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Abstract

Long non-coding RNAs (lncRNAs) are a large and diverse class of RNA molecules that are 

transcribed but not translated into proteins, with a length of more than 200 nucleotides. LncRNAs 

are involved in gene expression and regulation. The abnormal expression of lncRNAs is associated 

with disease pathogenesis. Small heterodimer partner (SHP, NR0B2) is a unique orphan nuclear 

receptor that plays a pivotal role in many biological processes by acting as a transcriptional 

repressor. In this review, we present the critical roles of SHP and summarize recent findings 

demonstrating the regulation between lncRNAs and SHP in liver disease.
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1. Introduction

Non-protein coding transcripts or non-coding RNAs (ncRNAs) account for 98% or so of the 

human transcriptome and play crucial roles in development, physiology, and disease 

(Esteller, 2011; Palazzo and Lee, 2015). Long non-coding RNAs (lncRNAs) are defined as 

those ncRNAs longer than 200 nucleotides, which are largely tissue-specifically expressed 
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(Statello et al., 2021). LncRNAs participate in gene transcriptional, post-transcriptional, and 

epigenetic regulation and are essential in many physiological processes, such as X-

chromosome inactivation in mammals (Cabili et al., 2011; Gomes et al., 2013; Zhao et al., 

2017). Mechanistically, lncRNAs participate in histone modifications to remodel chromatin, 

direct the recruitment of RNA polymerase and cofactors, serve as scaffolds for the 

association of transcription factors (TFs) with other cofactors to mediate transactivation, act 

as decoys to prevent TFs from binding to their DNA elements, silence gene expression via 

modulation of translation and mRNA stability, or are involved in RNA alternative splicing 

(Fernandes et al., 2019; Wu et al., 2021; X. Zhang et al., 2019). About 20% of lncRNAs are 

derived from enhancer regions (termed eRNAs), participating in chromosomal enhancer-

promoter looping (Bonasio and Shiekhattar, 2014). LncRNAs also cooperate with 

microRNAs (miRNAs) to regulate gene expression through competition of binding or acting 

as miRNA sponges (Lopez-Urrutia et al., 2019). LncRNAs can also be the precursors of 

miRNAs and serve as signals for the activation of specific biological events (P. Zhang et al., 

2019).

Small heterodimer partner (SHP, NR0B2) belongs to the nuclear receptor (NR) superfamily. 

Generally, it acts as a transcriptional repressor through interaction with a variety of other 

NRs, including androgen receptor (AR), estrogen receptor alpha (ERα), hepatocyte nuclear 

factor 4 alpha (HNF4α), liver receptor homolog-1 (LRH-1), liver X receptor alpha (LXRα), 

peroxisome proliferator-activated receptor gamma (PPARγ), retinoic acid receptor alpha 

(RARα), and retinoid X receptor alpha (RXRα), to regulate diverse biological processes, 

such as bile acid synthesis, glucose/lipid metabolism, and drug metabolism (Zhang et al., 

2011). As an orphan NR, SHP contains dimerization and ligand-binding domains but lacks a 

DNA-binding domain. SHP may also interact with other non-NR TFs to inhibit gene 

transcription and regulate diverse signaling pathways involved in metabolism, inflammation, 

and cell proliferation (Song et al., 2017b).

There is increasing recognition of the role of ncRNAs in diseases. The most well-studied 

ncRNAs are miRNAs, but lncRNAs also play critical roles in cellular homeostasis and are 

inherent to diseases. In addition to recapitulating the essential functions of SHP, this review 

summarizes the up-to-date findings on the crosstalk between lncRNAs and SHP and reveals 

their pathophysiological relevance to liver disease.

2. The primary function of SHP

2.1. SHP in cholesterol and bile acid homeostasis

Cholesterol homeostasis in mammals is maintained through biosynthesis, cellular uptake, 

and hepatic conversion to bile acids.

