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A clinical transcriptome approach to patient
stratification and therapy selection in acute
myeloid leukemia
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As more clinically-relevant genomic features of myeloid malignancies are revealed, it has

become clear that targeted clinical genetic testing is inadequate for risk stratification. Here,

we develop and validate a clinical transcriptome-based assay for stratification of acute

myeloid leukemia (AML). Comparison of ribonucleic acid sequencing (RNA-Seq) to whole

genome and exome sequencing reveals that a standalone RNA-Seq assay offers the greatest

diagnostic return, enabling identification of expressed gene fusions, single nucleotide

and short insertion/deletion variants, and whole-transcriptome expression information.

Expression data from 154 AML patients are used to develop a novel AML prognostic score,

which is strongly associated with patient outcomes across 620 patients from three inde-

pendent cohorts, and 42 patients from a prospective cohort. When combined with molecular

risk guidelines, the risk score allows for the re-stratification of 22.1 to 25.3% of AML patients

from three independent cohorts into correct risk groups. Within the adverse-risk subgroup,

we identify a subset of patients characterized by dysregulated integrin signaling and RUNX1 or

TP53mutation. We show that these patients may benefit from therapy with inhibitors of focal

adhesion kinase, encoded by PTK2, demonstrating additional utility of transcriptome-based

testing for therapy selection in myeloid malignancy.
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The myeloid malignancies consist of a group of related
hematopoietic stem/progenitor cell cancers, including acute
myeloid leukemia (AML) and myelodysplastic syndromes

(MDS)1–3. The prognosis for AML patients older than sixty years
of age has not substantially improved in decades and remains
dismal. This lack of progress highlights the need for improved
diagnostic approaches, clinical assessment, and treatment strate-
gies, all of which require a better understanding of the genetic
basis of these diseases. Currently, clinical diagnostics and risk
stratification for AML rely on cytogenetic screening for structural
genomic alterations and targeted sequence-based screening for
prognostic and predictive genetic variants1,4. However, ~50% of
patients are stratified to an intermediate-risk group and remain
difficult to assign to an appropriate consolidation of therapy
regimen1, exemplifying the need for improved stratification of
AML patients.

While standard-of-care clinical guidelines used for AML stratifi-
cation are relatively conservative in their use of novel genetic
markers, several recent studies have proposed revised stratification
schemes. Recent updates to the European LeukemiaNet (ELN)
guidelines for AML stratification include RUNX1, TP53, and ASXL15,
and more recently published schemes incorporate mutational status
in 25 genes and propose 14 separate disease subtypes, although this
has not been clinically incorporated6. Additional models using
mutational and clinical data7 or gene expression profiling8–10 have
also been proposed for improved patient stratification.

While next-generation sequencing of small gene panels is cur-
rently common for diagnostic purposes, genome-wide screening
offers many potential benefits11. RNA-Seq assays are typically
treated as complementary to existing DNA-based assays rather than
as stand-alone assays. In some cases, however, RNA-Seq has been
shown to be more useful than whole-exome sequencing (WES) or
whole-genome sequencing (WGS) in providing actionable clinical
hypotheses in cancer12,13 and Mendelian disorders14,15. RNA-Seq
assays offer potential clinical benefits including the ability to detect
expressed structural variants (SVs), alternative isoform usage and
splicing variation, and global gene expression16, all of which are
known to be relevant for understanding the pathogenesis of mye-
loid malignancies. In addition, RNA-Seq has the potential to sup-
plant cytogenetic testing, potentially improving cost-effectiveness.
However, for RNA-Seq assays to be incorporated into clinical
workflows, strict standards for analytic and clinical validity must be
demonstrated and a quality framework established17,18.

In this work, we show that RNA-Seq based testing exceeds the
current clinical standard of care for the assessment of myeloid
malignancies, and provides the broadest range of genomic
information, when compared to WES- and WGS-based approa-
ches. Further, we develop a novel gene expression signature that
allows for the restratification of cases classified by the current
protocol as intermediate-risk AMLs into high- or low-risk sub-
groups, thereby allowing better risk stratification for clinical
management. Finally, to demonstrate the utility of transcriptome-
based testing in improving therapy selection in AML, we identify
a subset of high-risk patients with dysregulated integrin signaling,
which is potentially amenable to inhibitors of focal adhesion
kinase (FAK). As therapeutic options for myeloid malignancies
continue to evolve, a global transcriptome-based approach
to diagnostics will allow reconfiguration of mutation- and
expression-based predictors to best take advantage of new
genomic information as it arises.

Results
Experimental design and quality control. To compare RNA-Seq,
WGS, and WES as potential platforms for clinical assessment of
myeloid malignancies, we constructed a patient cohort (the AML

Personalized Medicine Program, or AML PMP cohort) consisting
of patients with de novo AML, secondary AML (sAML), therapy-
related AML (tAML), MDS, and therapy-related MDS (tMDS).
To demonstrate the analytic validity of the RNA-Seq pipeline, we
constructed a separate validation cohort consisting of replicated
patient and cell line material, analyzed a local prospective cohort
of newly diagnosed patients, and re-analyzed patient RNA-Seq
libraries from The Cancer Genome Atlas AML (TCGA LAML)19,
Beat AML20, and TARGET AML21 cohorts (Fig. 1A, Supple-
mentary Data 1–8, Supplementary Fig. 1). We generated and
compared quality metrics for the AML PMP cohort, determined
appropriate quality thresholds (Supplementary Fig. 2), and
compared coverage depth across sequencing platforms (Supple-
mentary Fig. 3) for a set of 44 genes with established disease
relevance (Supplementary Data 9).

SNV and small indel detection. SNVs and short indel detection
can be problematic in RNA-based assays due to varying levels of
transcription, the difficulty of spliced alignment, allele-specific
expression, and RNA editing16. We therefore assessed con-
cordance, sequence coverage, and variant allele frequency (VAF)
in matched RNA-Seq, WES, and WGS libraries, using three
different variant calling algorithms (GATK HaplotypeCaller22,
FreeBayes23, and VarScan2)24 and an ensemble caller. Variant
coverage depth was considerably higher for a given RNA-Seq
variant (median coverage: 317 and 168 across the RNA-Seq
cohorts) compared to WES (median coverage: 112) or WGS
(median coverage: 36) variants (Supplementary Fig. 4, Supple-
mentary Data 10). These observed coverage depths imply that
sequencing RNA-Seq libraries with fewer total reads would still
provide sufficient sequencing coverage for high-confidence
variant detection (e.g., sequencing ~60 million reads per
library would result in an expected mean variant depth of 100x),
although deeper sequencing would be expected to improve
variant detection sensitivity.

The majority of variants were concordant between matched
RNA-Seq and WGS (84/94 concordant calls) or WES (375/402
concordant calls) libraries. Comparison of RNA-Seq to WGS
revealed eight cases where variant calls were present in the RNA-
Seq but not WGS data, and two variants in the WGS data that
were not observed in the matched RNA-Seq libraries (Fig. 1B,
Supplementary Data 11). Comparison of RNA-Seq to WES
revealed 19 calls present in RNA-Seq but not WES data, and eight
calls unique to the WES libraries (Fig. 1C, Supplementary
Data 12). Seven out of eight of the variants that were unique to
WES and were not found in RNA-Seq data were rare X-linked
variants (in BCORL1, BCOR, and SMC1A) in female patients,
suggesting the variant alleles reside on the inactivated X
chromosome (Supplementary Data 13). These variants are all
annotated as benign, of unknown significance, or unreported in
ClinVar. For the variants of unknown significance, their lack of
expression at the transcript level suggests they are likely benign
changes. The eighth WES-specific variant was located on
chromosome 3 (GATA2 p.Pro161Ala), and is annotated as a
likely benign germline change in ClinVar. In general, we observed
biased expression for variants in WT1 and GATA2, which are
located on chromosomes 11 and 3, respectively, and are known to
be imprinted25,26. Variants present in RNA-Seq libraries but not
in matched WES or WGS libraries were mostly discordant due to
low coverage in the matched WES or WGS data. However, several
cases where variants were present at low allelic frequencies in the
WES and WGS data were found to be highly expressed in the
RNA-Seq data. These variants included a nonsense mutation in
WT1, and a KIT p.Asp816Tyr change, both with prognostic
relevance that would be likely missed in WGS or WES data.
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Proper assignment of mono-allelic or bi-allelic mutation status
in CEBPA is necessary for patient stratification27. Sequence
coverage across this GC-rich gene was particularly poor in WES
libraries, leading to six additional calls being recovered in the
RNA-Seq data compared to WES (Fig. 1D, Supplementary Fig. 5).
Comparison of RNA-Seq to WGS revealed a single CEBPA
variant that was missed in the WGS data.

