Skip to main content
. 2021 Apr 16;23(4):e22796. doi: 10.2196/22796

Table 7.

A comparison of our final University of Washington Medicine model and several existing models for forecasting future hospitalizations and emergency department (ED) visits of patients with asthma.

Model Prediction target Number of data instances Number of features the model adopted Classification algorithm Sensitivity (%) Specificity (%) PPVa (%) NPVb (%) AUCc
Our final UWM model Asthma hospital encounters 82,888 71 XGBoostd 70.2 90.91 10.45 99.51 0.902
Our Intermountain Healthcare model [23] Asthma hospital encounters 334,564 142 XGBoost 53.69 91.93 22.65 97.83 0.859
Loymans et al [9] Asthma exacerbation 611 7 Logistic regression e 0.8
Schatz et al [10] Asthma-induced hospitalization in children 4197 5 Logistic regression 43.9 89.8 5.6 99.1 0.781
Schatz et al [10] Asthma-induced hospitalization in adults 6904 3 Logistic regression 44.9 87 3.9 99.3 0.712
Eisner et al [11] Asthma-induced hospitalization 2858 1 Logistic regression 0.689
Eisner et al [11] Asthma-induced ED visit 2415 3 Logistic regression 0.751
Sato et al [12] Severe asthma exacerbation 78 3 Classification and regression tree 0.625
Miller et al [14] Asthma hospital encounters 2821 17 Logistic regression 0.81
Yurk et al [16] Lost day or hospital encounters for asthma 4888 11 Logistic regression 77 63 82 56 0.78
Lieu et al [2] Asthma-induced hospitalization 16,520 7 Proportional-hazards regression 0.79
Lieu et al [2] Asthma-induced ED visit 16,520 7 Proportional-hazards regression 0.69
Lieu et al [18] Asthma hospital encounters 7141 4 Classification and regression tree 49 83.6 18.5
Schatz et al [19] Asthma hospital encounters 14,893 4 Logistic regression 25.4 92 22 93.2 0.614
Forno et al [21] Severe asthma exacerbation 615 17 Scoring 0.75
Xiang et al [22] Asthma exacerbation 31,433 Recurrent neural network 0.70

aPPV: positive predictive value.

bNPV: negative predictive value.

cAUC: area under the receiver operating characteristic curve.

dXGBoost: extreme gradient boosting.

eThe initial paper showing the model did not give the performance measure.