The well-established function of SHP is to suppress bile acid biosynthesis. Farnesoid X 

receptor (FXR) binds and activates the SHP promoter and SHP represses LRH-1-dependent 

activation of the cholesterol 7-alphahydroxylase (CYP7A1) promoter (Goodwin et al., 2000; 

Lu et al., 2000). CYP7A1 catalyzes the rate-limiting step in bile acid biosynthesis. FXR-

mediated regulation of bile acid-related genes, including SHP and CYP7A1, depends on 

bromodomain-containing protein 4 (BRD4) that is required for the anti-inflammatory and 
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anti-fibrotic actions of obeticholic acid (OCA), a potent and selective FXR agonist (Jung et 

al., 2020). SHP also interacts with HNF4α to repress the transcription of CYP8B1 that 

catalyzes the synthesis of cholic acid and determines the hydrophobicity of the bile acid pool 

(Zhang and Chiang, 2001). The role of SHP in hepatic bile acid biosynthesis is further 

elucidated in Shp knockout mice that exhibit mild defects in bile acid homeostasis, 

suggesting the existence of compensatory pathways of bile acid signaling (Wang et al., 

2002). CYP8B1 is strongly induced in Shp knockout mice, which may increase the 

hydrophilicity of the bile acid pool and reduce the hepatotoxicity of bile acids (Wang et al., 

2003). Besides, SHP maintains cholesterol homeostasis through repressing the expression of 

cholesterol biosynthesis enzyme, 3-hydroxy-3-methylglutaryl-coenzyme A reductase 

(HMGCR), the rate-limiting enzyme of the mevalonate pathway in producing cholesterol 

and other isoprenoids; mechanistically, SHP inhibits LRH-1 and sterol regulatory element 

binding transcription factor 2 (SREBF2) from binding to the HMGCR promoter (Datta et al., 

2006; Kim et al., 2015). The double knockout mice of SHP and FXR develop intrahepatic 

cholestasis, which recapitulates human progressive familial intrahepatic cholestasis (PFIC) 

and can be used to investigate the molecular pathogenesis of PFIC (K. H. Kim et al., 2018).

Hepatic miR-210 levels are elevated in cholestatic mouse models and patients with primary 

biliary cholangitis. MiR-210 promotes bile acid-induced liver injury in part by targeting the 

mixed-lineage leukemia-4 (MLL4) methyltransferase. SHP inhibits miR-210 expression by 

repressing a transcriptional activator, Kruppel-like factor-4 (KLF4), and nuclear levels of 

SHP are reduced in cholestatic livers (Kim et al., 2020a).

SHP is also highly expressed in the intestine. Postprandial fibroblast growth factor (FGF) 19 

(human FGF19, mouse FGF15) induces SHP phosphorylation that inhibits the 

transcriptional activity of SREBF2, leading to the repression of intestinal NPC1-like 

intracellular cholesterol transporter 1 (NPC1L1) expression and cholesterol absorption (Kim 

et al., 2015; Y. C. Kim et al., 2019).

2.2. SHP in glucose and lipid metabolism

SHP has a major function in regulating glucose metabolism by inhibiting gluconeogenic 

gene expression. Glucose 6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase 

(PEPCK) are the rate-limiting enzymes in hepatic gluconeogenesis. SHP represses G6Pase 

and PEPCK gene expression via inhibition of the forkhead transcription factors HNF3 and 

HNF6 (Kim et al., 2004; Lee et al., 2008). SHP antagonizes peroxisome proliferator-

activated receptor gamma coactivator 1-alpha (PGC-1α) coactivation of glucocorticoid 

receptor (GR), leading to the inhibition of PEPCK expression (Borgius et al., 2002). SHP 

represses CCAAT/enhancer-binding protein alpha (C/EBPα)-driven transcription of PEPCK 

and FOXO1-mediated transcription of G6Pase (Park et al., 2007; Yamagata et al., 2004). 

SHP also inhibits the transcriptional activity of LXRα and PPARγ by competing for binding 

to their common heterodimer partner RXRα to decrease hepatic glucokinase expression 

(Kim et al., 2009).

SHP is essential to maintain hepatic lipid homeostasis (Watanabe et al., 2004). SHP-

deficient mice are protected against fatty liver in part by increasing very-low-density 

lipoprotein (VLDL) secretion. VLDL secretion is controlled by microsomal triglyceride 
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transfer protein (MTTP), and SHP represses LRH-1-mediated transactivation of the MTTP 

promoter in hepatocytes (Huang et al., 2007; Lee et al., 2015; Wang et al., 2005). Mice with 

hepatocyte-specific deletion of SHP are protected against dyslipidemia induced by either a 

cholesterol/cholic acid diet or hypothyroidism (Hartman et al., 2009), and against fatty liver 

development by suppressing the expression of PPARγ and lipid-droplet protein fat-specific 

