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Abstract

Aim: To examine whether anesthesia exposure is associated with neurocognitive decline in 

pediatric medulloblastoma.

Methods: Patients were treated at St. Jude Children’s Research Hospital and completed ≥2 

protocol-directed neurocognitive assessments (n=107), as part of a multi-site clinical trial for 

pediatric medulloblastoma (NCT00085202). Patients received risk-adapted craniospinal photon 

irradiation, followed by four cycles of high-dose chemotherapy and stem cell rescue. 

Neurocognitive testing was completed at study baseline (after surgery and <2 weeks of starting 

radiation therapy) and annually for 5 years. Data on anesthesia exposure during treatment was 

abstracted from medical records.
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Results: Patients were 10.2 years at diagnosis on average (SD=4.5; 37% female, 73% average-

risk). Mean cumulative anesthesia duration was 20.4 hours (SD=15.2; range 0.7–55.6 hours). In 

the overall group, longer anesthesia duration was associated with greater declines in IQ (Estimate=

−0.08, P<.001), attention (Estimate=−0.10, P<.001), and processing speed (Estimate=−0.13, 

P<.001). Similar results were shown in subgroups of patients who were <7 years at diagnosis (IQ=

−0.14, P=.027; Attention=−0.25: P=.011), ≥7 years at diagnosis (Attention=−0.07, P=.039; 

Processing Speed=−0.08, P=.022), treated for high-risk disease (IQ=−0.09, P=.024; Attention=

−0.11, P=.034; Processing Speed=−0.13, P=.001), or treated for average-risk disease (IQ=−0.05, 

P=.022; Attention=−0.08, P=.011; Processing Speed=−0.10, P<.001).

Conclusion: Greater anesthesia exposure is a risk factor for clinically significant neurocognitive 

decline, in addition to factors of age at diagnosis and treatment risk arm. This result is notable as 

there are evidence-based strategies that can limit the need for anesthesia. Limiting anesthesia 

exposure, as feasible, may mitigate neurocognitive late effects and thus improve quality of life for 

survivors.
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Medulloblastoma is the most common malignant pediatric brain tumor, which is currently 

treated with surgery, risk-adapted radiation therapy, and adjuvant chemotherapy[1]. Survival 

rates have increased with contemporary treatment; however, survivors show neurocognitive 

decline following treatment[2, 3]. Established risk factors for neurocognitive problems 

include younger age and higher intensity treatments[4, 5], and deficits may increase over 

time[6].

Another risk factor for neurocognitive impairment may be exposure to general anesthesia. 

Pre-clinical studies have suggested that anesthesia impacts brain development[7], which led 

to warnings that repeated or lengthy use of anesthesia should be avoided in children younger 

than 3 years[8]. Clinical studies generally suggest that a single, brief exposure to anesthesia 

is not associated with cognitive deficits[9]. However, there have been mixed results[10, 11], 

owing to methodological concerns such as using retrospective or birth cohort designs[12]. 

Furthermore, most studies have not examined children with complex medical conditions. 

These children are particularly vulnerable because of their disease and treatment, but also 

because they have multiple exposures to anesthesia. Importantly, anesthesia exposure is a 

modifiable risk factor, such that children can complete some procedures without sedation 

given sufficient training[13, 14]. Knowledge of whether multiple exposures to anesthesia 

impacts long-term neurocognitive outcomes may help to guide current clinical practice.

This longitudinal study examined associations between anesthesia exposure and 

neurocognitive outcomes in patients treated for pediatric medulloblastoma on a clinical trial. 

These patients had multiple exposures to anesthesia, such as for radiation or diagnostic 

imaging. Neurocognitive functioning was followed prospectively from baseline (after 

surgery and <2 weeks of starting radiation) and annually up to 5 years post-diagnosis. 

Results from a cross-sectional analysis at 3 years post-diagnosis showed that cumulative 

anesthesia exposure was associated with poorer performance on overall IQ, attention, 
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working memory, processing speed, and reading[15]. Anesthesia exposure predicted poorer 

cognitive performance, separately from age at diagnosis, risk group, and experiencing 

posterior fossa syndrome (PFS). The current study focused on a subset of neurocognitive 

measures in order to evaluate changes over time that may be associated with anesthesia 

exposure. We hypothesized that longer durations or frequency of anesthesia would be 

associated with larger declines over time.

