, and Vmax is the maximum wave velocity present in the model. For the 

incompressible bulk materials Vmax is equal to the compressional wave speed.

For the numerical simulations we employed the KV rheological viscoelastic model because 

it has been demonstrated in many research works that the KV model depicts shear wave 

phase velocity dispersion over certain frequency ranges [7], [9], [16], [49]–[52]. The KV 
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model consists of two parameters, a dashpot, μ2, and a spring, μ1, placed in parallel. The KV 

model stress-strain relationship is delineated in the form

σ = μ1 + μ2
∂
∂t ε, (10)

where, the stress tensor, σ, is related to the strain tensor, ε, by the shear elasticity μ1, the 

shear viscosity μ2, and the time derivative, ∂
∂t . The shear wave phase velocity of the KV 

model, by solving the one-dimensional Helmholtz equation, can be computed as [9]

ct(ω) =
2 μ1

2 + ω2μ2
2

ρ μ1 + μ1
2 + ω2μ2

2 , (11)

where, ω is an angular frequency, ω = 2πf. The reference shear wave phase velocity 

dispersion curves for the KV model, used in the following part of the article, were calculated 

using Eq. (11).

B. Tissue-Mimicking Viscoelastic Phantoms Description

In our experiments custom-made tissue-mimicking viscoelastic phantoms (CIRS Inc., 

Norfolk, VA, USA) - similar to those employed in [9], [14], [22], [53] - were utilized in this 

work to examine reliability of the GST-SFK method used for shear wave phase velocity 

curves evaluation. The reference dispersion curves of these phantoms are unknown. A 

programmable ultrasound system manufactured by Verasonics (V1, Verasonics, Inc., 

Kirkland, WA) was utilized for data acquisition. The ARF push beams were generated by a 

linear array transducer (L7–4, Philips Healthcare, Andover, MA) and were focused at 21.56 

mm. The ARF push beam with 400 μs duration and a 4.09 MHz frequency was used. The 

push beam was produced by the leftmost 48 active elements of the L7–4 probe. Angularly 

directed plane waves, coherently compounded using three angles of −4°, 0°, and +4°, were 

used for a plane wave acquisition giving the effective frame rate of 4.1667 kHz [4]. The in-

phase/quadrature (IQ) data were used to calculate the shear wave particle velocity adopting 

an autocorrelation algorithm [54]. Then, the motion data (particle velocity waveforms) were 

averaged over 5 mm in axial direction at focal depth and the DC component was subtracted 

from the waveforms.

C. Ex vivo Porcine Liver Data Description

Shear wave data from three ex vivo porcine livers - similar to those used in [22] - were also 

used to investigate the robustness of the GST-SFK method. The liver samples were acquired 

from pigs after euthanasia. The pigs were dedicated for medical education or cardiovascular 

research on protocols approved by the Mayo Clinic Institutional Animal Care and Use 

Committee. Acquisition parameters and data processing steps were the same as for the TM 

viscoelastic phantoms, described in Sec. III-B. Again, three angularly directed plane waves 

were used however, using angles of −3°, 0° and +3°. The ARF push beam was focused at 25 

mm. The motion data were averaged over 3 mm in axial direction and the DC component 

was removed from the data.
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D. In vivo Human Liver Data Description

For the in vivo liver tests shear wave measurements were conducted on six human subjects, 

who self-reported no history of liver disease. The liver imaging and measurements were 

carried out under a protocol approved by the Mayo Clinic Institutional Review Board. 

Written informed consent was obtained prior to scanning. The examinations were carried out 

by an experienced sonographer. During the tests, the ultrasound probe was positioned at the 

eighth intercostal space while holding breath by the human subject. Data acquisition was 

performed using a Vantage ultrasound system equipped with a C5–2v curved array 

transducer (Verasonics, Inc., Kirkland, WA, USA). The ARF push beams were focused in 

the center of the probe with the push frequency of 2 MHz and an f/9.9 focal configuration at 

depth of 50 mm. As in the previous experiments described in Secs. III-B and III-C, 

coherently compounded plane waves were utilized. Two angles of −1° and +1° were used 

resulting in the effective frame rate of 2.77 kHz. The motion data was processed in the same 

way as for the TM phantoms.