protein 27 (FSP27) (Akinrotimi et al., 2017). A recent study shows that hepatocyte-specific 

deletion of SHP reduces high-fat, -cholesterol, and -fructose (HFCF) diet-induced hepatic 

steatosis but aggravates the development of liver inflammation and fibrosis; interestingly, if 

the mice already present hepatic steatosis induced by HFCF diet, the adeno-associated virus-

mediated hepatic depletion of SHP is no longer effective in reducing steatosis but still 

exacerbates liver inflammation and fibrosis (Magee et al., 2020). Indeed, SHP-deficient 

hepatocytes have an enhanced ability to recruit neutrophils to the injured liver, and SHP is a 

negative regulator of c-Jun-mediated transcription of chemokine (C-X-C motif) ligand 2 

(CXCL2) and NF-κB p65-mediated induction of chemokine (C-C motif) ligand 2 (CCL2) 

(Noh et al., 2018; Zou et al., 2018).

As an integral component of the liver circadian network, SHP inhibits neuronal PAS 

domain-containing protein 2 (NPAS2) expression; they form a negative feedback loop to 

regulate the cyclic expression patterns of liver metabolic genes and maintain triglyceride and 

lipoprotein homeostasis (Lee et al., 2015). Constitutive SHP expression in transgenic mice 

can deplete the hepatic bile acid pool and induce triglyceride accumulation in the liver 

(Watanabe et al., 2004). This phenotype is attributable to SHP-mediated direct repression of 

downstream target genes including the bile acid sensor FXRα, and the indirect activation of 

the lipogenic PPARγ and SREBF1 gene expression (Boulias et al., 2005).

In contrast to the former findings that SHP contributes to or plays a promoting role in 

hepatic steatosis, a recent study focusing on the effect of FGF15/19 on hepatic lipogenesis 

reveals that FGF19 induces SHP phosphorylation to epigenetically silence the expression of 

lipogenic genes, such as SREBF1 and FASN, in a DNA methyltransferase-3a (DNMT3A)-

dependent manner; further, the virus-mediated overexpression of SHP in obese mice 

substantially reduces liver triglyceride levels and inhibits lipogenesis in part by regulating 

phosphatidylcholine levels (Kim et al., 2020b; Y. C. Kim et al., 2018). In line with this, a 

decrease of FXR and SHP expression is found in beta-carotene oxygenase 1 and beta-

carotene oxygenase 2 double knockout mice which develop hepatic steatosis (Lim et al., 

2018). The phenotypic discrepancy between germline loss and adult manipulation of SHP 

expression in lipid metabolism is currently unclear. Possible compensatory changes in 

metabolic pathways in transgenic/knockout mice need to be taken into consideration.

Obesity-induced overexpression of miR-802 impairs hepatic insulin sensitivity and glucose 

metabolism (Kornfeld et al., 2013). SHP inhibits the transactivation of miR-802 by aromatic 

hydrocarbon receptor (AHR), which is attenuated in non-alcoholic fatty liver disease 

(NAFLD) patients and obese mice; activation of FXR by OCA reduces miR-802 expression 

and improves insulin resistance and hepatic steatosis (Seok et al., 2020). In accordance with 

this, as a repressor of AHR, SHP mitigates the AHR overexpression-induced hepatic 

increase of phosphatidylcholines and steatosis in obese mice (Y. C. Kim et al., 2018). These 

Wu et al. Page 4

Mol Cell Endocrinol. Author manuscript; available in PMC 2022 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



findings suggest that the FXR-SHP-miR-802 pathway may be targeted for the treatment of 

type 2 diabetes and NAFLD.

2.3. SHP in cell proliferation

SHP is identified as a tumor suppressor (He et al., 2008; Suresh et al., 2017). SHP 

expression is down-regulated in hepatocellular carcinoma (HCC). SHP inhibits hepatocyte 

proliferation and activates apoptosis to suppress tumor growth in HCC (He et al., 2008; 

Zhang et al., 2010, 2008). A small molecule activator of SHP, 5-(diethylsulfamoyl)-3-

hydroxynaphthalene-2-carboxylic acid, has a strong inhibitory effect on HCC cell migration 

by suppressing CCL2 expression (Z. Yang et al., 2016). Interestingly, thymine DNA 

glycosylase (TDG) is essential for SHP expression in the liver in response to FXR agonists, 

and conditional deletion of TDG in adult mice results in a male-predominant onset of HCC 

(Hassan et al., 2020).