Methods

This research was approved by Institutional Review Board (IRB) at St. Jude Children’s 

Research Hospital. All participants or their parent/guardian gave written informed consent. 

Children gave their assent.

Participants

There were 155 patients (3–21 years) with histologically confirmed medulloblastoma who 

were treated at St. Jude Children’s Research Hospital as part of a multi-site clinical trial 

from 2003–2013 (ClinicalTrials.gov: NCT00085202). There were 38 patients who were 

ineligible for testing (n=3 no consent; n=13 limited English proficiency or sensorimotor 

condition; n=22 off study/off treatment). Of the 117 eligible patients, 107 were included in 

the current analyses as they completed at least 2 time points of neurocognitive testing (i.e., at 

baseline, 1, 2, 3, 4, or 5-year time points). Ten patients were excluded from analyses because 

they did not complete testing due to refusal or scheduling conflicts (n=8) or they had 

received prolonged sedation necessary for mechanical ventilation (n=2).

Protocol-Directed Treatment

Patients underwent surgical resection and were subsequently placed into groups of average-

risk or high-risk disease[16]. After enrollment, risk-adapted radiation therapy started within 

31 days after surgery. Treatment for high-risk disease included craniospinal photon 

irradiation (CSI; M0–1: 36 Gy; M2–3: 39.6 Gy) and a focal boost to the tumor bed (total 

dose: 55.8 Gy). For metastatic disease, local sites received supplemental irradiation (total 

dose: 50.4–54 Gy). Treatment for average-risk disease included CSI (23.4 Gy) and boost to 

the tumor bed (total dose: 55.8 Gy). All clinical target volumes were 1.0 cm and all radiation 

protocols were delivered over 30 fractions (~30–45 min/fraction). Patients subsequently 

received four cycles of high-dose chemotherapy (cyclophosphamide, cisplatin, vincristine) 

with peripheral blood stem cell rescue.

Demographic and Medical Variables

Demographic and medical information was collected as part of the clinical trial. Anesthesia 

exposure was extracted from medical records, which included frequency/duration, agents/

type of anesthetic, and other related procedures for 12 months after diagnosis[15].

Neurocognitive Measures

Neurocognitive testing was obtained at baseline (after surgery and <2 weeks of starting 

radiation) and annually for 5 years. We focused on index scores from the Woodcock-

Johnson III Tests of Cognitive Abilities (WJ-III COG)[17], which included measures of 
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overall intelligence (General Ability), attention and working memory (Broad Attention), and 

processing efficiency (Processing Speed). Age standardized normative data were available 

for patients ≥2 years for overall IQ and attention, and ≥3 years old for processing speed. 

Higher scores indicate better performance (M=100, SD=15).

Analysis

Fisher’s exact, likelihood ratio, and Wilcoxon rank-sum tests were used to examine 

differences in demographic and clinical information for eligible participants versus non-

participants. Descriptive statistics were used to describe anesthesia exposure. Relationships 

between age, baseline cognitive performance, and cumulative anesthesia frequency/duration 

were examined with Pearson correlations. Differences between risk groups for cumulative 

anesthesia frequency/duration were examined with independent samples t-tests. Non-

parametric tests were used to evaluate differences in demographic and clinical groups for 

total number of completed neurocognitive tests over time.

Linear mixed models were used to evaluate associations between age at diagnosis, treatment 

risk, and anesthesia exposure with neurocognitive functioning. Outcomes of interest 

included overall IQ, attention, and processing speed. First, separate models were estimated 

for each predictor along with its’ interaction with time in the overall group. This included: 

age at diagnosis (continuous in years); risk category (high vs. average); cumulative duration 

of anesthesia (continuous in hours); and cumulative frequency of anesthesia (continuous N 
events). Multivariate models that included all predictors together were not examined due to 

the high correlations between variables. Next, we estimated models for anesthesia effects 

within subgroups similar to the literature (i.e., <7 years old, ≥7 years old, high-risk group, 

average-risk group[6, 18]). All models included random intercepts and slopes.

Primary analyses focused on the overall group (n=107). Supplementary analyses included 

the non-PFS group (n=88), as PFS is a risk factor for neurocognitive deficits[19]. All 

statistical comparisons were two-tailed and were considered significant at P<.05. Analyses 

were conducted in R-4.0.0 (R-Core Team, Vienna, Austria).