Validation analysis. To characterize the reproducibility of the
RNA-Seq variant-calling pipeline, we compared filtered call
sets from technical replicate samples to curated reference sets

(Supplementary Figs. 6–7, Supplementary Data 5, 14–15), cal-
culating the sensitivity and positive predictive value (PPV) of
the observed variants for each individual variant caller, as well as
the ensemble caller. Of the single callers, GATK Haplotype-
Caller had the highest sensitivity (0.978 (0.946–0.994)) and
lowest PPV (0.985 (0.961–0.999)) (Fig. 1E). The ensemble caller
improved on the PPV of GATK HaplotypeCaller (1 (0.98–1)),
but not the sensitivity (0.973 (0.938–0.991)). Notably, the
difference in sensitivities between callers was solely due to
GATK HaplotypeCaller recovering two additional synonymous
variants compared to the other calls (while at the same

Fig. 1 Experimental overview and short nucleotide variant/indel analysis. A Overview of datasets used at each stage of the analysis, colored by
sequencing project, with sample size for each data set indicated in brackets. For the AML PMP exploratory batch, MDS samples were used for profiling the
SNV and gene fusion pipelines, but not for expression-based analyses, and validation RNA-Seq libraries were prepared in triplicate. B–C Matched variant
allele frequency (VAF) for variants between whole-genome sequencing (WGS) and RNA-Seq (B) and whole exome sequencing (WES) and RNA-Seq (C),
by concordance status, variant type, and coverage status (sites with ≤10x coverage are indicated as ‘Low WGS/WES Depth’). Selected variants discussed
in the text are labeled with Human Genome Variation Society (HGVS) nomenclature. D Variant observations in CEBPA. Potentially disruptive mutations for
each patient (y-axis) are indicated by their chromosomal coordinate (x-axis), with predicted impact and variant concordance. E Sensitivity and positive
predictive value (PPV) for each variant caller in the validation cohort (with 95% confidence intervals).
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time not recovering a third synonymous variant) (Supplemen-
tary Data 16). The remaining false-negative calls consisted of the
same X-linked synonymous variants observed in the exploratory
cohort (Supplementary Data 17), while the GATK false-positive
calls consisted of rare alignment artefacts around splice junc-
tions (Supplementary Data 18). While all three callers showed
similar high performance across the target space, we chose to
use GATK HaplotypeCaller for subsequent experiments in order
to simplify downstream analyses.

Structural variation. The myeloid malignancies are character-
ized by the presence of recurrent SVs. We observed complete
sensitivity in the exploratory cohort of 173 patients with RNA-
Seq libraries for detection of the main clinically relevant gene
fusions, including PML-RARA (nine cases), MYH11-CBFB (11
cases), RUNX1-RUNX1T1 (eight cases), and MLLT3-KMT2A
(four cases) (Fig. 2A), in addition to 11 rarer translocations
(Supplementary Data 19). After establishing filtering criteria for
novel fusions, we observed several interesting novel fusion events
which either recapitulated the known cytogenetic events in
greater resolution, or identified cryptic events which were not
detected by cytogenetics (Supplementary Fig. 8A, Supplementary
Data 20–22). For example, we observed multiple CUX1 fusions28

in a patient with sAML, complex karyotype, and TP53 muta-
tions. Similarly, we observed an ERG fusion29 in another patient
with sAML, complex karyotype, and TP53 mutation. After
review, we identified a total of 18 novel gene fusions in disease-
related genes after filtering, including seven patients with novel
rearrangements in the KMT2A gene family (Supplementary
Fig. 8B). These novel fusions would likely have altered treatment
decisions in several cases.

The only case where a clinically relevant chromosomal
rearrangement was detected by cytogenetics, but was not detected
by RNA-Seq was a MECOM (EVI1)-RPN1 fusion representing an
inv(3) karyotypic rearrangement. This case was not recovered
since the fusion breakpoint occurs downstream of both genes30.
Since inv(3) rearrangements induce aberrant expression of
MECOM by relocating a GATA2 enhancer sequence, we
compared the relative expression of these genes (Fig. 2B). The
relevant case exhibited the expected pattern of elevated MECOM
expression, as did another MECOM-rearranged sample. High
MECOM expression was also observed in KMT2A-family rear-
ranged AMLs, as noted previously31,32 (Supplementary Data 23).
A similar pattern was observed in the TCGA LAML cohort
(Supplementary Data 24). These findings indicate that MECOM
rearrangements can be detected using expression analysis to

identify cases with high MECOM expression, but which lack
KMT2A-family rearrangements.

We further evaluated the accuracy of our pipeline for two other
clinically relevant SVs: internal tandem duplications (ITDs) in
FLT3 (Supplementary Figs. 8C, D) and partial tandem duplica-
tions (PTD) in KMT2A (MLL). We observed complete analytic
sensitivity (33/33 positive results recovered) for FLT3-ITD
detection, and also observed ten novel FLT3-ITD calls in cases
where a prior PCR-based assay showed a negative result. These
novel events were validated by panel sequencing (eight cases) or
manual review (two cases), and consisted mainly of events with
very low estimated burdens (Supplementary Fig. 9). Although
low- and high-burden FLT3-ITDs are thought to confer differing
risk status33, we did not observe a difference in outcomes for
patients between low and high allele fraction FLT3-ITD variants
(Supplementary Fig. 10). We also observed ten KMT2A (MLL)
PTD events, which are not detectable by standard clinical assays,
but are crucial for proper assessment of patient risk status34. In
five of these cases, detection of the PTD event resulted in a change
of patient stratification from intermediate to adverse by ELN
guidelines5.

Gene expression signature—AML prognostic score (APS).
Having validated the RNA-Seq assay as an improvement upon
current clinical assay performance, we next sought to derive a
gene expression signature that could be used to improve risk
stratification for a broad spectrum of AMLs. We used least
absolute shrinkage and selection operator (LASSO) regression35

to derive a 16-gene expression signature, which we named the
APS (Fig. 3A, Supplementary Data 25). This model included both
genes with previously described leukemic associations, such as
CD10936, and genes with previously undescribed leukemic asso-
ciations. The APS value was strongly associated with overall
survival in the AML PMP exploratory cohort (HR= 5.46, p=
4.57e−13, Fig. 3B). To validate the utility of the gene expression
signature, we applied the APS to two separate validation cohorts,
observing a strong association with overall survival in both the
TCGA LAML (HR= 2.52, p= 2.48e−06, Fig. 3C) and Beat AML
(HR= 2.43, p= 1.88e−06, Fig. 3D) cohorts. We then tested the
utility of the APS signature in a prospective local cohort, again
observing a strong association with overall survival (HR= 2.97,
p= 0.00676, Fig. 3E). Interestingly, APS was also predictive in a
pediatric AML cohort21 (HR= 2.16, p= 0.00115, Fig. 3F). The
APS value also appears robust to changes in library preparation
protocol, as matched libraries prepared using ribo-depletion
protocols showed well-correlated gene expression values for the

Fig. 2 Structural variation analysis. A Number of structural variation events detected by cytogenetics analysis vs. RNA-Seq fusion detection. B z-scaled
gene expression of GATA2 and MECOM in the AML PMP exploratory patient cohort. MECOM- (red) and KMT2A-related (blue) structural variants are
colored. The dashed horizontal line indicates the threshold of z≥ 3 for MECOM outlier expression.
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signature genes (for ribo-depleted libraries with good mapping
rates, Supplementary Fig. 11).