IV. Results

A. Numerical Phantoms

Shear wave particle velocity data for the numerical viscoelastic phantoms were examined 

with added white Gaussian noise. Fig. 2 shows shear wave spatiotemporal data measured at 

a focal depth of 20 mm, with added white Gaussian noise with a SNR of 13 dB, as an 

example. The results are displayed for three different KV viscoelastic models with varying 

shear modulus (μ1) of 2, 6, and 10 kPa, and a constant viscosity (μ2) of 2 Pa·s. Models are 

considered as more viscoelastic with higher 
μ2
μ1

 ratio.

Figure 3 presents two-dimensional shear wave phase velocity dispersion curves calculated 

using the 2D-FT and GST-SFK methods. The results were computed for the shear wave 

motion data demonstrated in Fig. 2. The phase velocity maps have superimposed markers 

which correspond to the maximum peaks of the phase velocity. The magnitude distribution 

of the phase velocity maps can be compared between the 2D-FT and GST-SFK approaches. 

For higher frequencies, e.g. 500–1000 Hz, the magnitude of the two-dimensional maps used 

to estimate the dispersion curves is higher for the GST-SFK method compared to the 2D-FT. 

Similar maps for the EV method were not shown because the EV method does not yield true 

power spectral density estimates. Counterparts of the 2D phase velocity maps are shown in 

Fig. 4 where one-dimensional phase velocity curves are shown. Phase velocity curves 

calculated using the EV method were added for additional comparison in Fig. 4. Presented 

results are compared against true values calculated using Eq. (11). Various methods give 

different robustness for the viscoelastic data examined. This is also dependent on the 

viscoelasticity of the material, i.e. 
μ2
μ1

 ratio.

Box plots of the phase velocity percent error within a range of 200–900 Hz, for the three 

numerical models investigated, were computed for the data with a SNR of 25, 19, 13, and 7 

dB, for 30 noise realizations of added noise each, respectively. Results are outlined in Fig. 5. 

The 25th and 75th percentiles are indicated by the bottom and top edges of the box, 
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respectively. The mean and median values of the phase velocity error are represented by 

white circles and solid lines, respectively. The mean and median values were calculated from 

30 noise realizations and a frequency range from 200–900 Hz. Values greater than l3 + wL(l3 

− l1) or lower than l1 − wL(l3 − l1) were classified as outliers. The parameter wL is the 

maximum whisker length and was chosen to be 1.5. The parameters l1 and l3 are the 25th 

and 75th percentiles of the sample data, respectively. Quantitative evaluation of the 

interquartile range (IQR) can be done by computation of a difference between 25th and 75th 

percentiles of the sample data (IQR = l3 − l1). Additionally, IQR values for each numerical 

model and various SNR levels are shown in Table I.

For the numerical, viscoelastic models investigated the largest box plots occur for the 2D-FT 

method. The EV method, gives improved results (smaller box plots) in relation to the 2D-FT. 

The GST-SFK method gives comparable box plots to the EV approach however, it provides 

the results with reduced number of outliers. Less viscoelastic materials, with lower 
μ2
μ1

 ratio, 

have lower variation (lower IQR) in calculated dispersion phase velocities. For example, for 

μ1 = 10 kPa and μ2 = 2 Pa·s (viscoelastic Model 3), SNR of 13 dB, IQR for 2D-FT is equal 

to 3.00%. At the same time the EV results have an IQR of 2.29%. The GST-SFK method 

exhibited IQR at the level of 2.29% (Table I).

B. TM Phantoms

In this section, the described methods in Sec. II were used to investigate phase velocity 

dispersion curves calculation for the experimental TM phantom data. The results for four 

different custom-made TM phantoms are displayed in Figs. 6, 7, 8. A depiction of the k-

space for the 2D-FT and GST-SFK are shown in the Appendix.

Figure 6 shows the spatiotemporal shear wave particle velocity data for all four phantoms. 