Results

Demographic and Clinical Information

Eligible participants versus non-participants were older (M=10.2 vs. 7.5 years; P=.05) and 

the proportion of males to females was higher (64% vs. 30%, P=.05); however, the number 

of patients excluded from analyses was small (Table 1). There were no differences between 

participants and non-participants for race (P=.33), risk arm (P=.47), PFS status (P>.99), or 

anesthesia exposure (frequency P=.31; duration P=.28).

Anesthesia Exposure

Mean cumulative frequency of anesthesia was 19.0 events (SD=15.5; range 1–52) and mean 

cumulative duration was 20.4 hours (SD=15.2; range 0.7–55.6; Table 1). Indications for 

anesthesia included radiation, imaging, or procedures such as lumbar punctures. Radiation 

therapy was the most common indication (52% of events, 41% of patients), followed by 
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imaging (25% of events, 85% of patients). Administrations included intravenous, inhalation, 

or mixed methods (Table 2). Most common agents were propofol and fentanyl for 

intravenous (100% of patients) and sevoflurane for inhalation (91% of patients) methods.

Younger age at diagnosis was positively associated with frequency (r=−0.58, P<.001) and 

duration (r=−0.59, P<.001) of anesthesia. Patients with high-risk disease had greater 

anesthesia duration compared to the average-risk group (M=26.5 vs. 18.1 hours, P=.02); 

differences did not reach significance for anesthesia frequency (M=23.7 vs. 17.3 events, 

P=.08). There were no significant correlations between baseline cognitive performance and 

anesthesia exposure (r range=−0.03 to 0.14, P>.20).

Anesthesia Exposure and Neurocognitive Performance in Overall Group

Most participants (80%) completed ≥4 neurocognitive assessments (Table A1). Patients with 

PFS completed fewer baseline (P<.001) and Year 1 (P=.03) assessments than the non-PFS 

group. There were no other demographic or clinical predictors for number of completed 

assessments (P>.05).

Table 3 shows results from linear mixed models in the overall group. All models showed 

significant interactions with time. Attention performance is illustrated as an example (Figure 

1). These results suggest that older children had increasing neurocognitive performance over 

time (Overall IQ: P<.001; Attention: P<.001; Processing Speed: P<.001); however, graphs 

illustrate that younger children also had declining performance. Declines across 

neurocognitive domains were shown in patients who were treated for high-risk (vs. average-

risk) disease (Overall IQ: P<.001; Attention: P=.029; Processing Speed: P<.001) and for 

those who had greater anesthesia exposure (Overall IQ: P<.001; Attention: P<.001; 

Processing Speed: P<.001).

Anesthesia Exposure and Neurocognitive Performance in Age and Treatment Risk Groups

In the next analyses, linear mixed models were conducted for separate age and risk groups. 

Similarly to the overall group, significant interactions were shown between time and 

anesthesia exposure (Table 4; Table A2). Attention performance is illustrated as an example 

(Figures 2 and 3).

Children <7 years at diagnosis who had greater anesthesia durations showed greater declines 

on measures of overall IQ (P=.027) and attention (P=.011). These results did not meet 

significance for anesthesia frequency (P>.10). In children ≥7 years at diagnosis, greater 

anesthesia duration was associated with declines in attention (P=.039) and processing speed 

(P=.022). A main effect was shown for overall IQ, such that longer anesthesia duration was 

associated with poorer performance across time (P=.005). Similar results were shown for 

anesthesia frequency in this age group.

In patients treated for high-risk or average-risk disease, greater anesthesia durations were 

associated with declines in neurocognitive functioning over time. This result was illustrated 

across domains for high-risk (Overall IQ: P=024; Attention: P=.034; Processing Speed: 

P=.001) and average-risk groups (Overall IQ: P=.022; Attention: P=.011; Processing Speed: 

P<.001). Similar results were shown for anesthesia frequency.
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Anesthesia Exposure and Neurocognitive Performance in Non-PFS Group

The non-PFS and PFS groups did not differ in age (P=.13), sex (P=.43), race (P=.87), or 

treatment risk (P>.99; Table A3). The non-PFS group had lower anesthesia frequency 

(M=16.3 vs. 31.6 events, P=.001) and duration (M=17.9 vs. 32.1 hours, P=.001) than the 

PFS group.