2.4. Other roles of SHP

2.4.1. SHP in mitosis—SHP displaces a major fraction of pregnane X receptor (PXR) 

and ERα from the mitotic chromatin via intermolecular interactions, resulting in attenuation 

of transcriptional activities during mitosis and implying the potential function of SHP in the 

regulation of “gene-bookmarking” events in cellular development (Kumar et al., 2021).

2.4.2. SHP in immunity—Specific roles of SHP in liver non-parenchymal cells have 

been described recently. FXR activation protects livers from ischemia/reperfusion injury 

(IRI) by up-regulating SHP in Kupffer cells (KCs) to inhibit the pro-inflammatory responses 

(Jin et al., 2020). SHP knockdown increases hepatic IRI in myeloid glycogen synthase 

kinase 3β (Gsk3β) knockout mice, suggesting a negative role of SHP in regulating innate 

immunity (Zhou et al., 2018). SHP overexpression can attenuate platelet-derived growth 

factor-BB (PDGF-BB)-stimulated activation of hepatic stellate cells (HSCs) in vitro (Ma et 

al., 2020), and a SHP agonist, ISO-COOH, attenuates HSCs trans-differentiation and ECM 

deposition in vitro and shows anti-fibrotic activity in carbon tetrachloride (CCl4)- or α-

naphthyl-isothiocyanate (ANIT)-induced liver fibrosis in mice (Cipriani et al., 2017).

Other findings also support the emerging roles of SHP in immunity. For instance, the 

expression and activity of SHP within macrophages can alter T cell fate (Cipriani et al., 

2017). SHP blocks the transcription of type I interferon (IFN) and serves as a potent negative 

regulator of the virus-mediated type I IFN signaling (J. H. Kim et al., 2019). SHP is a 

transcriptional target and repressor of LRH-1; the latter is the transcriptional regulator of 

intestinal glucocorticoid (GC) synthesis; the SHP/LRH-1 axis regulates virus-induced 

intestinal GC synthesis to maintain intestinal immune homeostasis (Huang et al., 2018).

2.4.3. SHP in autophagy—SHP regulates autophagy. FXR acts early, but SHP acts 

relatively late after feeding to epigenetically sustain postprandial inhibition of autophagy via 

a FGF19-SHP-LSD1 axis (Byun et al., 2017). Both global and hepatocyte-specific double 

knockout of FXR and SHP have a beneficial impact on glucose and fatty acid metabolism in 

aged mice, as shown by lower hepatic triglyceride accumulation, improved glucose/insulin 
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tolerance, and accelerated fatty acid use, which are associated with enhanced expression of 

fatty acid metabolism and autophagy-machinery genes (Kim et al., 2017).

2.4.4. SHP in hepatotoxicity and endoplasmic reticulum (ER) stress—SHP 

participates in the circadian regulation of cytochrome P450 (CYP) enzymes, thereby 

impacting xenobiotic metabolism and drug-induced hepatotoxicity (T. Zhang et al., 2018). 

Indeed, hepatocyte SHP deficiency protects mice from acetaminophen APAP-induced liver 

injury (Y. H. Kim et al., 2018).

SHP interacts with and regulates the protein stability of the spliced form of X-box-binding 

protein 1 (XBP1s) to govern ER homeostasis (Sun et al., 2019). It has been demonstrated 

that FXR/SHP signaling activates XBP1s expression, and hepatic XBP1s expression is 

reduced in FXR- and SHP-null mice (X. Liu et al., 2018).

3. LncRNAs and SHP

It is well-established that SHP is a downstream target gene of FXR that activates SHP 

transcription to restrain bile acid synthesis and maintain the homeostasis of bile acid 

metabolism (Kim et al., 2017). SHP expression is rhythmically controlled by NPAS2, 

CLOCK-BMAL1, and LRH-1 (Lee et al., 2015; Oiwa et al., 2007). The reciprocal 

regulation between NRs and ncRNAs has emerged as essential mechanisms influencing 

diverse biological processes (Mahpour and Mullen, 2021; Wu et al., 2021). SHP inhibits the 

expression of several miRNAs, including miR-433, miR-127, miR-34a, and miR-200c, 

conforming to its general function of performing transcriptional repression (Song et al., 

2017b). Intriguingly, it is notable that miR-433 plays an inhibitory role in liver cancer cell 

migration (Mansini et al., 2018; Yang et al., 2013), opposing SHP’s tumor suppression 

function. On the other hand, SHP is targeted by miR-142–3p in the regulation of cholestasis 

(Pan et al., 2017). Despite these findings, little is known about the crosstalk between 

lncRNAs and SHP. Several studies shed light on this in recent years.