It has previously been demonstrated that the LSC17 score,
based on the expression of 17 genes linked to leukemic stem cells
(LSCs), can be used to identify AML cases with poor prognosis
and treatment resistance10. We calculated LSC17 scores for each
of the de novo AML (including favorable-risk cases), tAML, and
sAML samples, and observed that samples with above-median
scores (within each cohort) had significantly worse survival
outcomes in the AML PMP (HR= 1.99, p= 0.000995), TCGA
LAML (HR= 1.86, p= 0.00116), and Beat AML (HR= 1.69, p=
0.00324) cohorts. However, in each case, the hazard ratio for the
APS model was higher than the LSC17 model. In comparing the
APS values and LSC17 scores, we observed that most patients had
the same high/low status for both markers (AML PMP: 66.2%,
TCGA LAML: 69.9%, Beat AML: 63.8%, Supplementary Fig. 12,
Supplementary Data 26). In multivariate survival models
including ELN risk category and either the APS value or
LSC17 score, we saw that the APS value was associated with a

larger hazard ratio and stronger significance in both the AML
PMP (APS: HR= 3.6, p= 5.76e-06, LSC17: HR= 1.63, p=
0.0235) and TCGA LAML (APS: HR= 1.98, p= 0.00567, LSC17:
HR= 1.46, p= 0.0582) cohorts (Supplementary Fig. 13).

Expression-based stratification. To determine whether the
addition of gene expression information could improve AML risk
stratification, we analyzed the contributions of clinical and
molecular predictors in the AML PMP exploratory cohort using
univariate survival analysis (Fig. 4A, Supplementary Data 27).
Older patients (age ≥ 60 at diagnosis) had very poor outcomes
(HR= 3.11, adj. p= 1.32e−05), while the remaining clinical
variables were non-significant. We observed a strong association
between the presence of a KMT2A-related fusion or PTD with
poor outcomes (HR= 3.71, adj. p= 6.13e−05), and common
molecular alterations such as NPM1 and FLT3-ITD showed the
expected positive and negative associations with outcome5. TP53
mutations (HR= 4.59, adj. p= 0.00163) showed a strongly
adverse effect as previously reported37.
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Fig. 3 Training and validation of the AML prognostic score (APS) gene expression signature. A APS model coefficients. The y-axis indicates the genes
making up the APS set, with the x-axis indicating the model coefficients. B–F Survival plots for the AML PMP (B, n= 154), TCGA LAML (C, n= 173), Beat
AML (D, n= 293), AML PMP Prospective (E, n= 42), and TARGET pediatric AML (F, n= 156) cohorts, for above-median and below-median values of the
APS value within each cohort. Dashed lines indicate time to median survival. Log-rank p values are indicated for each cohort.
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The expression level of several genes has been previously
described as having prognostic relevance for AML, including
GPR5638, BAALC39, MN140, MECOM8,31, and FLT313. We
included continuous z-scaled expression of these genes (Supple-
mentary Fig. 14), in addition to the APS and LSC17 multigene
expression signatures in the univariate analysis. Patients with
above-median APS values had the highest observed hazard ratio
(HR= 5.46, adj. p= 1.74e−11). We also observed significant
effects of above-median LSC17 expression (HR= 1.99, adj. p=
0.0063), MECOM expression (HR= 1.4, adj. p= 0.000392), and
GPR56 expression (HR= 1.27, adj. p= 0.0401). We observed
similar results in both the TCGA LAML (Fig. 4B) and Beat
AML cohorts (Fig. 4C). In these validation cohorts, the highest
hazard ratios were associated with age, TP53 mutations, and high
APS values.

To re-stratify the patient cohorts, we first used ELN criteria5

deriving information only from the RNA-Seq assay (ELN-RNA
stratification, Supplementary Fig. 15, Supplementary Data 28) to
stratify the patient cohorts into favorable-, intermediate-, and
adverse-risk groups. We chose to use data from the RNA-seq
assay rather than from standard clinical testing, because our data
above indicate that the RNA-seq assay was more accurate in
identifying fusions and relevant pathogenic variants, and thus
would provide for more robust stratification. For this stratifica-
tion, we considered outlier MECOM expression to be an adverse
prognostic marker, in lieu of detecting inv(3) rearrangements. We
then divided the patient cohorts into terciles based on APS value,
noting that the APS values for favorable-, intermediate-, and
adverse-risk patients showed a significant increase with increasing

risk status (Fig. 4D). We then used these APS tercile values to re-
stratify the patients as follows: patients with first-tercile (low-risk)
APS values were stratified as favorable-risk, patients with second-
tercile APS values retained their ELN-RNA stratification, and
patients with third-tercile (high-risk) APS values were stratified as
adverse-risk.

In the AML PMP cohort, 34 of 154 (22.1%) patients were re-
stratified (Fig. 5A). As expected, the number of intermediate-
risk patients in the ELN-RNA-APS model was reduced—from
38 in the ELN-RNA model to 13 in the ELN-RNA-APS model.
Six patients moved from the favorable-risk group to adverse—a
tAML case with inv(16) cytogenetics, and five other cases
with NPM1 mutations. The four cases that moved from the
intermediate to favorable categories all had long survival
durations, and three of the four carried both NPM1 and
FLT3-ITD mutations. Twenty-one cases were moved from the
intermediate to adverse risk groups. This set of patients was
characterized by tAML and sAML disease, and several normal-
karyotype AML patients with no detected fusions or alterations
(all with very poor outcomes). Finally, three patients transi-
tioned from the adverse to favorable category—these patients
had either KMT2A-PTD alterations or a NUP98-KMT2A gene
fusion. Notably, the survival curves for the ELN-RNA-APS
model were not different from the ELN-RNA model, indicating
that the patients re-stratified away from intermediate status
were accurately re-assigned (Fig. 5B–C).

We then applied the same models to the TCGA LAML and
Beat AML cohorts (Fig. 5D–I). In both validation cohorts, we
observed a similar pattern: the number of intermediate-risk
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patients was reduced, while the outcomes for the newly
assigned adverse-risk and favorable-risk patients were quite
similar to the ELN-RNA model. In the TCGA LAML cohort
(Fig. 5D), 43 of 173 (24.9%) cases were reassigned, while in the
Beat AML cohort (Fig. 5G), 74 of 293 (25.3%) were reassigned.
Re-stratified cases were similar in nature to those described in
the AML PMP cohort, with similar survival results. Altogether,
in all three cohorts, the addition of expression information
in the ELN-RNA-APS stratification model provided a clear
stratification improvement over the standard model using ELN
criteria alone.

To determine the impact of including clinical karyotyping
information instead of the purely RNA-Seq based stratification
models, we generated alternate patient stratification models
which used the diagnostic karyotype information rather than
gene fusion data as the source of SV information (Supplementary
Fig. 15). While 22/154 cases were discrepant between the
stratification models relying on molecular alterations alone,
applying the APS re-stratification reduced the number of
discrepancies to 9/154. Of these nine cases, two were discrepant
due to cryptic KMT2A-family fusions observed in the RNA-Seq
data (and so were identified as adverse by the RNA-Seq based
models)—these patients both showed very poor outcomes (mean
survival time of 22 weeks). The remaining seven were discrepant
due to rare cytogenetic abnormalities without corresponding gene
fusion events (and so were identified as adverse by the karyotype-
based models)—these patients showed better outcomes (median
survival time of 111 weeks). Though the number of cases is low,
these results suggest that including diagnostic karyotyping
information would not necessarily improve the RNA-Seq based
stratification model.

