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Abstract

Background: Healthcare-associated infections (HAIs) represent a major Public Health issue. Hospital-based
prevalence studies are a common tool of HAI surveillance, but data quality problems and non-representativeness
can undermine their reliability.

Methods: This study proposes three algorithms that, given a convenience sample and variables relevant for
the outcome of the study, select a subsample with specific distributional characteristics, boosting either
representativeness (Probability and Distance procedures) or risk factors’ balance (Uniformity procedure). A
“Quiality Score” (QS) was also developed to grade sampled units according to data completeness and
reliability.

The methodologies were evaluated through bootstrapping on a convenience sample of 135 hospitals
collected during the 2016 Italian Point Prevalence Survey (PPS) on HAls.

Results: The QS highlighted wide variations in data quality among hospitals (median QS 52.9 points, range
7.98-628, lower meaning better quality), with most problems ascribable to ward and hospital-related data
reporting. Both Distance and Probability procedures produced subsamples with lower distributional bias (Log-
likelihood score increased from 7.3 to 29 points). The Uniformity procedure increased the homogeneity of the
sample characteristics (e.g, —58.4% in geographical variability).

The procedures selected hospitals with higher data quality, especially the Probability procedure (lower QS in
100% of bootstrap simulations). The Distance procedure produced lower HAI prevalence estimates (6.98%
compared to 7.44% in the convenience sample), more in line with the European median.

Conclusions: The QS and the subsampling procedures proposed in this study could represent effective tools
to improve the quality of prevalence studies, decreasing the biases that can arise due to non-probabilistic
sample collection.
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Background

Healthcare-associated infections (HAIs) and antimicro-
bial resistance (AMR) have been widely recognized as a
significant threat to public health, with an estimated
prevalence in acute care hospitals of 5.9% and an annual
incidence of 3,760,000 new cases per year [1]. Therefore,
a considerable amount of resources have been invested
to monitor HAI prevalence and investigate the associ-
ated risk factors, with the objective of developing tar-
geted intervention strategies. Several epidemiologic and
surveillance studies have been conducted, ranging from
hospital level [2], to country level [3, 4] to worldwide ini-
tiatives [5].

The European Union is on the frontline in monitoring
and controlling HAI risk in its Member States, under
the coordination of the European Centre for Disease
Prevention and Control (ECDC) healthcare-associated
infections surveillance network (HAI-Net). This network
has carried out two European-wide Point Prevalence
Surveys (PPSs), applying a standardized protocol devel-
oped by the ECDC, in 2011-2012 and 2016-2017 [6].
The aims of these studies were mainly to estimate HAI
and antibiotic use prevalence in acute care hospitals, and
to describe patients, infections, invasive procedures, anti-
bacterial agent use and antimicrobial resistance, while
also gathering information on hospitals’ characteristics
and infection control practices.

In order to obtain robust estimates and to ensure
comparability among participating countries, it is im-
portant to apply a consistent hospital sampling strategy.
Therefore, the ECDC required every country participat-
ing in the PPS to provide a specific number of hospitals.
This number is calculated to have a similar prevalence
estimation error, taking into account the per-country
hospital size distribution. Further, the ECDC required
that the hospitals should be selected preferentially
through systematic sampling among all hospitals in the
country [6] taking into account hospital size. Countries
were then categorized according to their ability to
strictly follow the protocol in terms of sampling strategy
and number of participating hospitals. Nevertheless, in
the 2011-2012 PPS, sixteen out of thirty-three countries
were not able to select hospitals through systematic
sampling or provided data from fewer hospitals than re-
quested by the ECDC [7]. When systematic sampling
was not feasible, countries resorted to convenience sam-
pling [8].

For the 2016 Italian PPS [9], convenience sampling
was employed. The survey saw the participation of 135
hospitals altogether but, as indicated by the ECDC, a
sample of 55 hospitals was required for the Italian sam-
ple. Generating a representative sub-sample from the
135 participating hospitals proved to be challenging for
several reasons. First of all, regional participation in the
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survey was extremely heterogeneous, as the majority of
hospitals were provided by two regions, Piedmont and
Emilia-Romagna. Secondly, there was an excess of large
hospitals in the sample compared to the actual size dis-
tribution of hospitals in Italy.

To address these issues, we developed three alterna-
tive, non-conventional sampling procedures for preva-
lence studies, that allow selecting a subset of units from
a convenience sample. Furthermore, we developed a
“Quality Score” which evaluates participating units ac-
cording to data quality and completeness and can be
used as an additional selection criterion.

The objective of these methodologies is to improve the
representativeness and quality of epidemiologic studies
when the selection of participating units is made using
non-probabilistic strategies.

Data collected through the 2016 Italian PPS on HAIs
was used to test and evaluate these methodologies, but
their implementation is general and can be applied in a
number of contexts.

Methods

Data sources

During the 2016 Italian PPS , 135 hospitals were selected
by regional coordinators according to their availability to
participate (convenience sample). Data were collected
through a specific software developed by the ECDC
(HelicsWin.Net) and installed locally in each participat-
ing hospital [10]. Reference personnel were trained prior
to the study in HAI case definitions and data acquisition
according to the ECDC PPS Protocol v5.3 [6]. Data were
extracted locally from the ECDC software and sent to
the Operational Contact Point at the Department of
Public Health Sciences and Pediatrics, University of
Turin, where they were merged and analyzed. Collected
data included presence of HAI or antimicrobial usage
(AMU) on the day of the survey, characteristics of pa-
tients, HAIs and AMU (if any). Furthermore, data on
structural characteristics, organizational details and in-
fection and AMR control measures and practices were
collected at the ward and hospital level [6]. An open
database available on the Italian Ministry of Health’s
website, updated in 2018, was used as reference regard-
ing the number of beds and the geographical distribu-
tion of Italian hospitals [11]. We made the version of the
data used in this work available in the Github repository
of the manuscript at: https://github.com/AD-Papers-
Material/SubsamplingMethods/tree/master/Data.