Figure 7 demonstrates two-dimensional phase velocity curves computed using the 2D-FT 

and GST-SFK methods. Similar as in the previous section, the superimposed markers on the 

maps correspond to the maximum peaks of the phase velocity. A clear difference between 

the 2D-FT and GST-SFK methods can be observed for frequencies starting from 

approximately 1000 Hz. Magnitude of the main shear wave phase velocity is enhanced for 

the GST-SFK approach in comparison to the 2D-FT technique. Thereby, dispersion curves 

for frequencies above 1000 Hz are detected with very low variation, marked as white 

diamond markers (Fig. 7b). The f–k distribution reconstructed based on the 2D-FT, and 

GST-SFK methods for the TM phantoms is shown in the Appendix.

The same dispersion curves as shown in Fig. 7 (via markers) were collected and compared in 

Fig. 8 along with dispersion curves calculated using the EV approach. A similar 

performance between the 2D-FT and EV techniques can be observed for all the TM 

phantoms investigated. The GST-SFK method for lower frequencies, up to e.g. 800 Hz, gives 

almost the same robustness. Then, with increasing frequency the GST-SFK method 

outperforms the other approaches. Variation of the GST-SFK dispersion curves, for 

frequencies of approximately 800–1200 Hz is lower than for the 2D-FT and EV techniques. 

More importantly, the GST-SFK method estimates dispersion curves for higher frequencies, 

up to 2000 Hz whereas, other techniques fail.
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A supplementary material (Fig. S1) shows dispersion results analogous to those presented in 

Fig. 8 with the addition of the results obtained for the 2P-CWT technique [22]. Results for 

the 2P-CWT method are shown as an alternative approach based on wavelet transformation 

analysis.

C. Ex vivo Porcine Liver

The experimental ex vivo porcine liver data were processed using the GST-SFK method for 

shear wave phase velocity evaluation. Results for the GST-SFK method are compared 

against the 2D-FT and EV techniques. Results for three different porcine livers are presented 

in Figs. 9, 10, and 11.

The spatiotemporal shear wave particle velocity motion data for the ARF push beam focused 

at 25 mm are shown in Fig. 9. The two-dimensional phase velocity results, with marked 

maxima of the phase velocity, for the 2D-FT and GST-SFK are presented in Fig. 10. Same as 

for the numerical and custom-made TM viscoelastic phantoms, also here, the two-

dimensional maps, from which the phase velocities are estimated, have higher magnitude for 

frequencies starting from approximately 400 Hz, for the GST-SFK approach.

Figure 11 shows dispersion curves for all three methods investigated in this paper. Broadly 

similar results are observed for the 2D-FT and EV methods. The GST-SFK approach on the 

other hand, similar to the TM phantoms, provides dispersion curves for a wider frequency 

range, up to approximately 800 Hz and above. In addition, the dispersion curves from GST-

SFK are smoother than those from 2D-FT and EV.

D. In vivo Human Liver

Figure 12 presents the spatiotemporal shear wave particle velocity data for the in vivo 
human livers. Results for six healthy volunteers are shown.

The two-dimensional phase velocity maps for the 2D-FT and GST-SFK approaches are 

shown in Fig. 13. Their comparison with the EV method is summarized in Fig. 14. Similarly, 

as in the previous data examined in this work, the 2D-FT and EV methods perform similarly. 

The GST-SFK approach enhances the information at higher frequencies and gives robust 

dispersion curves for frequencies up to approximately 700 Hz. The usable bandwidth was at 

least doubled compared to the other methods.

V. Discussion

Dispersion curves, represented in wavenumber-frequency or velocity-frequency domains, 

play an important role when analyzing viscoelastic material properties of biological tissues. 

Many methods have been proposed for the dispersion relation estimation [17], [19]–[22]. 

Some of them offer better frequency resolution, and less variance than the other. 

Nevertheless, a frequency range for which the dispersion curves are being estimated is 

nearly the same.

In this work, we introduce a new method, called GST-SFK, for robust calculation of shear 

wave phase velocity in soft media and tissues. The GST-SFK approach was evaluated with 

Kijanka and Urban Page 10

IEEE Trans Med Imaging. Author manuscript; available in PMC 2022 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



shear wave particle velocity data induced by ARF in viscoelastic media using numerical 

models. One of the limitations of the numerical data used in this work is that the numerical 

models do not take into account displacement underestimation bias which arise during 

ultrasound motion detection. The performance of the GST-SFK method was compared with 

the 2D-FT and EV approaches for noisy (with added white Gaussian noise) data. Exemplary 

results are displayed in Figs. 3, 4 and 5, and Table I. The qualitative similarities between the 

numerical and experimental data can be observed. In addition, to supplement the numerical 

data, we investigated experimental data in viscoelastic phantoms, and ex vivo, and in vivo 
tissues.