Pathway analysis and differential expression analysis. To
demonstrate the utility of the transcriptome-based assay and gene
expression signature for therapy selection, we first used Ingenuity
Pathway Analysis (IPA)41 and Gene Set Enrichment Analysis
(GSEA)42 to identify differentially activated pathways between
patients with first-tercile (low-risk) and third-tercile (high-risk)
APS values, excluding acute promyelocytic leukemia (APL)
patients. In the IPA analysis, we observed results consistent with
dysregulation of molecules involved in integrin, chemokine, and
cytokine signaling in the high-risk group (Fig. 6A). We performed
a similar analysis using GSEA (with the Reactome43 database of
pathways) and saw similar results: integrin and chemokine sig-
naling pathways were strongly enriched across all three patient
cohorts in the high-risk group (Fig. 6B). To identify potentially
targetable molecules from the pathway enrichment results, we
analyzed molecules that recurred across multiple enriched path-
ways or gene sets. This analysis revealed integrins (e.g., ITGB3,
ITGA2B), focal adhesions and cytoskeletal rearrangements (e.g.,
PTK2,MYLK,MYL9), SRC/RAS signaling components (e.g., SRC,
RASD1, RASGRP1), chemokines (e.g., CXCL1, CCR4, CXCL3),
and PI3K/AKT/MTOR signaling (e.g., AKT3) as being some of
the key dysregulated molecules in third-tercile APS patients
(Supplementary Fig. 16).

To further analyze the biological mechanisms underlying the
differences between patients with low and high APS values, we
performed differential expression analysis (Fig. 7). We observed
large differences for the APS genes CD109, CALCRL, and
TMEM273. Interestingly, CD109 was previously identified as being
upregulated in RUNX1-mutated AMLs44, and CALCRL has also
recently been described as being over-expressed in the immature
CD34+CD38− compartment of AML patient marrow45. Previously
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described genes with prognostic implications in AML such as
GPR5638 and MECOM8,31 were also consistently upregulated in the
third-tercile set of patients. Among the most downregulated genes,
we observed TRH (previously described as being associated with
t(8;21) AML)46, IL5RA, and the heme peroxidases LPO and MPO.

As a proof-of-principle for using transcriptome-based testing
for therapy selection, we chose to focus on integrin signaling via
FAK. In particular, we observed that ITGB3 and PTK2 (which
encodes FAK), were highly expressed in third-tercile APS patients
in all three cohorts, and were central molecules in many of the
enriched pathways. FAK has been previously characterized as a
therapeutic target in various cancers47–49, while ITGB3 has been
demonstrated to be a vulnerability in some murine leukemias50.

Dysregulated integrin signaling in high-risk AML. Based on the
pathway and differential expression analysis, we sought to
determine whether the high-risk AML cases with dysregulated
integrin signaling were characterized by specific genetic lesions.
In all three cohorts, we observed a significant concentration of
RUNX1 or TP53 mutation in patients with elevated expression of
PTK2 (Fig. 8A). In addition, elevated expression of PTK2 often
occurred in patients with high APS values, and with sAML or
tAML (Supplementary Fig. 17). Interestingly, high expression of
PTK2 was not associated with FLT3-ITD mutation, indicating
that this overexpression was associated with a subset of high-risk
AML cases, rather than all high-risk AML. We also observed,
using data from the AML Proteome Atlas51, that FAK protein
expression was strongly correlated with the expression of several
other proteins involved in focal adhesions, including SRC, ITGB3,
and ITGA2 (Fig. 8B). In addition, protein expression of FAK was
significantly higher in patients with RUNX1 mutation, and also
elevated (non-significantly) in patients with TP53 mutation
(Fig. 8C), but decreased in patients with FLT3 mutations, con-
firming that the observations in the RNA-Seq data were also
present at the protein level.

We then sought to test whether inhibition of FAK in cell line
model systems could be an effective therapeutic strategy for
RUNX1- or TP53-mutated cells. First, in the MDSL cell line
model52,53, we observed that CRISPR-mediated inactivation of
RUNX1 or TP53 led to elevated FAK expression and increased
sensitivity to the FAK inhibitor defactinib (Supplementary
Fig. 18). Next, we tested the AML cell lines KG1a and THP-1,
following shRNA-mediated RUNX1 knockdown. Depletion of
RUNX1 reduced the levels of RUNX1 protein and induced
levels of FAK (Fig. 8D). RUNX1 knockdown sensitized cells to
inhibition by the FAK inhibitors VS-4718 and defactinib
(Fig. 8E–F), suggesting that these inhibitors may be efficacious
in AML cases with loss-of-function RUNX1 and possibly TP53
mutations.

Together, these results demonstrate a rationale for additional
testing of FAK inhibitors in AML patients with RUNX1 or TP53
mutation. Further, our analyses revealed that some APS-high
cases that did not exhibit a RUNX1 or TP53 variant also showed
increased PTK2 expression, suggesting that transcriptome-based
testing, in addition to better risk stratification, could permit better
selection of therapies for myeloid malignancies. In the meantime,
our approach reveals potential genetic variant biomarkers that
could assist in selecting AML patients for FAK inhibitor clinical
trials in AML.

Discussion
We compared RNA-Seq to WES and WGS-based approaches and
found RNA-Seq to be superior for clinical assessment of myeloid
malignancies. The RNA-Seq assay was capable of recovering
(either directly or indirectly) all the clinically relevant chromo-
somal translocations and inversions in the exploratory patient
cohort, as well as identifying novel translocations. The RNA-Seq
assay showed improved accuracy for recovering FLT3-ITD events
at low VAF. We also observed that, rather than suffering com-
pared to WES for detection of clinically relevant SNV and short
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indel variants, the RNA-Seq assay had higher sensitivity (for
coding regions in myeloid-relevant targets). Our validation ana-
lyses demonstrated that the reproducibility and analytic validity
of RNA-Seq meet the necessary standards for clinical imple-
mentation. While not all variants are expressed in bulk RNA-Seq
data54, clinically relevant driver mutations are invariably present.
Due to the high sensitivity of the assay for detection of alterations
in FLT3 and IDH1/IDH2, the RNA-Seq assay could be used to
accurately assign patients to therapies targeting those genes.
Indeed, since the RNA-Seq assay provides a wealth of additional
information about the size, breakpoints, and expression level of
FLT3-ITD events (compared to PCR- or panel-based assays), the
assay could be used to prospectively determine the relationship
between these parameters and response to FLT3 inhibition.

Through expression-signature-based approaches, we saw that
incorporation of gene expression information offers substantial

benefits in terms of identifying lower- and higher-risk patients,
and the potential for identifying patients who may respond to
specific therapies. In particular, the APS value is a hazard indi-
cator of similar magnitude to TP53 mutation, with high values
indicating a very poor prognosis. Intriguingly, the APS signature
was also strongly prognostic for overall survival when applied to
pediatric AML cases, suggesting that even though the mutational
spectra are somewhat different between adult and pediatric AML,
similar biological pathways drive AML in children and adults.
The APS signature outperformed the LSC17 score with respect to
predicting outcome, and there are at least three potential expla-
nations for this. First, the improved performance of the APS
signature may be due to the use of the entirety of the tran-
scriptome to generate the model, thus allowing for the capture of
cell nonautonomous signals from the microenvironment, as
opposed to the LSC17 score, which is based solely on a leukemic
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Fig. 8 Correlation of PTK2 expression with specific mutations. A Samples from each cohort ranked by z-scaled expression of PTK2. The upper
annotation plot for each cohort indicates the presence of selected mutations. Indicated p values are for Kruskal-Wallis tests comparing continuous
PTK2 expression against presence or absence of specific mutations. B Top highly correlated proteins with FAK. r2 values indicate Pearson correlation
coefficients. C Relative FAK protein expression in patients with and without mutant RUNX1, TP53, or FLT3 in the AML Proteome Atlas. Two-sided t-test
p-values are indicated for each comparison. D Western blot assessment of FAK and RUNX1 expression in KG1a and THP-1 cell line derivatives.
Cell lines were treated with either (C) control shRNA, (1) shRUNX1-1, or (2) shRUNX1-2, with molecular weights quantified in kilodaltons.
Quantifications scaled to controls are shown as bar plots. Each blot represents a single experiment, with the exception of RUNX1 in THP-1, which was
performed twice with similar results. E, F Colony-forming cell assay for AML cell lines with short-hairpin RNAs against RUNX1, and treated with FAK
inhibitors VS-4718 (0.5 μm for KG1a, 1.5 μm for THP-1) or Defactinib (1 μm for both cell lines). The indicated p values correspond to two-sided t-tests
for each comparison.
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stem cell signature. Second, recent studies have demonstrated the
potential for mature leukemia cells to de-differentiate and re-gain
stem-like properties55. Since the APS signature was trained
on bulk peripheral blood or bone marrow patient material,
it could capture signals identifying those cases with nascent de-
differentiation potential that are likely to progress. Third, since
the APS signature was trained using RNA-Seq data rather than
microarray data, it might benefit from the improved resolution of
RNA-Seq. Our approach highlights the benefit of incorporating
gene expression analysis into the clinical assessment of myeloid
malignancies, and the utility of integrative analysis of genomic
data for stratification and therapy selection. In the near term, this
clinically validated RNA-Seq assay would significantly improve
the stratification of patients to stem-cell transplant.