3.1. MEG3 and SHP

Maternally expressed gene 3 (MEG3) is an imprinted gene encoding a lncRNA expressed in 

many normal tissues, and functions as a tumor suppressor (Al-Rugeebah et al., 2019; Zhou 

et al., 2012). MEG3 is required for embryonic development, as Meg3 knockout mice die 

prematurely. MEG3 expression is frequently lost in human cancers, possibly due to gene 

deletion and promoter methylation. Re-expression of MEG3 inhibits proliferation, induces 

apoptosis, and suppresses anchorage-independent growth of human tumor cells. MEG3 

expression is frequently down-regulated in human HCC due to the methylation of DLK1-
MEG3 locus on human chromosome 14q32 which encodes a cluster of metastasis-

suppressive miRNAs predominantly regulated by DNA methylation (Anwar et al., 2012; 

Oshima et al., 2019). MEG3 also inhibits the growth of human liver cancer stem cells by 

reducing the activity of telomerase (Jiang et al., 2020).

MEG3 expression is down-regulated in murine and human fibrotic livers, which might be 

ascribed to the hypermethylation of gene promoter. Indeed, lncRNA HOX antisense 

intergenic RNA (HOTAIR) promotes the accumulation of polycomb repressive complex 2 
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(PRC2) and H3K27 trimethylation at the MEG3 promoter in LX-2 cells (a human HSC cell 

line) (Bian et al., 2017). MEG3 is a target gene of miR-212 and inhibits hedgehog-mediated 

epithelial-mesenchymal transition (EMT) in liver fibrosis (Yu et al., 2018). MEG3 

overexpression inhibits HSC proliferation by activating the p53/caspase-3 signaling pathway 

(He et al., 2014). These findings suggest that MEG3 plays an inhibitory function in liver 

fibrosis.

Knockdown of MEG3 expression causes senescence in hepatic endothelial cells in diet-

induced obese mice, potentiating obesity-induced insulin resistance and impairing glucose 

homeostasis (Cheng et al., 2021). However, hepatic expression of MEG3 is increased (about 

2-fold) in patients with NFALD or nonalcoholic steatohepatitis (NASH), and obese mice, 

likely due to a compensatory regulation and suggesting a protective role of MEG3 in 

metabolic disorders (Cheng et al., 2021). Interestingly, another study shows that hepatic 

MEG3 is downregulated in murine NAFLD models and can bind to and antagonize the 

function of miR-21 to increase the expression of low-density lipoprotein receptor-related 

protein 6 (LRP6), a gene target of miR-21; this study also demonstrates a protective role of 

MEG3 in the pathogenesis of NAFLD (Huang et al., 2019). Nevertheless, MEG3 expression 

is up-regulated in the livers of ethanol-fed mice and induced by ethanol in AML-12 cells (a 

hepatocyte cell line) (Wang et al., 2018). The knockdown of MEG3 expression inhibits 

ethanol-induced steatosis and apoptosis and impairs the expression of NOD-like receptor 

family CARD domain containing 5 (NLRC5), a critical regulator of immune responses, in 

AML-12 cells; moreover, MEG3 is proposed as an endogenous competing lncRNA for miR-

let-7c-5p that targets NLRC5. The MEG3/miR-let-7c-5p/NLRC5 axis might contribute to 

ethanol-induced liver injury but needs further investigation.

Forced overexpression of MEG3 in mouse livers causes rapid SHP mRNA decay, resulting 

in increased Cyp7a1 and Cyp8b1 expression, the disruption of bile acid homeostasis, and 

cholestatic liver injury (Zhang et al., 2017). There are multiple predicted RNA-binding 

protein polypyrimidine tract-binding protein 1 (PTBP1)-binding sites within the coding 

sequence and 3’-UTR of SHP mRNA; MEG3 interacts with PTBP1 and facilitates PTPB1 

binding to SHP mRNA, which promotes SHP mRNA decay (Zhang et al., 2017). Despite the 

intramolecular interaction, how PTPB1 links the RNA-degradation machinery to SHP 

mRNA is still elusive. In fact, there are reports showing that PTBP1 protects transcripts from 

nonsense-mediated mRNA decay (Fritz et al., 2020; Ge et al., 2016). On the other hand, 