The GST-SFK approach was further examined with four custom-made TM viscoelastic 

phantom experimental data. The results were in general similar for the 2D-FT, EV, and GST-

SFK methods, for frequencies below 800 Hz. Above that range the GST-SFK approach 

outperformed other techniques giving robust dispersion curves for much longer frequency 

range, up to approximately 2000 Hz, in comparison to the other techniques. The usable 

bandwidth was extended more than two times which could be used in differentiation of 

viscoelastic materials at higher frequencies where separation may be more distinct due to 

dispersion.

The GST-SFK approach was also investigated using three ex vivo porcine livers data (Figs. 

10 and 11) and six in vivo liver data (Figs. 13 and 14). For each data set examined extended 

usable bandwidth was observed. In addition, less scattered results were observed compared 

to the other two techniques.

High-resolution methods, like the EV approach, do not yield true power spectral density 

estimates as they do not preserve process power between the time and frequency domains. 

The 2D-FT and GST-SFK methods do yield true power spectral density estimates, and this 

information can be used for further processing if needed.

The GST-SFK method uses spectral decomposition combined with slant frequency 

wavenumber analysis. It uses the S-transform which combines strengths of the short time 

Fourier transform (STFT) [55], [56], and the continuous wavelet transform (CWT) [57] 

methods, and overcomes their shortcomings. The STFT can only be used in single resolution 

analysis and exhibits spectral smearing due to windowing. In addition, due to the fixed 

window width it cannot follow the signal dynamics correctly. The CWT is a multi-resolution 

method however, it produces a time-scale decomposition rather than a time-frequency 

decomposition. Furthermore, its temporal resolution is a function of frequency and is 

controlled by the range of the analyzing wavelets.

The S-transform on the other hand, is a multi-resolution method. The S-transform of a 

function h(t) is defined as a CWT with a particular mother wavelet multiplied by a phase 

factor of ei2πfτ [23]. It provides an extension of instantaneous frequency to broadband 

signals [23]. The phase of the S-transform referenced to the time origin provides additional 

information about spectra that is not available from locally referenced phase information in 

the CWT. It contains phase factors which entirely refer to local phase information of each 

signal component [23]. Phase measured by the S-transform is the localized value of absolute 
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phase with respect to the Fourier spectrum [38]. The GST-SFK method uses the amplitude 

and phase spectrum of the S-transform, which enables to estimate the shear wave phase 

velocity. For more details about the relationship between the S-transform and the Wigner 

distribution, and wavelets readers are directed to [23], [58].

Another advantage of the GST-SFK approach is that the S-transform may be constructed 

using windows other than a Gaussian window. Hence, it is possible to design windows better 

suited to certain applications to improve temporal resolution, if needed. In our work, we 

used a generalized S-transform. Moreover, it can simultaneously estimate the local 

amplitude spectrum and the local phase spectrum.

In addition, the GST-SFK method uses the slant frequency-wavenumber transform to 

transform the data from the time-space domain to the frequency-phase velocity domain [24]. 

Thanks to the use of the generalized S-transform the approach excludes noise in the other 

time steps and reduces the spatial spectral leakage artifacts. Thus, the presented approach 

outperforms the 2D-FT and EV techniques and provides much more robust phase velocity 

estimates with expanded bandwidth.

There are some limitations of this method. The dispersion curve reconstructions, using a 

MATLAB (Mathworks, Natick, MA) implementation on a stand-alone PC, take 

approximately 10–15 seconds (depending on the input data size). This computational time is 

far from real time processing and may need improvement to implement the GST-SFK 

method on a clinical ultrasound scanner. For a comparison, the 2D-FT and EV methods take 

approximately 0.15 and 20 seconds, respectively. The computational time of the EV 

technique depends highly on the size of the autocorrelation matrix. The GST-SFK method, 

like other methods based on Fourier analysis, requires shear wave responses acquired over 

multiple laterally-spaced spatial points. This means that the resulting dispersion curves 

describe averaged material properties over a lateral segment. In practical applications, 

however, local properties are sought.