Quality score

A Quality score (QS) was developed with the objective
of stratifying hospitals according to data completeness
and quality.
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The score was obtained by summing up a number of
data quality indicators at the hospital level (full list avail-
able in Supplementary Material S1), chosen after evalu-
ation of the collected data and identification of common
errors and pitfalls. The indicators were further weighted
for the “importance” of the involved variables, computed
as the statistical association of each variable with the
outcome of interest (ie, HAI risk). Specifically, the
weight was defined as 10(I-pvatuesrr) with p. value; gy be-
ing the p-value of a likelihood ratio test for a univariate
logistic regression model predicting HAI risk given the
variable, against an intercept-only model. The resulting
score is a value between 1 and 10. For variables for
which the statistical association with HAI risk was not
computable (e.g,, HAI characteristics, ECDC software
warnings, patient admission dates), ad-hoc scores were
assigned according to an evaluation of the importance of
each variable with respect to the study.

The sum of these weighted indicators at the hospital
level represents its final QS, with higher values indicat-
ing lower data quality.

An in-depth description of the methodology is de-
scribed in Supplementary Material S1.

Sampling procedures
Three sampling methodologies which generate subsam-
ples with specific distributional characteristics were de-
veloped, starting from an initial collection of
observational units collected through convenience sam-
pling. The “Distance procedure” and the “Probability
procedure” are aimed at producing subsamples that are
more representative of the target population, while the
“Uniformity procedure” tries to create subsamples that
are uniform regarding specific characteristics of interest.
The procedures take into account a subset of charac-
teristics which are relevant for the outcomes of interest.
In this study, geographical location and hospital size
were used, considering that these are known risk factors
for HAI and increased AMU [1, 12], and that they are
available at the country level. Concerning geographical
location, hospitals were grouped by Italian region, while
regarding hospital size, hospitals were grouped into 10
quantiles according to the number of beds for the Prob-
ability and Distance procedures and four quantiles for
the Uniformity procedure. We used a higher number of
quantiles for the first two procedures since it was more
important to have a finer definition of the distribution of
hospital sizes, while still retaining a meaningful number
of hospitals in each size group. These groups are used to
cluster hospitals into “size-location blocks” which are
used to evaluate their distribution. Furthermore, all three
procedures also consider the QS as an additional param-
eter for hospital selection. The Distance and Probability
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methods further require reference data regarding the
target population; for this purpose, the Italian Ministry
of Health’s database of all hospitals in the country,
which reports hospital size and geographical position,
was used [11]. For the purpose of the present study, the
procedures were applied to the Italian 2016 PPS con-
venience sample of 135 hospitals to select a subsample
of 55 units, as required by the ECDC protocol [6].

Here we provide a general description of the proce-
dures while the detailed implementation and corre-
sponding R code is presented in Supplementary Material
S2. The code is also available online at https://github.
com/AD-Papers-Material/SubsamplingMethods.

Uniformity procedure

This procedure acts iteratively selecting one hospital for
each size-location block, taking the one with the lower
(better) QS for each block, starting over until the re-
quired sample size is achieved. This produces a sub-
sample with a similar number of hospitals for each
block.

Probability procedure

Hospitals are allocated in order to obtain a final distribu-
tion of the size-location blocks in the subsample similar
to the distribution present at the target population level:
this distribution was derived after grouping all the hospi-
tals in the country into the same blocks, according to
the national hospital database. The allocation is achieved
by sorting the hospitals according to the probability of
the relative block at the national level weighted by the
QS, and then selecting the required sample size among
the units with the higher score.

Distance procedure

This procedure is useful when some of the distributional
blocks are too underrepresented in the convenience
sample; the procedure oversamples hospitals with char-
acteristics similar to the underrepresented ones. In our
algorithm, “Distance” is a numeric index defined as ei-
ther the distance between Italian regions, divided into 5
groups according to a north-south gradient (e.g., zero if
two hospitals are in the same region, one if in the same
region group, two if into two contiguous groups, etc....),
or by the number of size quantiles separating two hospi-
tals (e.g., zero if in the same quantile, one if in two con-
tiguous quantiles, etc....). A first subsample of units is
generated, selecting a number of hospitals for each size-
location block in order to mimic the national distribu-
tion; if the required number is not achieved for a block,
hospitals from the less distant blocks that were not pre-
viously selected are also included and “assigned” to it.
For a hospital, to be “assigned” means that it contributes
to the total number of hospitals of a certain block even
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if actually it may belong to a different block, given its
characteristics. The algorithm can consider either first
the geographic distance and then, among ties, the hos-
pital size distance, or vice-versa. This choice identifies
two versions of the procedure: one prioritizing represen-
tativeness in geographical distribution, Distance (G), and
one prioritizing hospital size, Distance (S). The QS is
used in case of ties of both geographical and hospital
size distances. After an initial selection, an iterative
process selects random hospitals, and evaluates swaps
with hospitals in the assignment status (i.e., in or out of
the subsample); possible swaps are ordered by the char-
acteristic of interest (location and size, ordered by prior-
ity) minimizing the distance between the real blocks and
the assigned ones in the sample; the QS is considered
for ties. The best possible swap is evaluated and ac-
cepted if it decreases the distance between the real and
the assigned block for at least one of the characteristics,
or improves the QS, while not impacting negatively on
the fit to the target population distribution, as evaluated
via log-likelihood score (see Statistical analysis).