MEG3 RNA is dramatically elevated in the livers of Shp knockout mice and that SHP 

inhibits MEG3 expression by repressing cAMP response element-binding protein (CREB)-

mediated transactivation of Meg3 gene promoter (Zhang et al., 2017). Thus, MEG3 and SHP 

constitute a feedback loop of reciprocal inhibition to maintain bile acid homeostasis, 

suggesting that MEG3 could be a therapeutic target to manage bile acid homeostasis and 

improve cholestatic liver injury.

3.2. H19 and SHP

H19 imprinted maternally expressed transcript (H19) is one of the earliest described 

lncRNAs (Mahpour and Mullen, 2021). The H19 locus is located on chromosome 11p15.5 

in humans and on chromosome 7 in mice. It plays a pivotal role in embryonic development 
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and growth control (Gabory et al., 2010; Monnier et al., 2013). The H19 gene cluster 

contains the insulin-like growth factor 2 (IGF2) gene located 90 kb upstream of H19. There 

is an intergenic differentially methylated region (DMR) upstream of IGF2, an imprinting 

control region (ICR) between IGF2 and H19, and an enhancer downstream of H19 
(Thorvaldsen et al., 1998). The methylation status and the alternative binding of the 

enhancer to DMR or ICR determine the expression of these two imprinting genes, IGF2 and 

H19. H19 is expressed from the maternal allele, and IGF2 is expressed from the paternal 

allele (Kurukuti et al., 2006; Pope et al., 2017). H19 is highly expressed in embryonic tissues 

and the placenta. Its expression is drastically attenuated after birth in most tissues except for 

the skeletal muscle, cardiac muscle, and cartilage (Zeira et al., 2015).

The role of H19 is elucidated by its importance in diverse liver pathophysiology, including 

NAFLD (C. Liu et al., 2018; J. Liu et al., 2019; H. Wang et al., 2020; N. Zhang et al., 2018), 

cholestasis (Li et al., 2020, 2018, 2017; R. Liu et al., 2019; Song et al., 2017a; Xiao et al., 

2019; L. Zhang et al., 2019; Zhang et al., 2016), fibrosis (Z. M. Wang et al., 2020; Xiao et 

al., 2019; J. J. Yang et al., 2016; Yang et al., 2018; Zhu et al., 2019), acute liver failure (Jin 

et al., 2018), hepatitis B viral (HBV) infection (Li et al., 2019; Y. Liu et al., 2019), and HCC 

(Matouk et al., 2007; Wei et al., 2019; Zhou et al., 2019). The level of specific lncRNAs in 

circulation can be useful biomarkers for the diagnosis and prognosis of liver disease. Indeed, 

high plasma H19 is associated with poor disease-free survival in patients with HCC and after 

curative hepatectomy (Yang et al., 2015).

H19 expression is reactivated and remarkably induced in adult human livers with cholestatic 

fibrosis and cirrhosis (Zhang et al., 2016). Bile duct ligation (BDL)-induced cholestasis 

activates hepatic H19 expression, which enhances intrahepatic inflammation, HSC 

activation, ductular reaction, and cholestatic liver fibrosis in mice; (Song et al., 2017a). 

BDL-induced cholestasis also reduces SHP mRNA expression, which can be blunted by H19 

overexpression (Song et al., 2017a). Despite this, it seems that SHP and H19 antagonize the 

expression of each other (Li et al., 2018; Zhang et al., 2016). In mouse livers, forced 

overexpression of the anti-apoptotic protein BCL2 induces SHP protein degradation, leading 

to the re-expression of H19 due to the loss of SHP’s transcriptional repression function 

(Zhang et al., 2016). On the other hand, via exosomal transportation, cholangiocyte-derived 

H19 suppresses SHP expression in hepatocytes at both transcriptional and post-

transcriptional levels (Li et al., 2018). Besides, cholangiocyte-derived H19 promotes the 

activation and proliferation of HSCs, which results in cholestatic liver injury in BDL and 

Mdr2−/− mice modeling biliary fibrosis (R. Liu et al., 2019). The inhibitory function of SHP 

in HSC activation has been shown in vitro (Cipriani et al., 2017; Ma et al., 2020). It is 

possible that cholangiocytes- or other types of liver cells-derived H19 also regulate SHP’s 

function in HSCs. It is obvious that intercellular communications are required for H19 and 