Our work also serves as a proof-of-concept for the use of a
clinical RNA-Seq assay to identify activated or inactivated path-
ways, potentially enabling predictions about the susceptibility of
AML patients to specific targeted therapies. In particular, we
show the correlation of integrin pathway activation with RUNX1
or TP53 variants, but not with other high-risk AMLs expressing
FLT3-ITD variants. Given the extremely poor outcome of AML
with either of these mutations, and the lack of current therapies
directed against these variants, our data suggest a potential role
for FAK inhibitors in treating AML with RUNX1 and possibly
TP53 variants. However, we also show that PTK2 and integrin
activation occurs in cases lacking RUNX1 or TP53 variants, which
arguably makes RNA-Seq the clinical assay of choice in high-risk
AML. We suggest that a clinical RNA-Seq assay could also be
adapted for routine clinical use to identify patient-specific ther-
apeutic options at diagnosis using the previously analyzed cohorts
as comparators.

Methods
Study design. We generated sequence data from an exploratory cohort of 176
patients, generating RNA-Seq libraries for all patients (Fig. 1A, Supplementary
Fig. 1). The exploratory patient cohort spanned a range of myeloid malignancies,
including AML, MDS, sAML, tAML, and tMDS (Supplementary Data 1–4). We
sequenced material from patient bone marrow, peripheral blood, or leukapheresis
samples collected at diagnosis. For most samples, prior clinical test results were
available (though there were many cases of missing data, and not all patients
received the same tests as the standard of care evolved through time). The
exploratory RNA-Seq libraries were prepared in two separate batches, referred to as
‘batch one’ and batch two’. To compare RNA-Seq against alternate technological
platforms, we generated WGS data for 18 samples and WES data for 89 samples
(Supplementary Data 2).

We then constructed an informatic pipeline to detect and annotate SVs, SNVs,
short indels, and gene expression counts for all samples (as appropriate for each
platform, Supplementary Fig. 1B). SVs were assessed in an unbiased fashion, while
SNVs and short indels were inferred for a set of curated genes with known clinical
relevance in myeloid malignancies (Supplementary Data 9). For the SV and SNV/
short indel analyses, we used the entire exploratory batch of 176 cases, while for
subsequent gene expression and stratification analyses we used only the 154 AML,
sAML, and tAML cases, as these analyses were intended to be AML-specific
(Fig. 1A). To determine the reproducibility of the analysis, we prepared and
sequenced material from a validation cohort consisting of repeated patient samples
and commercially obtained cell line material, prepared as technical replicates in
triplicate from single RNA extractions (Supplementary Data 5, 14).

We also re-analyzed samples from the TCGA LAML19 and Beat AML20 cohorts
(Supplementary Data 7-8). Sample details for the TCGA LAML cohort were
retrieved from the National Cancer Institute Genomic Data Commons (GDC)
[https://portal.gdc.cancer.gov/projects/TCGA-LAML], cBioportal [https://www.
cbioportal.org/study/summary?id=laml_tcga_pub], the Broad GDAC Firehose
[https://gdac.broadinstitute.org], and from the Tumor Fusion Gene Data Portal
[https://tumorfusions.org]56. For data from the Beat AML project, see the Data
Availability section of Tyner et al20. For both the TCGA LAML and Beat AML
cohorts, we used the published SNV, short indel, and SV calls, but performed gene
expression analyses using the pipeline described below. To further evaluate the
derived gene expression signature, we analyzed data from an additional local
prospective cohort of 42 cases (Supplementary Data 6). In order to determine
whether the APS was applicable to pediatric AML, we analyzed data from the
TARGET pediatric AML project21, which was also retrieved from the GDC
[https://portal.gdc.cancer.gov/projects/TARGET-AML]. Matched ribo-depleted
libraries for four cases were prepared by the Centre for Epigenome Mapping

platform, available via European Genome-Phenome Archive Study
EGAS00001000552 [https://www.ebi.ac.uk/ega/studies/EGAS00001000552].

Ethics approval and consent to participate. Peripheral blood, bone marrow, and
leukapheresis samples were obtained from consenting patients via the Hematology
Cell Bank of British Columbia [http://hematology.med.ubc.ca/research/
hematology-cell-bank-of-bc/]. Ethics protocols were approved by the BC Cancer
Research Ethics Board, under protocols H04-61292, H09-01779, H11-01484, and
H13-02687.

RNA extraction, library construction, and sequencing. RNA was manually
extracted from bone marrow or peripheral blood using Qiagen Allprep kits. Total
RNA samples were checked using Agilent Bioanalyzer RNA nanochip or Caliper
GX HT RNA LabChip. Samples that passed quality check were arrayed into a 96-
well plate. Following this, polyA+ RNA was purified using the 96-well MultiMACS
mRNA isolation kit on the MultiMACS 96 separator (Miltenyi Biotec, Germany)
from total RNA with on column DNaseI-treatment as per the manufacturer’s
instructions. The eluted polyA+ RNA was ethanol precipitated and resuspended in
10 µL of DEPC-treated water with 1:20 SuperaseIN (Life Technologies, USA).

Double-stranded cDNA was synthesized from the purified polyA+ RNA using
the Maxima H Minus First Strand cDNA Synthesis Kit (Thermo Fisher Scientific
Inc., USA) and random hexamer primers. Quality passed cDNA plate was
fragmented by Covaris LE220 for 2 × 65 s at duty cycle of 30%. The paired-end
sequencing library was prepared following Canada’s Michael Smith Genome
Sciences Centre paired-end library preparation plate-based library construction
protocol on a Biomek FX robot (Beckman-Coulter, USA). Briefly, the cDNA was
subject to end-repair, and phosphorylation by T4 DNA polymerase, Klenow DNA
Polymerase, and T4 polynucleotide kinase respectively in a single reaction, followed
by cleanup using magnetic beads and 3′ A-tailing by Klenow fragment (3′ to 5′ exo
minus). After cleanup, adapter ligation was performed. The adapter-ligated
products were purified using magnetic beads, then UNG digested and PCR-
amplified with Phusion DNA Polymerase (Thermo Fisher Scientific Inc., USA)
using Illumina’s PE primer set in a single reaction, with cycle condition 37 °C
15 min, 98 °C 1min followed by 13 cycles of 98 °C 15 s, 65 °C 30 s and 72 °C 30 s,
and then 72 °C 5min. The PCR products were purified and size selected using
magnetic beads, checked with Caliper LabChip GX for DNA samples using the
High Sensitivity Assay (PerkinElmer, Inc. USA) and quantified with the Quant-iT
dsDNA HS Assay Kit using Qubit fluorometer (Invitrogen). Libraries were
normalized and pooled. The final concentration was determined by Qubit dsDNA
HS Assay for Illumina Sequencing.