Statistical analysis

The QS of hospitals included in the 2016 Italian con-
venience sample was described using mean, median, and
interquartile ranges (IQR).

The correlation between QS and hospital size was
estimated using Spearman correlation index (Corr.
Index) and 95% confidence intervals [95% CI] to ac-
count for non-linear monotonic relationships; the ef-
fect size of this relationship was estimated through
lognormal regression and the QS Ratio [95% CI] for a
100-beds increase is reported. The relationship be-
tween QS and hospital HAI prevalence was estimated
using Spearman correlation and the effect size
through quasi-logbinomial regression. A  quasi-
likelihood model was chosen to account for the add-
itional variance derived by the fact that patients are
clustered into hospitals and therefore not independent
one from another [13] as instead assumed by the bi-
nomial model, thus providing more robust results.
The Risk Ratio (RR) of the HAI prevalence for a 100-
point increase in the QS and QS ratio and the re-
spective 95% CI are reported.

Both correlation and regression analyses were per-
formed on the entire dataset and after stratification in 3
groups according to the hospital size (<200, 200-500, >
500 beds), to highlight possible non-linearities in relation
to this parameter.

A simulation approach was adopted to evaluate the
characteristics of the subsamples produced by the Dis-
tance, Probability, and Uniformity methods. The original
convenience list was resampled by bootstrapping [14]
2000 times. For each resample Sj_; 5400, subsamples,
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Ps:, Us; and DGg:, and DSs: of size Nyequirea = 55, Were
generated respectively by the Probability, the Uniformity,
and the Distance (G and S) procedures. In addition, an-
other subsample Rs: of the same size was extracted via
random sampling from each resample S} of the conveni-
ence sample and used as reference; the random sample
reflects the procedure used by ECDC in case countries
provided data for more hospitals than requested [6].

Two indicators were used to evaluate the distributional
representativeness of a sample, defined as the fit of the
location-size distributions of the sample to the reference
data:

e Log-likelihood fit: a Bayesian regularized logistic
regression model with weakly informative Cauchy
priors with mean zero and scale of 2.5 standard
deviations [15] was trained on the national list data
to predict the probability of observing a hospital
from a specific location-size block given the distribu-
tion of hospitals in the country (likelihood score).
The regularization allows for a smoother probability
distribution along the location-size combinations,
avoiding an expected probability too close to zero
for underrepresented blocks. The final score is equal
to the sum of the log of the likelihood score of every
hospital in the sample. A lower (more negative)
score indicates increasing distributional bias.

e Spearman correlation: The location-size block
fractional frequencies were compared between the
sample and the national list data using Spearman
correlation. A score closer to zero indicates increas-
ing distributional bias.

The fit of the Distance, Probability, and Uniformity
subsamples was compared against the Random sub-
sample Rg: through a linear regression model of the
fit indicators’ value on the subsampling procedure.
Since the indicator values are depending on the speci-
fication of the location-size blocks, they were com-
puted three times after subdividing hospital size in
either 5, 10, or 20 quantiles in both the subsamples
and the reference data; the model is then adjusted for
the number of hospital size quantiles considered as a
categorical variable, and its interaction with the sub-
sampling procedure, to factor out the possible effect
of a specific subdivision criterion:

Indicator = By, e + BproceaureProcedure
+ By Group_size
+ B, ProcedurexGroup_size + € (1)
A second linear regression model with only the ..

tine A0 B oceaure terms was run to estimate the effect of
the subsampling procedures on the following sample
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characteristics: the regional coefficient of variation of the
number of hospitals, that is, the ratio of the standard de-
viation over the mean of the number of hospitals per re-
gion, reported as a percentual score; the ratio of
hospitals with a number of beds lower than 200, be-
tween 200 and 500 (excluded), and equal to or higher
than 500 over the total in the sample; the QS; the crude
HATI prevalence, i.e. number of HAI cases over the total
number of patients in the sample; the hospital average
HAI prevalence, i.e., the mean of the prevalences of each

hospital (1>~ Pr(HAI|Hospital, ,,)).
1

For both models we reported the Effect Sizes (ES),
that is the B,,occaure coefficients describing the aver-
age difference in the outcome when using a sub-
sampling procedure compared to a random
subsample (baseline), and the Expected Value (EV)
of the outcome for each procedure (i.e., Bpuserine +
Bprocedure) and for the baseline random subsample
(i.e, Bpasetine)- The regression model was boot-
strapped 2000 times to estimate the coefficients’
sampling variability, and the median and the 90%
interval of the bootstrap distribution (90% BI) are
presented. We report a 90% interval instead of the
canonical 95% to increase the stability of estimates
[16]. Finally, the standardized effect size (stdES) was

computed as the ratio of the mean over the standard

Mean(Bprocedure)
SD ( B*procedure)

), to provide a dimension-less measure to compare ef-
fects among different indicators/characteristics.

All analyses and figures were produced using R
v3.5.1 [17].

deviation of the ES bootstrap resamples (
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Results

Quality score

Considering the 135 hospitals included in the conveni-
ence sample of the Italian ECDC PPS 2 study, a mean
QS of 105 points was estimated, with a right-skewed dis-
tribution, as shown by a median of 52.9 points (IQR:
27.9-131); the best hospital had a score of 7.98 points
and the worst of 628 points (78.7 times higher) (Fig. 1a).
The study variables which mostly impacted the score
were the specification of antimicrobial drug dosage (with
a high number of outliers outside the central 80% of the
antimicrobial specific dose distribution), the presence of
warnings issued by the ECDC data acquisition software
and misspecifications in the characteristics of the hos-
pital or the ward (e.g. more single rooms then total
rooms, more assessed patients than total patients), miss-
ing data regarding infection control strategies, micro-
organism  characteristics, and the change in
antimicrobial medications. The data with fewer issues
were related to patient characteristics.