SHP to cooperatively control bile acid homeostasis and regulate the severity of cholestatic 

liver injury. It is noteworthy that a recent study using the RNAscope assay, a novel in situ 

RNA analysis platform, shows that H19 RNA is localized in HNF4α+ periportal 

hepatocytes, SOX9+ ductal progenitor cells, and F4/80+ KCs but not in CK19+ 

cholangiocytes and desmin+ HSCs in cholestatic livers (Jiang et al., 2018). In contrast, using 

immuno-purification or laser-capture microdissection, H19 RNA is shown to be 
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predominantly expressed in cholangiocytes, about 100-fold higher than hepatocytes, HSCs, 

and KCs (R. Liu et al., 2019).

When expressed in the same cell type, how SHP and H19 mechanistically inhibit the 

expression of each other at the molecular level is still elusive. The upstream signaling 

pathways that activate H19 expression are still not fully understood (Chiang, 2017). It is 

known that H19 expression is regulated by multiple TFs, such as forkhead box A1 

(FOXA1), hypoxia-inducible factor 1 subunit alpha (HIF1α), Paxillin (PXN), E2F 

transcription factor 1 (E2F1), SRY-sex determining region Y- box 2 (SOX2) (Yang et al., 

2020). Defining the functional connections between these TFs and H19/SHP would help 

address the above question in various liver diseases. Interestingly, similar to MEG3, H19 

likewise interacts with PTBP1 to modulate hepatic lipogenesis and glucose metabolism (C. 

Liu et al., 2018). However, H19 intriguingly decreases PTPB1 expression in cholestasis (L. 

Zhang et al., 2019). It is unknown whether this interaction can also accelerate SHP mRNA 

decay the same as MEG3 (Zhang et al., 2017).

4. Conclusions and Perspectives

The above critical roles and molecular connections of SHP in liver physiology and 

pathophysiology are summarized (Figure 1). Recent studies have demonstrated the 

association of lncRNAs with SHP expression in liver disorders (Chiang, 2017). Only a few 

studies reveal SHP regulation of lncRNAs, and the regulatory mechanism is confined to 

SHP’s canonical function as a transcriptional repressor (Zhang et al., 2017, 2016). Because 

SHP lacks a DNA-binding domain, it is reasonable to postulate that SHP interacts with other 

TFs to regulate lncRNA expression. Indeed, SHP physically interacts with CREB to inhibit 

CREB-dependent hepatic gluconeogenesis (Lee et al., 2010), which underlies the molecular 

basis of SHP inhibition of Meg3. Defining the genome landscape of DNA association 

regions for SHP and other TFs and distinguishing their colocalized genomic loci will be 

informative to reveal more SHP-regulated lncRNAs.

SHP might indirectly regulate lncRNA expression through epigenetic mechanisms because it 

has been reported that SHP can impair estrogen-related receptor gamma (ERRγ)-mediated 

transcription of DNA (cytosine-5)-methyltransferase 1 (DNMT1) that silences gene 

expression through CpG island methylation, pointing to the potential role of SHP in gene 

transactivation (Zhang and Wang, 2011).

The pathophysiological significance of lncRNAs has been increasingly recognized (Pielok 

and Marycz, 2020). For instance, lncRNAs AK054921 and AK128652 are potential 

biomarkers to predict the progression of alcohol-associated liver disease (ALD) in 

individuals with excessive alcohol consumption; they are predictors of survival in patients 

with cirrhosis (Yang et al., 2017). The serum level of MEG3 is decreased in patients with 

chronic hepatitis B and negatively correlates with the severity of liver fibrosis (Chen et al., 

2019). Multiple approaches have been proposed to regulate lncRNA expression to manage 

liver diseases, including RNA interference to target lncRNA, induction of lncRNA 

expression with agonistic or antagonistic compounds, manipulation of extracellular vesicles 

(EVs) (Sato et al., 2020). Studies to deorphanize SHP and further dissect the ncRNA-SHP 
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network are warranted for developing lncRNA- or SHP-based novel diagnostics, 

therapeutics, and prevention strategies for liver disease.
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Figure 1. 
The critical roles and molecular connections of SHP in liver physiology and 

pathophysiology presented in this review.
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