The presented work has some limitations that should be addressed in future work. First, we 

did not study other viscoelastic models than the KV model. It has been shown in multiple 

works in the literature, that the KV model does describe shear wave velocity dispersion over 

certain ranges of frequency. Moreover, in our manuscript we have multiple experimental 

data cases (for the TM phantoms, the ex vivo porcine liver data, and the in vivo human liver 

studies) which give an additional validation of our work especially as we have made 

comparisons of the phase velocities found using GST-SFK and the 2D-FT and EV methods. 

Second, we examined the GST-SFK method with data from viscoelastic homogeneous 

materials. It is anticipated that the GST-SFK method will also work for the layered materials 

where waves propagating in thin materials can undergo multiple reflections resulting in 

mode conversion. This, however, is beyond the scope of the present work.

One complication with the added bandwidth is that the dispersion curves may be measured 

closer to the Nyquist frequency, which for the measurements was 2.1 and 1.4 kHz for the 

phantom and in vivo cases, respectively. The acquisition parameters for the SWE experiment 

will need to take this added bandwidth into account.
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Future work will be targeted to using the GST-SFK approach on experimental data from 

other in vivo tissue measurements to establish the robustness of the GST-SFK method and its 

limitations. Because, the GST-SFK method preserves power spectral density estimates its 

usage will be examined for other techniques, e.g. Local Phase Velocity Based Imaging 

(LPVI) [9], [59], [60].

VI. Conclusions

This work demonstrates a method for the evaluation of shear wave phase velocity dispersion 

curves based on the generalized S-transform and slant frequency-wavenumber analysis. The 

method was examined on numerical and experimental phantom data as well as ex vivo and 

in vivo experimental tissue data. Compared to the 2D-FT and EV methods, the GST-SFK 

approach achieved better performance and extended usable bandwidth by a factor of two or 

more. It could be used in differentiation of viscoelastic materials at higher frequencies where 

separation may be more distinct due to dispersion. The viscoelastic characterization of soft 

tissues will be studied in future work.
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VII. : Appendix

Figure 15 shows the frequency-wavenumber (f-k) distribution reconstructed based on the (a) 

2D-FT, and (b) GST-SFK methods, for shear wave particle velocity motion measurements. 

The f–k maps are normalized by wavenumber maxima in the frequency direction. Results 

were calculated for the experimental, custom-made TM viscoelastic phantoms A, B, C, and 

D.
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Fig. 1: 
Flow chart of the proposed GST-SFK method introduced in this study. Major steps of the 

GST-SFK can be outlined as follow: (I) acquire a 2D shear wave particle velocity motion 

data (x, t) at the ARF focal depth; (II) transform 2D spatiotemporal data into 3D time-

frequency-space domain (t, f, x) using Eq. (5); (III) calculate P function and its amplitude 

using Eqs. (7)–(8); (IV) search for a maximum amplitude of Λ(u, f, k) over all steering 

group velocities, u, to obtain the frequency-wavenumber pairs K(f, k), using Eq. (9). Next, 

calculate the dispersion curves utilizing K(f, k) and using the formula c(f) = f/k.
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Fig. 2: 
Spatiotemporal shear wave particle velocity signal. Results were computed for the 

numerical, tissue mimicking viscoelastic phantoms with a SNR of 13 dB.
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Fig. 3: 
Phase velocity reconstructions based on the (a) 2D-FT, and (b) GST-SFK methods, for shear 

wave motion measurements. The phase velocity maps have superimposed markers 

corresponding to the maximum peaks of the phase velocity, as well as continuous lines 

which represent analytical solutions. Results were calculated for the numerical, tissue 

mimicking viscoelastic phantoms with a SNR of 13 dB.
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Fig. 4: 
Phase velocity curves calculated for the 2D-FT (black dots), Eigenvector (green triangles), 

and GST-SFK (red diamonds) methods. Results were computed for the numerical, tissue 

mimicking viscoelastic phantoms with a SNR of 13 dB.
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Fig. 5: 
Box plots calculated for the phase velocity percent error computed in a frequency range 

from 200–900 Hz. Phase velocity errors were computed for the numerical finite difference 

data, for 30 noise realizations with SNR value set to (a) 25 dB, (b) 19 dB, (c) 13 dB, and (d) 

7 dB, respectively.
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Fig. 6: 
Spatiotemporal shear wave particle velocity signals. Results were calculated for the 

experimental, custom-made TM viscoelastic phantoms A, B, C, and D.
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Fig. 7: 
Phase velocity reconstructions based on the (a) 2D-FT, and (b) GST-SFK methods, for shear 

wave motion measurements. The phase velocity maps have superimposed markers 

corresponding to the maximum peaks of the phase velocity. Results were calculated for the 

experimental, custom-made TM viscoelastic phantoms A, B, C, and D.