Our analysis did not find a definite correlation (Corr.
index: 0.02, 95% CI [- 0.15; 0.19]) between QS and hos-
pital size (Fig. 1b, Table 1) with only an appreciable
positive trend for hospitals with over 500 beds (Corr.
index: 0.37, 95% CI [- 0.04; 0.67]). Larger and more bal-
anced datasets in terms of hospital size are necessary to
define whether there could be a robust relationship be-
tween hospital size and QS.

As shown in Table 1, a weak negative correlation be-
tween QS and HAI prevalence was found (Corr. index:
-0.12, 95% CI [-0.28; 0.054], HAI RR per 100 points:
0.93, 95% CI [0.86, 1.01]), but the effect is non-linear
along an increase in hospital size and is present mostly

A. Distribution of QS

# Hospitals
Qs

Qs

B. Rolationship between QS
and hospital size

Hospital size

Fig. 1 Distribution of QS and relationship with hospital size and HAI prevalence. Vertical scale in Fig. A and B transformed in Log (10). Fig. B and
C show a regression line elaborated via generalized linear model with a quasi-Poisson and a quasi-binomial link function

C. Relationship between QS
and HA| prevalence

HAI prevalence

Qs
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Table 1 Relationship of QS with hospital size (number of beds) and HAI prevalence computed through Spearman correlation and
regression model analysis. The correlation index [95% Cl] is reported for the correlation analysis and QS Ratio and Risk Ratio [95% Cl]
for the regression models. Both analyses were performed on the whole dataset and after stratification by hospital size category (<
200, 200-500, = 500 beds)

Model: QS ~ Number of beds

Correlation index [95%Cl] QS Ratio [95%Cl]
Hospital size stratum (beds)
Small (< 200) —0.00047 [-0.26; 0.26] 0.76 [041, 1.39]
Medium (200-500) 0.008 [-0.27; 0.28] 0.95 [0.67, 1.35]
Large (= 500) 0.37 [-0.038; 0.67] 1.07 [0.88, 1.3]
All 0.02 [-0.15; 0.19] 1.02 [0.96, 1.07]
Model: HAI Prevalence ~ QS
Correlation index [95%Cl] Risk Ratio [95%ClI]
Hospital size stratum (beds)
Small (< 200) 0.0025 [-0.25; 0.26] 091 [0.69, 1.13]
Medium (200-500) —0.34 [~ 0.56; — 0.071] 0.84[0.72, 0.97]
Large (= 500) —0.067 [-046; 0.35] 0.98 [0.86, 1.09]
All —0.12 [~ 0.28; 0.054] 0.93 [0.86, 1.01]

in the 200-500 hospital size category (Corr. index: -0.34,  subsamples that they generated. Specifically, the Prob-
95% CI [-0.56; —0.071], HAI RR per 100 points: 0.84, ability procedure increased the log-likelihood score by +

95% CI [0.72, 0.97]). 29 [18, 19] points (std. diff.: 4.39 SD) and the correlation
coefficient by +0.21 [0.12, 0.3] points (3.85 SD), with
Comparison of sampling procedures 100% of the bootstrapped subsamples achieving better

As shown in Table 2, both the Distance and the Prob-  scores than those achieved by random subsampling of
ability procedures reduced the distributional bias of the the bootstrapped convenience sample. Regarding the

Table 2 Distributional fit to the reference data of the subsamples produced by the subsampling procedures and by simple random
sampling, applied to the 2000 times resampled bootstrap convenience sample. The Expected Value, the Effect Size, Standardized
Effect Size, and the 90% Bootstrap Intervals [90% BI] as described in the Methods, adjusted for number of quantiles chosen to
compute the fit indicators. For the three sampling procedures, the percentage of bootstrap resamples in which the fit criteria
improved compared to the random subsample is shown; values above 50% indicate an overall improvement

Fit Indicator Expected Value [90%  Effect Size [90% Standardized Effect % of subsamples with higher values than random

Bl] Bl Size sampling
Log-likelihood

Random — 260 [- 270, — 250]

Distance ~ —250 [-260, — 240] +73[-39, 20] 1.04 85.6%

@)

Distance —250 [- 250, — 240] +12[14, 24] 173 91.5%

©)

Probability — 230 [ 240, — 220] +29 [19, 40] 439 100%
Uniform —260 [ 280, — 250] —59[-18,423] -0.88 35.9%

Spearman Rho

Random 0.17 [0.076, 0.26]

Distance 0.26 [0.19, 0.34] +0.095 [0.007,0.19] 1.74 97%
@)

Distance 0.31[0.24, 0.38] +0.14 [0.051,024] 251 98.9%
©)

Probability 038 [0.33, 0.43] +0.21 [0.12, 03] 385 100%
Uniform 0.16 [0.078, 0.24] —0.013 [-0.096, -0.26 51.4%

0.072]
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Distance procedure, the first method, based on hospital
size (S), showed the greatest improvement, with an aver-
age of + 12 points (std. diff.: 1.73 SD) of likelihood and +
0.14 points (2.51 SD) of correlation coefficient, com-
pared to +7.3 (1.04 SD) and + 0.095 (1.74 SD) respect-
ively for the second method, based on location (G). The
Uniformity procedure generated subsamples with a dis-
tributional bias similar or slightly worse than the sub-
samples generated via random sampling.