In the non-PFS group, primary indications for anesthesia included radiation therapy (47% of 

events, 35% of patients) and imaging (27% of all events, 82% of patients). Propofol and 

fentanyl were most common agents for intravenous (100% of patients) and sevoflurane for 

inhalation (91% of patients) methods (Table A4). Similarly to the overall group, significant 

correlations were shown between age and anesthesia frequency (r=−0.62, P<.001) and 

duration (r=−0.62, P<.001). The high-risk group had greater duration of anesthesia than the 

average-risk group (M=24.4 vs. 15.5 hours, P=.03); differences were marginally significant 

for anesthesia frequency (M=21.8 vs. 14.3 events, P=.054).

Table A5 shows results from linear mixed models in the non-PFS group. All models showed 

significant interactions with time. Patients who were older at diagnosis showed increased 

performance over time (Overall IQ: P<.001; Attention: P=.002; Processing Speed: P<.001), 

although graphs illustrate declines for younger children. Furthermore, declines across 

neurocognitive domains were shown for the high-risk group (vs. average-risk; Overall IQ: 

P<.001; Attention: P=.005; Processing Speed: P<.001) and for those who had greater 

anesthesia exposures (Overall IQ: P<.001; Attention: P<.001; Processing Speed: P<.001).

Discussion

This study examined longitudinal outcomes after exposure to anesthesia in a medically 

complex pediatric population. Patients were homogeneous in terms of tumor type and risk-

adapted treatment, and their exposure to anesthesia was well-characterized. Results showed 

that survivors had declines in neurocognitive functioning, particularly if a patient was 

younger at diagnosis, treated for high-risk disease, or exposed to longer cumulative duration 

or frequency of anesthesia. Importantly, similar results for the effect of anesthesia were 

shown in the overall group as well as in age, treatment risk, and non-PFS subgroups. 

Therefore, the results suggest that anesthesia may affect neural or cognitive development 

with increasing time from diagnosis and treatment.

Our results are consistent with previous research, which has shown that attention and 

processing speed are particularly impacted following medulloblastoma treatment[2]. In 

clinical studies focusing on anesthesia exposure, larger doses, length, or frequency of 

anesthesia was associated with cognitive or learning impairments in children who needed 

surgery for various reasons[20–22]. Most children were exposed to anesthesia for surgical 

procedures in early childhood, and the frequency or duration of anesthesia was relatively 

lower than the current study (i.e., 1–4 events previous vs. 1–52 events current). We extend 

this literature by including patients who were medically complex, had a broad age range, and 

had varied anesthesia exposures. The current results and our previous cross-sectional 

study[15] suggest that multiple anesthesia exposures are associated with poorer 

neurocognitive functioning, in addition to known factors of young age and treatment 
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intensity. Furthermore, lower baseline IQ was not associated with greater frequency of 

anesthesia exposure, suggesting that the need for anesthesia was not related to the cognitive 

functioning of the patient. However, large, prospective trials will be needed to determine 

safe limits for anesthesia dose, duration, or frequency while considering the potential 

confounding factors with anesthesia exposure (e.g., shunt revisions, infections).

Few investigations have used a longitudinal design to measure changes in cognitive 

functioning following anesthesia exposure (e.g., [23, 24]). Studies of young children 

receiving anesthesia for inguinal surgery showed no pre- to post-surgery decline in 

cognition, although the follow-up times were relatively short (4 weeks-18 months). In 

contrast, one group used a prospective design to evaluate infant development following 

excision of benign facial growths[25]; results showed decreased cognitive and motor 

functioning over time, but this was only shown after 3 exposures to ketamine and not 1–2 

exposures.

Our results suggest that neurocognitive decline is more prominent in patients who had 

greater frequency or duration of anesthesia. In pediatric brain tumor, some evidence suggests 

that anesthesia exposure is associated with poorer IQ; this association was shown in a 

secondary analysis an average of 3.6 years after diagnosis[26]. We extend this literature by 

evaluating a longitudinal cohort of patients who completed testing up to 5 years into 

survivorship. Further studies will be needed to examine the potential interactions between 

anesthetic agent, administration method, dose, frequency/duration of exposure, and related 

complications in patients who have complex medical histories.

The mechanism by which anesthesia exposure could impact cognitive functioning has been 

explored in pre-clinical studies. Anesthesia may induce neuroapoptosis and cell death, which 

subsequently affects neural and cognitive development[27]. It may also selectively target the 

hippocampus and learning performance, although other studies have shown more diffuse 

changes in the brain associated with cognitive or behavioral impairment[28]. The exact 

mechanisms or pathways of anesthesia-induced neurotoxicity remain an area of research.