For the first exploratory cohort RNA-Seq batch, we sequenced a single library
per Illumina HiSeq 2000 lane, using 2 × 75 bp reads, which resulted in ~400 million
reads per library. Ninety-two samples were initially submitted for library
construction, of which 89 were successfully prepared and sequenced. For the
second exploratory cohort RNA-Seq batch, we sequenced two libraries per Illumina
HiSeq 2000 lane, using 2 × 75 bp reads, which resulted in ~200 million reads per
library. Ninety-two samples were initially submitted for library construction, of
which 87 were successfully prepared and sequenced. For the validation and
prospective RNA-Seq cohorts, we sequenced two libraries per Illumina HiSeq 2000
lane, using 2 × 100 bp reads, which resulted in ~200 million reads per library. For a
set of three samples, we sequenced two HiSeq lanes. Seventy-one samples were
successfully prepared and sequenced for the validation cohort, and 42 for the
prospective cohort. For both the validation and prospective cohorts, a modified
strand-specific RNA-Seq library construction protocol was used.

DNA extraction, library construction, and sequencing. DNA was extracted from
bone marrow or peripheral blood using Qiagen Allprep kits. Genome libraries with
fragment size ranges of ~400 bp were constructed on a SPRI-TE robot (Beckman
Coulter, USA) according to the manufacturer’s instructions (SPRIworks Fragment
Library System I Kit, A84801). Briefly, 1 µg of genomic DNA in a 60 µL volume,
and 96-well format, was fragmented by Covaris E210 sonication for 30 s using a
duty cycle of 20% and intensity of 5. Up to 10 paired-end genome sequencing
libraries were prepared in parallel using the SPRI-TE 300-600 bp size-selection
program. Following completion of the SPRI-TE run the adapter-ligated library
templates were quantified using a Qubit fluorometer. Five nanograms of adapter-
ligated template was PCR amplified using Phusion DNA Polymerase (Thermo
Fisher Scientific Inc. USA) and Illumina’s PE indexed primer set, with cycle con-
ditions: 98 °C for 30 s followed by 10 cycles of 98 °C for 15 s, 62 °C for 30 s and
72 °C for 30 s, and a final amplicon extension at 72 °C for 5 min. The PCR products
were purified using Ampure XP SPRI beads, and analyzed with Caliper LabChip
GX for DNA samples using the High Sensitivity Assay (PerkinElmer, Inc. USA).
PCR products of the desired size range were purified using gel electrophoresis (8%
PAGE or 1.5% Metaphor agarose gels in a custom built robot) and the DNA quality
was assessed and quantified using an Agilent DNA 1000 series II assay and Quant-
iT dsDNA HS Assay Kit using Qubit fluorometer (Invitrogen), then diluted to
8 nM. The final concentration was verified by Quant-iT dsDNA HS Assay prior to
Illumina Sequencing.

Two hundred and fifty nanograms of the constructed genome libraries were
used to capture the exome using Agilent SureSelect Human All Exon (50Mb)
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capture probes. 89 exome libraries were sequenced with paired-end 100 bp reads
(1 library per HiSeq 2000 lane). 20 WGS libraries were sequenced with paired-end
100 bp reads on the Illumina HiSeq 2000 instrument, sequencing three lanes
per sample.

Bioinformatics pipeline overview. All samples were processed using customized
in-house bioinformatics pipelines, as well as the bcbio-nextgen pipeline framework
[http://bcbio-nextgen.readthedocs.io/]. The WGS and WES data was initially
processed by the Bioinformatics Core at Canada’s Michael Smith Genome Sciences
Centre, Vancouver, Canada, while the RNA-Seq data was processed by the authors.
All variant-calling and tertiary analyses were performed by the authors.

Read alignment and quality control. WGS and WES sequence data were aligned
to the hg19 human reference genome using BWA (version 0.5.7, ‘aln’ and ‘sampe’
subcommands)57, with duplicates marked using Picard [http://broadinstitute.
github.io/picard/]. RNA-Seq data was aligned using GSNAP (version 2013-10-
28)58, using the hg19 reference and with command-line arguments ‘–novelsplicing
1 –max-mismatches 10 –use-splicing’.

We used RNA-SeQC (version v1.1.8)59 to gather quality metrics for the RNA-
Seq libraries. To examine the range of variation and identify outliers in our data set,
we constructed Levey-Jennings charts60 for all the metrics provided by RNA-SeQC
(Supplementary Fig. 2). These charts identified several samples which were
consistent outliers (metric values exceeding plus or minus two standard deviations
from the mean). From the available RNA-SeQC metrics, we selected six key
variables (number of mapped reads, mapping rate, rRNA rate, intragenic rate,
mean fragment length, and exonic rate). We then failed all libraries which had
outlying values (plus or minus two standard deviations from the mean) for three or
more of those variables. The failed validation cohort libraries all corresponded to
cases where we attempted to re-sequence patient material, starting from limited
amounts of input RNA. Of the original 176 libraries in the exploratory cohort,
three samples were failed, while six samples from the validation cohort were failed
due to poor library quality. The failures were generally associated with poor input
material quality as most of the failed libraries came from attempts to re-generate
additional sequencing libraries from older material.

SNV and small indel detection. We used the bcbio-nextgen pipeline (version
1.0.1) to call variants using three callers: VarScan (version 2.4.2)24, GATK Hap-
lotypeCaller (version 3.7)22, and FreeBayes (version 1.1.0)23. In all cases, the
variant-calling region was restricted to the clinical targets of interest (Supple-
mentary Data 9). For these targets, we either selected all coding exons, or specific
‘hot-spot’ targets to assess for SNVs and short indels. All variant callers were
configured as specified by the bcbio pipeline software. In addition to the three
variant callers, we used the bcbio ensemble tool, configured to report a consensus
variant file containing all variants called by at least two callers, without being
filtered by any single caller. We used vt (version 0.57)61 to decompose multiallelic
calls, and to normalize indel positions. All variants were then annotated using
snpEff (version 4.3 g)62, with HGVS nomenclature generated using a single chosen
transcript model for each gene. We used gemini (version 0.20.0)63 to further
annotate variants against reference data sets including COSMIC (version 68))64,
ExAC (r0.3) and gnomAD (r2.0.1)65, ClinVar (v20160502)66, and CADD
(version 1.0)67.

We first determined the clinically relevant SNVs and short indel alterations for
each patient. Briefly, from the unfiltered variant calls, we filtered coding variants
with moderate ExAC65 population frequencies (≥0.01 for synonymous variants,
≥0.1 for missense variants), and recurrent low-quality and artefactual variants. We
validated the presence of selected mutations (for 157 cases where the material was
available) using mononuclear cells (153 cases) or red cell lysed marrow cells (four
cases), and determined the somatic status for variants where patient material was
available (147 cases) using cultured marrow fibroblasts (107 cases) or sorted CD3+

T cells (40 cases) from the same patient specimen, using targeted sequencing
experiments. This validation was carried out by Canada’s Michael Smith Genome
Sciences Centre, with PCR primer design and data reviewed by the authors.

Since the raw call set for the RNA-Seq libraries contained many splice-
alignment artefacts, we filtered all variants annotated as intronic or in splice donor/
acceptor sites. All calls from the ensemble set were retained, as well as selected calls
reported by only a single caller, as determined during the report review. Additional
recurrent artefactual variants in the RNA-Seq data were manually reviewed and
removed if they were determined to be both recurrent and the result of splice-
alignment artefacts, polyA/T runs, or poor base quality. For some cases where
complex indel calls were reported with slight nomenclature differences between
callers, coordinates were manually reviewed and merged if they reported identical
events (e.g., for an indel in CEBPA with calls from GATK-haplotype
(c.283_288delGTGGGC and c.292delA) and FreeBayes (c.283_289delGTGGGCC
and c.292A > C), the nomenclature was adjusted to allow the two calls to be
counted as concordant with each other). We additionally labeled all variants that
were either (a) synonymous with adjusted ExAC population frequencies ≥0.01 or
(b) missense variants with adjusted ExAC population frequencies ≥0.1 as benign.