Figure 2A depicts the regional distribution of hospitals
in the subsamples produced by the considered proce-
dures. As a reference, the Italian regional distribution of
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hospitals is also depicted (Fig. 2b). All procedures, apart
from the Distance procedure (S), decreased the regional
variability in the number of hospitals (Regional variation
coefficient shown in Table 3), compensating the over-
representation of hospitals originating from just two re-
gions (ie., Piedmont and Emilia Romagna) in the
convenience sample (Fig. 2a). As expected, the coeffi-
cient of variation became particularly low after the Uni-
formity procedure (67.2% [56.1, 81.4%]), compared to
126% [98.2, 153%] in the random subsamples. Both the
Distance (S) and the Probability method caused some
smaller regions not to be represented in some

A. Regional distribution by sampling method
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Fig. 2 Regional distribution of hospitals after resampling and ltalian regional distribution of hospitals. In a, boxplots show the distribution of the
number of hospitals per region, after applying the considered sampling procedures (Distance, Probability, and Uniform procedures) to the
bootstrapped convenience sample. The expected distribution if simple random sampling was applied is shown as reference. Panel b shows the
actual number of hospitals per Region in Italy. Regions are color-coded for easier comparison between plots
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Table 3 Characteristics of the subsamples. Characteristics of the subsamples produced by the subsampling procedures and by
simple random sampling applied on the 2000 times resampled bootstrap convenience sample. The Expected Value, Effect Size,
Standardized Effect Size and the Bootstrap Intervals [90% BI] are computed as described in the Methods. For the three sampling
procedures, the percentage of bootstrap resamples in which the characteristic had a higher value than in the random subsample is
shown; values above 50% indicate an overall increase while values below 50% indicate a decrease

Sample Characteristic

Expected Value
22[90% BI]

Effect Size
[90% BI]

Standardized Effect Size

% of subsamples with higher
values than random sampling

Regional variation coeff. (SD*100/Mean)

Reference data
Random
Distance (G)
Distance (S)
Probability

Uniform

92%

125% [98.5, 152%]

73.2% [55.1, 93.4%]
127% [101, 154%)]

99.1% [75.2, 127%]
67.2% [56.1, 81.4%)]

Small hospitals (< 200 beds, %)

Reference data
Random
Distance (G)
Distance (S)
Probability

Uniform

71.1%

43.6% [32.7, 54.5%]
43.6% [34.5, 54.5%]
76.4% [72.7, 80%)]
30.9% [21.8, 43.6%]
34.5% [29.1, 41.8%)]

Medium hospitals (> 200, < 500 beds, %)

Reference data
Random
Distance (G)
Distance (S)
Probability

Uniform

19.5%

38.2% [27.3, 49.1%)]
36.4% [27.3, 47.3%]
12.7% [9.09, 18.2%]
41.8% [30.9, 52.7%]
38.2% [30.9, 45.5%]

Large hospitals (> 500 beds, %)

Reference data
Random
Distance (G)
Distance (S)
Probability
Uniform
Quality Score
Random
Distance (G)
Distance (S)
Probability
Uniform
Prevalence (crude, %)
Random
Distance (G)
Distance (S)
Probability

Uniform

9.35%

18.2% [9.09, 27.3%]
18.2% [12.7, 27.3%]
10.9% [10.9, 10.9%]
27.3% [18.2, 38.2%]
27.3% [20, 32.7%]

100 [79, 130]
98 [71,130]
92 [68, 120]
68 [55, 84]
99 180, 120]

744% [6.37, 8.58%]
7.23% [6.07, 8.43%]
6.98% [5.75, 8.28%)]
7.87% [6.84, 8.88%)]
7.69% [6.79, 8.45%)]

—=53.7% [-83, —22.5%]
+1.94% [-31, 35.3%]
—25% [-58.8, 7.12%]
—584% [-86.1, —31.1%]

+ 0% [-12.7, 10.9%]
+32.7% [21.8, 43.6%]
=12.7% [-23.6, 0%]
—9.09% [-18.2, 1.82%]

—1.82% [-12.7, 10.9%]
—25.5% [-36.4, — 14.5%]
+ 3.64% [-9.09, 14.5%)]
+0% [-10.9, 10.9%]

+1.82% [-7.27, 10.9%]
—7.27% [-16.4, 1.82%)]
+9.09% [0, 18.2%]
+9.09% [0, 16.4%]

—6.5[-37, 24]
—12 [-42, 18]
-35[-63,-10]
=51 [-34, 22]

—0.21% [-1.43, 1.02%]
—047% [-191, 1.01%]
+0.45% [-0.63, 1.53%]
+0.18% [-0.78, 1.29%]

—2.88
0.069
-1.26
-3.52

0.026
4.97
-1.78
-132

-0.21
-3.78
047
—0.046

0.24
-1.36
1.61
1.74

-0.34
—0.68
—2.21
-0.32

-03
-0.51
0.69
0.34

0.23%
53.2%
10.7%
0%

46.5%
100%
3.29%
7.19%

36.6%
0%

62.3%
41.8%

54%
5.35%
93.2%
94%

36.5%
24.3%
0.9%

38.1%

37.3%
29.7%
62.7%
75.3%
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Table 3 Characteristics of the subsamples. Characteristics of the subsamples produced by the subsampling procedures and by
simple random sampling applied on the 2000 times resampled bootstrap convenience sample. The Expected Value, Effect Size,
Standardized Effect Size and the Bootstrap Intervals [90% BI] are computed as described in the Methods. For the three sampling
procedures, the percentage of bootstrap resamples in which the characteristic had a higher value than in the random subsample is
shown; values above 50% indicate an overall increase while values below 50% indicate a decrease (Continued)