Kijanka and Urban Page 23

IEEE Trans Med Imaging. Author manuscript; available in PMC 2022 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 8: 
Phase velocity curves calculated for the 2D-FT (black dots), Eigenvector (green triangles), 

and GST-SFK (red diamonds) methods. Results were computed for the experimental, 

custom-made TM viscoelastic phantoms, for (a) Phantom A, (b) Phantom B, (c) Phantom C, 

and (d) Phantom D.
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Fig. 9: 
Spatiotemporal shear wave particle velocity signals. Results were computed for the 

experimental, ex vivo porcine liver data, for (a) Liver 1, (b) Liver 2, and (c) Liver 3.
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Fig. 10: 
Phase velocity reconstructions based on the (a) 2D-FT, and (b) GST-SFK methods, for shear 

wave motion measurements. The phase velocity maps have superimposed markers 

corresponding to the maximum peaks of the phase velocity. Results were calculated for the 

experimental, ex vivo porcine liver data, for (a) Liver 1, (b) Liver 2, and (c) Liver 3.
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Fig. 11: 
Phase velocity curves calculated for the 2D-FT (black dots), Eigenvector (green triangles), 

and GST-SFK (red diamonds) methods. Results were computed for the experimental, ex 
vivo porcine liver data, for (a) Liver 1, (b) Liver 2, and (c) Liver 3.
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Fig. 12: 
Spatiotemporal shear wave particle velocity signals. Results were computed for the 

experimental, in vivo human liver studies, for (a) Subject I, (b) Subject II, (c) Subject III, (d) 

Subject IV, (e) Subject V, and (f) Subject VI.
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Fig. 13: 
Phase velocity reconstructions based on the (a) 2D-FT, and (b) GST-SFK methods, for shear 

wave motion measurements. The phase velocity maps have superimposed markers 

corresponding to the maximum peaks of the phase velocity. Results were computed for the 

experimental, in vivo human liver studies, for (a) Subject I, (b) Subject II, (c) Subject III, (d) 

Subject IV, (e) Subject V, and (f) Subject VI.
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Fig. 14: 
Phase velocity curves calculated for the 2D-FT (black dots), Eigenvector (green triangles), 

and GST-SFK (red diamonds) methods. Results were computed for the experimental, in vivo 
human liver studies, for (a) Subject I, (b) Subject II, (c) Subject III, (d) Subject IV, (e) 

Subject V, and (f) Subject VI.
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Fig. 15: 
The frequency-wavenumber (f–k) distribution reconstructed based on the (a) 2D-FT, and (b) 

GST-SFK methods, for shear wave particle velocity motion measurements. The f–k maps are 

normalized by wavenumber maxima in the frequency direction. Results were calculated for 

the experimental, custom-made TM viscoelastic phantoms A, B, C, and D.
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TABLE I:

IQR of the phase velocity percent error for 30 noise realizations and frequency range from 200 to 900 Hz. 

Results for the 2D-FT, EV, and GST-SFK methods and three numerical phantoms are summarized. Results are 

displayed in the unit of [%].

μ1
[kPa]

Method SNR [dB]

25 19 13 7

2D-FT 8.52 11.42 15.30 20.86

2 EV 3.69 6.57 16.39 16.39

GST-SFK 4.73 4.59 7.22 10.74

2D-FT 2.83 4.59 6.41 9.35

6 EV 1.35 2.19 4.05 6.21

GST-SFK 1.28 1.50 3.00 3.38

2D-FT 1.91 2.25 3.00 5.07

10 EV 1.23 1.79 2.29 3.29

GST-SFK 1.85 1.88 2.71 2.65
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