To compare variant call sets between matched RNA-Seq and WES or WGS
libraries, we generated merged variant sets for each relevant library pair, using the

ensemble call set. We used bedtools (version 2.24.0)68 and VarScan2 (v2.4.2)24 to
generate coverage depth and the observed non-reference allele frequency across all
SNV targets (Supplementary Data 9). We used a coverage threshold of 50× for
reporting low coverage, and 100× for a warning threshold in the RNA-Seq data. In
addition, we used the single-caller calls for each caller and library to compare
differences between callers. For these comparisons, we considered sites with
<10-fold coverage to be effectively uncallable. For several sites in the RNA-Seq data
where the matched WES/WGS data indicated a potential missed call, we identified
an alignment issue in the pipeline that was addressed in a software update and so
did not consider these sites as discordant.

To analyze libraries from the validation cohort, we retained all calls from all
callers (i.e., keeping common synonymous variants), with the exceptions of known
recurrent artefacts, SNV calls near FLT3-ITD boundaries, and sites with coverage
<10-fold coverage (Supplementary Data 15). Note that for samples 157-18 and 213-
51, two of three replicates failed sequencing quality checks, therefore these samples
were excluded from further analysis. In the raw call set, we observed several false-
negative and false-positive calls that were due to low sequence coverage of the gene
of interest (which would be reported as uncallable by our standard procedure) or
one of eight recurrent spurious artefacts (which were added to a list of known
artefacts for the pipeline). For example, CEBPA expression is very low in the NIST
standard cell line NA1287869 (Supplementary Fig. 6) compared to patient material.
We thus filtered these calls from the dataset (Supplementary Data 15), and
examined the remaining true-positive, false-positive, and false-negative calls
(Supplementary Fig. 7). We calculated the number of true positive, false positive,
and false negative sites as the average among replicates for each cell line or repeated
patient sample. In addition, we calculated the coefficient of variation between
replicates in terms of the number of retained variant calls per replicate.

Structural variation. To detect inter- and intra-gene SVs, we performed de novo
assembly on all the RNA-Seq libraries, using Trans-ABySS (version 1.5.2)70 and
PAVfinder (versions 0.2.0 and 0.3.0)71. PAVfinder relied on GMAP (version 2014-
12-28)58 and BWAMEM (version 0.7.12-r1039)72 for contig-to-genome, contig-to-
transcript, and read-to-contig alignments. The parameters used for trans-ABySS
included assembly at three values of k (the kmer size used for assembly)—32, 52,
and 72. These three assemblies were merged before further analysis with PAV-
finder. We used custom R73 and Python tools to annotate all events with gene
expression estimates, to annotate calls with similar coordinates to each other, and
allow for annotation of known recurrent artefactual and common events.

We then filtered the raw event lists as follows. ‘Recurrent Artefact’ and
‘Recurrent Common’ events were identified based on manual review of recurrence
within the cohort, fusion properties, and literature review (Supplementary
Data 20), and were removed. We then collapsed similar events (i.e., events with the
same gene partners) into single events, and filtered out events matching any of
these criteria: minimal support (fewer than eight supporting reads), average TPM
expression value for the two fusion partners <2 or >130), inter-gene distance for
putative fusion partners on the same chromosome of <2 × 106 bp, or putative
fusions involving HBA2.

We then constructed a list of expected gene fusions present in the exploratory
cohort using the cytogenetics nomenclature and determined whether those events
were captured in the RNA-Seq data. To construct the set of novel gene fusions used
for patient stratification and downstream analysis, the set of fusion results was
further filtered by manual review, selecting gene fusions with strong supporting
evidence and/or genes previously known to be involved in myeloid malignancies
(Supplementary Data 21–22).

To further verify the presence of the reported gene fusions, we performed the
following additional validation steps. All of the retained fusions in disease-related
genes (Supplementary Data 21) were manually reviewed for supporting read
evidence in IGV. In addition, where copy-number array, WES, WGS, or gene panel
data was available, those data sources were also reviewed. Due to limited patient
material availability, validation of the remaining cases was not able to be
performed. This review identified two sets of fusion partners (t(5;12) IL31RA-
CTDSP2; t(X;Y) CD99P1-CD99) that were likely to be false-positive results—these
results were removed from downstream analysis.

The reference truth set for FLT3-ITD calls was constructed principally from
prior research testing results using a PCR-based assay. The complete set of
PAVfinder results for each RNA-Seq library was filtered for events annotated as
‘ITD’ or ‘ins’ (for insertion) within FLT3. Each event was then annotated with the
expression of FLT3 in transcripts per million (TPM). For each library in the
exploratory cohort where a reference call was available, we assessed whether the
PAVfinder output agreed or disagreed with the reference call. To estimate the
relationship between RNA-Seq evidence and the allelic fraction of detected FLT3-
ITD events, we performed linear regression analysis, modeling the observed VAF
from GATK HaplotypeCaller (for those ITD events that were captured by that tool
in the RNA-Seq and WES datasets) against combinations of spanning read support,
ITD size, median coverage over the FLT3 ITD region, and expression of FLT3. The
best model accuracy was obtained using only RNA-Seq VAF estimates, using a
linear model predicting FLT3-ITD VAF= (spanning reads * 0.293) + (median
FLT3 coverage * −0.0213) + 29.4. This regression was then used to estimate the
VAF for all detected FLT3-ITD events. We then dichotomized FLT3-ITD events
into ‘FLT3-ITD-low’ and ‘FLT3-ITD-high’ support, using a VAF cutoff of 0.33
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(corresponding to a mutant:wildtype allelic ratio of 0.5). For selected FLT3-ITD
events, we used panel-based sequencing to validate the events. For the remaining
cases, the detected events were reviewed manually using IGV74. To detect KMT2A-
PTD events, we filtered the complete event set for events annotated as ‘ins’, ‘ITD’,
or ‘PTD’, with either ‘gene1’ or ‘gene2’ annotated as KMT2A. Two low-evidence
ITD events were removed based on manual inspection. Again, we used panel-based
sequencing to confirm that two additional low-evidence calls were truly false-
positives in the initial RNA-Seq result set.

Gene expression signatures. Expression quantification was performed for all
RNA-Seq libraries using sailfish (version 0.9.0)75, using RefSeq gene models
downloaded in Gene Transfer Format from the UCSC genome browser on 2014-
08-21, with gene models from non-standard chromosome sequences removed.
Both isoform- and gene-specific quantifications were generated, and both raw
estimated counts, as well as transcripts-per-million (TPM) estimates were used in
downstream analysis. For the TCGA LAML and Beat AML cohorts, we re-
quantified gene expression using the same software and gene models.

From the raw, gene-level expression estimates, we filtered the data as follows
(calculating thresholds separately for each cohort). First, genes with median
expression ≤0 TPM were removed. Second, to normalize counts across samples, we
converted counts from TPM to log2(TPM+ 1) and applied quantile normalization
using the preprocessCore Bioconductor package (version 1.48.0)76. To visualize
and determine outlier status for single genes, we calculated z-scaled expression
estimates (where z ¼ ðx � μÞ=σ) for each gene by comparing the expression of that
gene in a particular sample against the range of expression for that gene across a
given patient cohort. For MECOM outlier analysis, we labeled all samples with z-
scaled expression ≥3 as high outliers. For other genes with known prognostic
relevance in AML (FLT3, GPR56, BAALC, MN1, and BCAT1), we used the z-scaled
expression values as continuous variables for survival modeling. We calculated
values for the LSC17 gene expression signature using the model coefficients
described by Ng et al.10, using the normalized, TPM-scaled expression estimates for
the AML PMP and TCGA LAML cohorts. We then dichotomized each cohort,
using the median LSC17 score within each cohort to define high and low scores.

We used the R glmnet package (version 4.0-2)35,77 to perform LASSO
regression to identify a subset of features that could be used to fit a Cox regression
model. We first filtered the retained gene set by restricting the set to genes with a
minimum expression of 0.5 (in log2(TPM+ 1) units) across the AML PMP, TCGA
LAML, and Beat AML cohorts. We initially used 10-fold cross-validation, using the
154 AML-like samples from the exploratory cohort as the training set, using
parameters “family= ‘cox’, maxit= 10000” to select the value for the λ parameter
with the minimum mean cross-validated error. We then used this λ value to extract
the final set of 16 genes and model coefficients (the APS gene expression signature,
Supplementary Data 25). We then used the ‘predict’ function within the glmnet
package to calculate model predictions (i.e., APS values) for each of the samples,
dichotomizing patients by the median value into ‘APS-High’ and ‘APS-Low’ sets.
APS values were applied to the TCGA LAML and Beat AML cohorts in a similar
manner (and dichotomized using the median within-cohort APS values).