Effect Size
[90% BI]

Sample Characteristic Expected Value

22[90% BI]

Standardized Effect Size % of subsamples with higher

values than random sampling

Prevalence (hospital’s average, %)

Random 6.35% [5.44, 7.33%)]

Distance (G) 6.04% [5.07, 7.06%] —0.31% [—1.34, 0.77%]
Distance (S) 5.86% [4.96, 6.8%)] —0.47% [-1.49, 0.61%]
Probability 7.11% [6.26, 8.01%] +0.8% [-0.33, 1.81%]
Uniform 6.43% [5.61, 7.41%) +0.1% [-0.9, 1.09%)]

-047 32.1%
-0.72 23.8%
1.23 88.5%
0.16 56.5%

subsamples (Fig. 2); the Probability procedure was par-
ticularly selective in excluding the most underrepre-
sented regions.

The distribution of Italian hospitals according to size
is characterized by a vast majority (71.1%) being of small
hospitals (below 200 beds), 19.5% medium-sized hospi-
tals (200 to 500 beds), and 9.35% large hospitals (more
than 500 beds). The random subsamples were consti-
tuted of 43.6% [32.7, 54.5%], 38.2% [27.3, 49.1%] and
18.2% [9.09, 27.3%] of small, medium and large hospitals
respectively (Table 3), indicating a strong bias towards
larger hospitals in the convenience sample. The Distance
(S) procedure impacted strongly on this bias, producing
a distribution of small (EV: 76.4% [72.7, 80%], ES: +
32.7%), medium (12.7% [9.09, 18.2%], — 25.5%), and large
(10.9% [10.9, 10.9%], — 7.27%) hospitals very similar to
the Italian distribution. The distribution of large hospi-
tals was centered around a value of 10.9%, with less than
3% of the subsamples with a lower percentage and zero
subsamples with a higher percentage. The Distance (G)
and Probability procedures did not provide much adjust-
ment, compensating more for geographical bias than for
hospital size. Conversely, the Uniformity procedure in-
creased the bias, as expected, in order to achieve a more
equal distribution in terms of hospital size.

All sampling procedures selected on average hospitals
with higher data quality (lower QS). The QS was sens-
ibly lower in the subsample generated using the Prob-
ability procedure, which is expected since its purpose is
to reweight the probability of a hospital to be selected.
Despite having a stronger influence compared to the
other methods, the impact of the QS was still 7.7 times
inferior to the impact of size/location in determining the
final inclusion probability in the sample (analysis per-
formed by comparing the standardized effect sizes ob-
tained by regressing the inclusion of each hospital in the
sample against either the probability of inclusion given
location-size or the QS through two univariate multi-
level logistic regressions).

Notably, none of the procedures significantly impacted
the estimated HAI prevalence (Table 3). The largest de-
crease was observed after the application of the Distance
(S) procedure (~0.5% decrease in both crude and aver-
age prevalence), as was expected considering the incre-
ment in the quota of smaller hospitals. Nevertheless, the
variability of the effect was high (e.g: 90% BIL: [-1.91,
1.01%], stdES: 0.51 SD, for the crude prevalence) and the
decrease was observed only in 70% of the bootstrapped
subsamples; similar results were observed for the average
prevalence. On the other hand, the Distance (G) proced-
ure produced a smaller difference in HAI prevalence
whereas the Probability procedure was instead associated
with a relevant increase in HAI prevalence compared
with the random draw from the convenience sample.

Notably, the bootstrapped 90% intervals of both the
baseline and the average changes in the prevalence esti-
mates, in all procedures, showed a range of possible
values broader than two percentage points, indicating
that with such small sample sizes, wide differences be-
tween prevalence studies can be justified simply by ran-
dom variation due to sampling.

Discussion

Using the 2016 Italian PPS on HAIs as a case study , we
developed a set of subsampling methodologies to im-
prove the representativeness of epidemiologic studies
when the selection of participating units is made using
non-probabilistic  strategies, such as convenience
sampling.

Convenience sampling [8] is one of the most com-
mon non-probabilistic sampling methodologies [18,
20]. It implies that the statistical units in the sample
are selected based on their availability to the re-
searcher, in terms of physical reachability and/or will-
ingness to be included. It is a strategy often used
when it is not feasible, economically or logistically, to
perform random sampling.
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The major drawback of this methodology is that the
selected units may not be representative of the target
population, introducing distortions in the distribution of
sample characteristics, and in the worst case scenario,
also in the outcomes of interest [21, 22], therefore bias-
ing estimates and decreasing the generalizability of the
studies [8].

For country-level, clustered prevalence studies, con-
venience sampling may be simpler and more cost-
effective compared to more formal sampling strategies,
such as systematic sampling (as suggested by the ECDC
PPS protocol), since it does not assume the compliance
to participation for all (or most) of a country’s hospitals.
Employing systematic sampling, for example, may be dif-
ficult when a central selection of participating hospitals
is not possible, due to the specific organization of the
healthcare systems (decentralized healthcare systems) or
to non-willingness to enforce compliance. In Italy, re-
gional authorities are virtually exclusively responsible for
healthcare organization and delivery, within a framework
provided by the central Government.

It is customary in these cases to select participating
units for example among hospitals which are part of some
established surveillance network [23], or to let them be
chosen by regional health surveillance authorities [24].

As previously mentioned, the Italian PPS sample was
generated by convenience sampling driven by regional
health authorities, and this generated issues in terms of
geographical and risk factor distribution. Therefore, this
sample represented a perfect case for testing our meth-
odologies, which try to measure the impact of these is-
sues and reduce them by algorithmic subsampling.