This study retrospectively extracted anesthesia records, and there was no control group 

available due to the nature of the study. However, it would not be feasible to recruit a control 

group with similar diagnoses and treatment who did not receive anesthesia. Also, anesthesia 

data were not available for neurosurgical procedures, as these were conducted at an outside 

institution. Future studies should examine anesthesia exposure through a prospective, 

longitudinal method to determine the onset and timing of cognitive deficits that may be 

associated with anesthesia and related complications. The current study completed subgroup 

analyses to examine outcomes in different age, treatment risk, and non-PFS groups. Due to 

relatively small samples, it was not possible to examine both age and treatment risk 

groupings together (i.e., younger high-risk vs. older high-risk). Furthermore, patients with 

PFS had greater anesthesia exposures and they also completed fewer baseline and year 1 

assessments than those without PFS; these results align with the clinical presentation and 

severity of this syndrome[29]. Multi-site studies will be needed to obtain sufficient sample 

sizes to examine the relationship between anesthesia exposure and cognitive outcomes 

within separate age, treatment risk, and PFS groups. This study did not examine the impact 
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of ototoxicity on neurocognitive performance, as there were multiple confounding variables 

and a relatively small sample size to examine complex interactions between variables. 

Previous studies have shown that hearing loss can impact cognitive functioning in pediatric 

brain tumor [18, 30, 31], and thus future research should include this factor (along with 

other complicating factors) in larger, multi-site trials. Additionally, it will be important to 

examine these questions in other complex medical conditions and across multiple 

institutions, which will determine if cognitive declines can be generalized to other 

conditions.

This research highlights the importance of limiting anesthesia exposure in childhood 

medulloblastoma, when possible and not medically contraindicated, as repetitive anesthesia 

exposure may negatively impact neurodevelopment. Furthermore, higher costs and risk for 

complications[32, 33] are other reasons to limit anesthesia in these groups. Children who 

receive appropriate training and practice may be able to complete procedures without 

exposure to anesthesia. For example, involving child life specialists[13] and incorporating 

play-based behavioral training[14] can be useful ways for children to practice prior to 

radiation treatments or imaging studies.
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Highlights

• Children with medulloblastoma often receive anesthesia during treatment

• Anesthesia exposure is associated with neurocognitive declines over time

• Limiting anesthesia exposure, as feasible, may mitigate neurocognitive 

decline
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Figure 1. 
Association between time and age, treatment risk, and anesthesia duration on neurocognitive 

decline (overall group)

Notes: Estimated performance on the WJ III Attention index is shown as age standardized 

norms (M=100, SD=15) in the overall group (n=107). Linear mixed models showed 

significant interactions between time and age at diagnosis (P<.001), time and treatment risk 

group (P=.029), and time and anesthesia duration (P<.001). Colored lines represent 

estimated scores for: 3, 6, 9, 12, 15, or 18 years old at diagnosis (panel a); high risk or 

average risk treatment (panel b); and 0, 10, 20, 30, 40, or 50 hours of cumulative anesthesia 

exposure (panel c).
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Figure 2. 
Association between time and anesthesia duration on neurocognitive decline (age groups)

Notes: Estimated performance on the WJ III Attention index is shown as age standardized 

norms (M=100, SD=15) within the <7 years old at diagnosis group (n=27, panel a) and ≥ 7 

years old at diagnosis group (n=80, panel b). Linear mixed models showed significant 

interactions between time and anesthesia exposure (young age: P=.011; older age: P=.039). 

Colored lines represent estimated scores for: 0, 10, 20, 30, 40, and 50 hours of cumulative 

anesthesia exposure.
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Figure 3. 
Association between time and anesthesia duration on neurocognitive decline (treatment risk 

groups)

Notes: Estimated performance on the WJ III Attention index is shown as age standardized 

norms (M=100, SD=15) within the high risk treatment group (n=29, panel a) and average 

risk treatment group (n=78, panel b). Linear mixed models showed significant interactions 

between time and anesthesia exposure (high risk: P=.034; average risk: P=.011). Colored 

lines represent estimated scores for: 0, 10, 20, 30, 40, and 50 hours of cumulative anesthesia 

exposure.
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