Skip to main content
. 2021 May 1;13(1):27. doi: 10.1186/s12544-021-00486-2

Table 2.

Summary of binary logistic regression analysis for variables predicting whether an individual belongs to the group of people who purchase during the Coronavirus pandemic products online instead of in stores

Predictor ß SE P-value Exp(ß)
Constant −3.960 0.505 0.000*** 0.019
Gender (female) 0.483 0.157 0.002*** 1.621
Age (17 to 24 years old) 1.016 0.215 0.000*** 2.762
Living in urban area 0.349 0.169 0.039** 1.418
Previous experience with online shopping 2.079 0.457 0.000*** 7.994
Belongs to a risk group 0.467 0.236 0.048** 1.596
Car availability in the household 0.337 0.206 0.102 1.400
−2 Log-Likelihood

1005.315

χ2 = 70.863, df = 6, p < .001

R2 0.104

Significant levels: *** p < 0.01, ** p < 0.05