First, we developed a score to quantify the quality of
the collected data (QS) in terms of missing data and er-
rors. In statistical practice, there is a significant corpus
of literature on the negative impact of missing data on
inference [25-29], especially when data is missing not-
at-random [30]. The extent of the bias caused by missing
data can span from a simple increase in error and uncer-
tainty estimates, to effect magnitude and/or direction
biases in risk factors analyses [30]. A common way to
mitigate these issues is to employ imputation techniques
[25]: these methods work either by “guessing” the miss-
ing information based on available data on the same
variable (distributional imputation, e.g., taking the mean,
median or mode value), or at observation level in other
variables (prediction-based methods, e.g.: model-based
or non-parametric imputation models), or by a combin-
ation of both. These techniques, though, are often tech-
nically and computationally demanding and may
artificially reduce uncertainty or introduce bias them-
selves [31].

The issue of errors in the collected variables is equally
relevant: they can introduce distortions in the resulting
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estimates and statistical associations, which are very hard
to identify and account for at the analysis stage [32—-34].

The score we propose considers both the amount of
missing information and possible errors in data collec-
tion, weighted by the statistical relationship of the con-
sidered variables with the primary outcome of the study,
i.e. the risk of HAIL This score can be used to rank and
select statistical units based on the reliability (informa-
tion value) of their data, thereby reducing the reliance
on analytic solutions like imputation and favoring the
use of the original data. The consequence is a more
transparent analytic pipeline.

While applying the score to the 2016 Italian PPS data,
we observed a large gradient of values, the hospitals with
worse data scoring 78.7 times higher (indicating worse
quality) than the one with the best (lowest) score. The
analysis of the components of the score can help identify
which variables have more issues: in our case, the infor-
mation at the patient level was more complete than
ward and hospital-level characteristics. These findings
could be useful for the conduction of future surveys, by
highlighting problematic variables that should be ad-
dressed when training local operators regarding data ac-
quisition, and by revealing issues in the definitions of
variables that could make their collection problematic.

When we compared the QS with HAI prevalence, we
observed a slight negative association, that is, worse data
quality predicted lower HAI prevalence. The relation-
ship, albeit weak, was conserved after stratifying hospi-
tals by their number of beds, a known predictor of HAI
risk in hospitals [35]. These results could hint to an as-
sociation between accuracy in data collection and quality
of the HAI case finding process. It is hard to derive de-
finitive conclusions in this regard, without having the
real hospital-level prevalence and, given the small sam-
ple size, a spurious correlation cannot be ruled out. A
solution could be to compute the QS of the whole
“European ECDC PPS validation sample”, a group of pa-
tients in which the presence of HAI was verified by ex-
perts [6]. If the QS proves an accurate predictor of the
rate of identification error without influencing the esti-
mates, it could be then used as a tool for selecting hospi-
tals with less biased estimates.

The second problem we tried to solve was the possible
bias in the representativeness of hospitals chosen by
convenience sampling (or other non-probabilistic sam-
pling strategies). A common approach to the problem of
under/overrepresentation is based on the reweighting of
observational units: for example weighting observations
according to the inverse of the probability of being se-
lected to reduce disparities between subgroups [36] or
based on some reference data to increase generalizability
[37]. Instead, to our knowledge not much research has
been devoted to a subsampling approach to the
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representativity issues, with a notable example in the
work of Pérez Salamero Gonzilezet al [38]. We argue
that a subsampling based approach may have practical
advantages over a weighting based one, for example not
having to manage the weights in the entirety of the ana-
lytical pipeline, or giving the possibility to clearly evalu-
ate the impact of individual units in the final estimates.
Furthermore, the common inverse-weighting based
methods use only the in-sample data to estimate the
weights, without relying to external reference data; this
would promote more uniformity in the final sub-group
representation but do not ensure generalizability of the
results.

Our approach is based on two subsampling techniques
(Probabilistic and Distance procedures), which, informed
by country-level information, subsample hospitals gener-
ating a distribution more similar to what would have
been achieved by random sampling, given a set of strati-
fication variables. As reported in the methods, we se-
lected geographical location and hospital size as
characteristics of interest, both because these are known
risk factors for HAI and increased AMU [1, 12] and
since their distribution in the PPS sample was highly dis-
torted compared to the target population. Furthermore,
information about hospital location and size is easily
available at the country level, compared to other import-
ant predictors (such as hospital case-mix). Nevertheless,
these methods are general and can be adapted to any
combination of variables for which reference data is
available.

The Probability procedure uses country data to build a
probability distribution given one or more variables and
chooses hospitals according to it. The Distance method
defines strata using the same distribution and then fills
them with the hospitals in order of similarity to the
strata according to a hierarchy of hospital variables: if
units with the right characteristics are not available, the
model selects hospitals which are as similar as possible.
Finally, it further refines the sample by randomly switch-
ing hospitals in and out, updating the sample only if the
switch improves the distributional fit. It can be associ-
ated to a greedy gradient search followed by a random
search phase to escape possible local maxima.

We further proposed a Uniformity sampling method
providing a balanced sub-sample for the considered
characteristics, which may be useful for risk factor ana-
lysis and prediction models [19].

The QS is considered in all methodologies, selecting
the best hospital among equivalent proposals in term of
distributional fit.