Expression-based survival models. To derive revised models for AML stratifi-
cation that incorporated gene expression information, we first tested many
potential predictors in univariate Cox proportional hazards analyses (Supple-
mentary Data 27). To control for multiple testing, we adjusted the estimated p
values using the false-discovery rate (FDR) method78. To facilitate visualization, we
transformed the adjusted p values by calculating −10log10(adj. p), using a threshold
of 10 for significance (corresponding to an adjusted p value of 0.10). Since none of
the APL patients succumbed to the disease, we could not calculate a hazard ratio
for the t(15;17) alteration in the AML PMP cohort.

Patient stratification by standard and expression-based models. Initial patient
stratifications (ELN-RNA) were performed based ELN molecular guidelines5, modified
to incorporate equivalent information available through the RNA-Seq assay (Supple-
mentary Data 28). In addition, we included t(15;17) translocations as a favorable risk
marker, and PTD in KMT2A (MLL) as an adverse risk marker, based on their known
strong influence on AML outcomes6,34. For the ELN-RNA-APS model, we re-stratified
patients with first-tercile or third-tercile values for the APS value into the favorable and
adverse risk categories, respectively. In each case, custom R functions were written to
stratify patients based on the presence or absence of particular molecular markers. We
then determined the numbers of patients with agreeing or disagreeing risk stratifications
by the different criteria, and manually reviewed discordant cases. We estimated survival
outcomes for each patient stratification model using the Kaplan–Meier estimator, using
the R survival (version 3.2-7)79 and survminer (version 0.4.8)80 packages. To compare
the RNA-Seq-based stratifications with stratifications utilizing diagnostic karyotyping
information, we re-stratified the patients using karyotype information (rather than gene
fusion information), for the ELN-Cyto model, and applied the same APS rules to
generate the ELN-Cyto-APS model (Supplementary Fig. 15).

Pathway and differential expression analysis. We used IPA (IPA, December
2018 Release)41 to perform a Core Analysis separately for each cohort, retaining all
molecules meeting the significance and fold-change thresholds, with other analysis

parameters set to their default values. To compare enriched pathways across
cohorts, we ranked the pathways by the number of cohorts they occurred in, then
by the mean activation z-score (as calculated by IPA). We used GSEA (version
3.0)42 to perform gene-set enrichment analysis for selected pathway datasets
including the MSigDB hallmark gene set collection81, the Kyoto Encyclopedia of
Genes and Genomes (KEGG)82, Reactome43, the Gene Ontology resource83, and
Wikipathways84. For the GSEA analysis, we used sets of genes ranked by their fold-
change values as input, gene sets from MSigDB v6.2, and command-line arguments
‘-norm meandiv -nperm 1000 -scoring_scheme weighted -set_max 500 -set_min
15’. We also performed exploratory analyses using EnrichR (version 2.1)85. To
identify recurrently implicated molecules, we inspected the IPA enriched molecule
lists and GSEA leading edge genes from the significantly enriched pathways, and
identified molecules that occurred repeatedly across those pathways.

We performed differential expression analysis using DESeq2 (version 1.26.0)86,
comparing patients with first-tercile vs. third-tercile APS values from within each
cohort (removing APL patients bearing t(15;17) translocations). For the DESeq2
analysis, we used the raw expression count data, with all parameters set to their
default values. For considering genes to be significantly up- or downregulated for
downstream analysis, we used thresholds of FDR-adjusted p value of ≤0.1 and
absolute log2 foldchange ≥1 for all downstream analyses.

Proteomics data analysis. Proteomics data were retrieved from the AML Proteome
Atlas51. To identify proteins correlated with FAK protein expression, we calculated
Pearson correlation coefficients for FAK and all other proteins in the dataset, and
extracted the most highly correlated proteins. To compare FAK protein expression in
samples with different mutational status, we extracted RUNX1 and TP53 mutation
annotations from the experimental design, and plotted relative FAK expression between
samples with and without those mutations, using two-sided t tests to determine
significance.

Cell line experiments. The RUNX1- and TP53-knockout MDSL cell lines were
generated and confirmed in Martinez-Hoyer et al.53. For shRNA knockdown
experiments, the shRNA lentiviral constructs targeting human RUNX1
(shRUNX1#1 TRCN0000013660 and shRUNX1 #2 TRCN0000338427) were pur-
chased from MilliporeSigma. The pLKO.1 backbones were modified to express
EGFP in place of the puromycin resistance gene. Non-targeting shScramble in
pLKO.1 vectors expressing EGFP were used as controls. The shRNA Lentiviruses
were prepared in HEK293T/17 cells, as previously described53 and titres were
typically in the 109 transducing units/ml range. KG1a and THP1 cells were
resuspended in growth media at 5 × 105 cells/ml. Transduction was performed for
4–6 h in the presence of 8 µg/ml polybrene. After transduction, cells were washed
and expanded in growth media for 72 h, EGFP+ cells were further purified by
fluorescence-activated cell sorting.

For colony-forming cell assays (CFC), 500 lentivirus-transduced (GFP+) KG1a or
THP1 cells were plated in methylcellulose containing h-IL3, h-erythropoietin, h-GM-
CSF and h-SCF (H4434; StemCell technologies). CFC medium was mixed before
plating with FAK inhibitor or DMSO as control. The colonies were scored after
7–10 days.

Western blotting was done as previously described53: cells were pelleted and lysed in
RIPA buffer (25mM Tris, 150mMNaCl, 1% TX-100, 0.25% sodium deoxycholate, and
0.1% SDS), to which protease and phosphatase inhibitors were added. Cell extracts were
centrifuged at 16,000 × g at 4 °C, and the supernatant was boiled for 5min with
Laemmli buffer. Samples containing 20–50 μg protein were separated using SDS–PAGE
and transferred at 100V for 1 h to nitrocellulose membranes, which were subsequently
blocked using 5% milk or BSA in Tris-buffered saline with Tween-20 (20mM Tris, 137
mM NaCl, 0.1% Tween-20). Primary antibodies used were as follows: anti-RUNX1
(CST 4334, 1:1000), anti-FAK (CST 13009, 1:1000), anti-GAPDH (CST 2118, 1:5000).

For RT-qPCR, RNA was extracted using Qiagen AllPrep DNA/RNA mini kit
according to the manufacturer’s manual. For mRNA targets, cDNA was
synthesized using Maxima reverse transcriptase and random hexamer (Thermo
Scientific). RT-qPCR was performed using power SYBR green master mix (Thermo
Fisher Scientific), with the results normalized to HPRT1 expression. Primers used
for qPCR were as follows: PTK2_set 1 forward - GTCTGCCTTCGCTTCACG,
reverse - GAATTTGTAACTGGAAGATGCAAG, PTK2_set 2 forward GCGTCT
AATCCGACAGCAACA, reverse -CTCGAGAGAGTCTCACATCAGGTT, HPR
T1 forward TGACCTTGATTTATTTTGCATACC, reverse CGAGCAAGACGT
TCAGTCCT.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The sequencing and relevant clinical data have been deposited at the European Genome-
Phenome Archive under the accession EGAS00001004655. The data uploaded to EGA
includes all the RNA-Seq, exome, and WGS data for the exploratory, validation, and
prospective cohorts from the AML PMP. Access to the data will be granted upon request and
review by the BC Cancer Data Access Committee [https://www.ebi.ac.uk/ega/dacs/
EGAC00000000011]. The source data underlying all Figures and Supplementary Figures are
provided as a Source Data file. All the other data supporting the findings of this study are
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available within the article and its supplementary information files and from the
corresponding author upon reasonable request. Source data are provided with this paper.

Code availability
Source code supporting the analysis results are available in a public repository73 from
GitHub [https://doi.org/10.5281/zenodo.4411968].
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