Based on our dataset, both the Probability and the Dis-
tance methods sensibly decreased the distributional bias
of the generated subsamples, compared to the conveni-
ence sample. This improvement highlights the possible
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drawbacks of non-probabilistic sampling methods and
supports the necessity of adjustment before analysis.
Nevertheless, it should be noted that the specific sub-
sampling algorithm only had a relatively small effect on
the final estimates of HAI prevalence, which ranged
from 6.98% for the Distance method prioritizing hospital
size (S), to 7.87% for the Probability method, compared
to 7.44% for the convenience sample estimate. As refer-
ence, the HAI prevalence at the European level, as re-
ported by the ECDC PPS study, was 5.9% [1]. The
Distance (S) method provided the estimate clostest to
the European result, perhaps because it is driven by a
highly predictive risk factor (hospital size), but it is im-
possible, just from these results, to affirm that the Dis-
tance procedure (S) is capable of providing the more
realistic estimate. An indirect way to test our methods
could be using ECDC PPS data from participating coun-
tries that recruited all or a large random sample of hos-
pitals. From these hospitals, a simulated, biased,
convenience sample could be drawn, and then the three
procedures could be tested to prove which sub-sampling
method would be better in retrieving the original
prevalence.

The variability of the bootstrapped estimates was large:
all methods showed a 90% BI of more than two percent-
age points. This difference is quite significant in terms of
burden of disease: it is greater than the variation in HAI
prevalence observed among most of the countries in the
European PPS study or in the same country but in sur-
veys conducted in different years [1, 12, 35]. If we con-
sider the estimates’ uncertainty between sampling
methods, the variability is even larger, with the range of
possible prevalence estimates going from 5.75% (lower
bootstrap interval for the Distance (S) method) to 8.88%
(upper bootstrap interval for the Probability method).
These results may indicate that the differences in sam-
pling strategies among countries and studies could ex-
plain a large portion of the observed variability in HAI
prevalence. Therefore, the crude risk estimates extracted
by prevalence studies should be built on larger samples
and enriched by more sensitive analysis, like individual
risk analysis based on patient characteristics [39, 40] or
multilevel models [41-43] to factor out the hospitals’
specific contributions to risk.

Both the Probability and the Distance methods have
limitations, and many improvements could be proposed.

The Probability method is the most beneficial in de-
creasing the global distributional bias, since it considers
many variables at once, but may increase bias in specific
characteristics. This happens when the amount of distor-
tion in one characteristic is much higher than in an-
other. The model accepts a trade-off (more distortion)
on the less biased variable in order to optimize the glo-
bal fit. In our case, the algorithm slightly increased the
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bias regarding hospital size to compensate for the highly
distorted geographical distribution (i.e., two regions pro-
viding more than 50% of the total number of hospitals).
This phenomenon may influence the outcome of the
study itself if the bias is increased for strongly predictive
variables. We indeed observed a higher HAI prevalence
in the Probability sample, due to the greater quota of
larger hospitals which were included by the algorithm to
improve the regional representativeness (many regions
provided a relative excess of large hospitals). A possible
solution could be to reweight the contribution of the
variables to hospital selection according to their statis-
tical relevance with the outcome. The QS has a strong
impact on the Probability method, but we showed that
hospital selection is still largely driven by the country
distribution of hospitals; alternatively, different weights
could be attributed to the QS by exponentiating it after
the rescaling (Supplementary Material S2).

The Distance method, on the other hand, allows speci-
fying a hierarchical order for variables to be used for ad-
justment, so that the researcher may give priority to
those more related to the outcome of interest. The
drawback of this method is that it aggressively optimizes
the first variable of the hierarchy, switching to the sec-
ond only in case of ties; the same is the case for the third
variable and so on. Therefore, its flexibility is spent
mostly on few variables (primarily the first), especially if
these have many possible values. This bias is compen-
sated by a random search for solutions that improves
the global fit (e.g., samples improving the fit for hospital
size at the cost of a greater bias in geographical distribu-
tion are discarded), but the candidate hospitals are still
evaluated using the same hierarchy.

We provide the R code for both methods (Supplemen-
tary Material S2) and we encourage researchers to ex-
periment, improve, and adapt it for their purposes.

A general limitation of subsampling for bias correction
is that it strongly impacts the sample size and, therefore,
the power of studies. Only if the initial convenience
sample is large, enough margin exists to compensate for
the bias by subsampling. An alternative could be first to
oversample the original data, increasing the size artifi-
cially, and then to produce a subsample of the original
size but sub/over-sampled in order to reduce distortions.

Further validation of the sub-sampling methodologies
may be pursued by taking advantage of countries with
sample coverage near 100% in the European PPS sample:
various distortive convenience sampling strategies may
be simulated and to test how efficient are the subsamp-
ling methods in retrieving the real population
prevalence.

The presented methods have been demonstrated in
the context of Healthcare Associated Infection preva-
lence estimation in the presence of a convenience
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sample of acute care hospitals, but their applicability is
indeed generalizable to a number of contexts and prob-
lem, wherever bias in the sample representativity and
data quality issue are possibly present. For example,
sample representativity isssues are common in designs
that requires the opt-in of the participant units, like
survey-based [44], cohort [45] and surveillance [46]
studies; the same is true for errors in data collection, es-
pecially with participant self-reported data [47-49].

Conclusions

Our analysis suggests that non-probabilistic sampling
strategies might produce significant distortions in the
distribution of the characteristics of a sample. This may
introduce biases in the estimates which are challenging
to evaluate and adjust for at the analysis stage. There-
fore, we created a set of algorithms aimed at reducing
this bias by producing a subsample theoretically more
similar to the target population. Furthermore, we devel-
oped a quantitative score to evaluate the data quality of
observational units participating in a study; this score
may help in pre-analysis error individuation and correc-
tion and to improve research protocols but can also uti-
lized to remove low quality data points if no relevant
influence on the population parameters of impact is
observed.
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