
SPEAQeasy: a scalable pipeline
for expression analysis and quantification
for R/bioconductor‑powered RNA‑seq analyses
Nicholas J. Eagles1, Emily E. Burke1, Jacob Leonard2,3, Brianna K. Barry1,4, Joshua M. Stolz1, Louise Huuki1,
BaDoi N. Phan1,5,6, Violeta Larios Serrato2,7, Everardo Gutiérrez‑Millán2, Israel Aguilar‑Ordoñez2,8,
Andrew E. Jaffe1,9,10,4,11,12,13 and Leonardo Collado‑Torres1,9*   

Background
Gene expression analyses have been revolutionized by the emergence of high-through-
put sequencing [1–3] which has enabled an explosion in RNA-sequencing (RNA-seq)
projects [4–6]. Sequencing machines typically output the data in the FASTQ format [7]
that can amount to several gigabytes of disk space per sample depending on the read

Abstract 

Background:  RNA sequencing (RNA-seq) is a common and widespread biological
assay, and an increasing amount of data is generated with it. In practice, there are a
large number of individual steps a researcher must perform before raw RNA-seq reads
yield directly valuable information, such as differential gene expression data. Existing
software tools are typically specialized, only performing one step–such as alignment
of reads to a reference genome–of a larger workflow. The demand for a more compre‑
hensive and reproducible workflow has led to the production of a number of publicly
available RNA-seq pipelines. However, we have found that most require computational
expertise to set up or share among several users, are not actively maintained, or lack
features we have found to be important in our own analyses.

Results:  In response to these concerns, we have developed a Scalable Pipeline
for Expression Analysis and Quantification (SPEAQeasy), which is easy to install and
share, and provides a bridge towards R/Bioconductor downstream analysis solutions.
SPEAQeasy is portable across computational frameworks (SGE, SLURM, local, docker
integration) and different configuration files are provided (http://​resea​rch.​libd.​org/​
SPEAQ​easy/).

Conclusions:  SPEAQeasy is user-friendly and lowers the computational-domain entry
barrier for biologists and clinicians to RNA-seq data processing as the main input file is
a table with sample names and their corresponding FASTQ files. The goal is to provide a
flexible pipeline that is immediately usable by researchers, regardless of their technical
background or computing environment.

Keywords:  RNA-seq, Pipeline, Bioconductor

Open Access

© The Author(s) 2021, corrected publication 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 Interna‑
tional License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appro‑
priate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in
a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of
this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

SOFTWARE

Eagles et al. BMC Bioinformatics (2021) 22:224
https://doi.org/10.1186/s12859-021-04142-3

*Correspondence:
lcolladotor@gmail.com
1 Lieber Institute for Brain
Development, Johns Hopkins
Medical Campus, Baltimore,
MD 21205, USA
Full list of author information
is available at the end of the
article

http://orcid.org/0000-0003-2140-308X
http://research.libd.org/SPEAQeasy/
http://research.libd.org/SPEAQeasy/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-021-04142-3&domain=pdf

Page 2 of 18Eagles et al. BMC Bioinformatics (2021) 22:224

length and coverage depth of a given experiment. Before doing any statistical analyses on
this data such as differential expression [8, 9], researchers need to process the gigabytes
or even terabytes of data to compress it and extract the desired information. Doing so
requires computationally demanding steps such as RNA-seq alignment [10–12] and read
quantification [13, 14]. Since the emergence of RNA-seq, a diverse set of bioinformatics
software has been designed to solve specific steps of the RNA-seq processing [15–17].

Several RNA-seq processing bioinformatics pipelines have been developed to tie these
required processing steps together [18–23]. The common goal of these approaches
involves helping biologists and researchers weave together these bioinformatics solu-
tions to uniformly process samples from RNA-seq projects with different characteristics;
for example, single-end versus paired-end. RNA-seq processing pipelines have differ-
ent characteristics such as the RNA-seq aligner of choice and the quality control steps
they use. The design choices of each RNA-seq processing pipeline can have an impact on
which analyses researchers can perform with the processed data. Furthermore, the ease
of software installation, portability, and level of support can affect the usability of these
pipelines.

In recent years we have worked on several RNA-seq projects [24–26] and designed
an RNA-seq processing pipeline that satisfied our needs to generate quality checked
and uniformly processed data with several quality control metrics we could then use in
our statistical analyses. We then improved the usability and portability of this pipeline
thanks to the Nextflow framework [27]. Our solution, SPEAQeasy, ultimately gener-
ates RangedSummarizedExperiment R objects [28] that are the foundation block
for many Bioconductor R packages and the statistical methods they provide [8, 9, 29,
30]. Other key features of SPEAQeasy are that it produces the information that coupled
with DNA genotyping information can be used for detecting and fixing sample swaps
[31–33], RNA-seq processing quality metrics that are helpful for statistically adjusting
for quality differences across samples [5], data that powers the exploration of the un-
annotated transcriptome, and that it can be used in several computational frameworks
thanks to Nextflow’s configuration flexibility [27].

Results
Overview

We have developed a portable RNA sequencing (RNA-seq) processing pipeline,
SPEAQeasy, that provides analysis-ready gene expression files (Fig. 1). SPEAQeasy is a
Nextflow-powered [27] pipeline that starts from a set of FASTQ files [7], performs qual-
ity assessment and other processing steps (Implementation: overview), and produces
easy-to-use R objects [29]. SPEAQeasy facilitates both traditional RNA-seq downstream
analyses such as gene differential expression, but also the exploration of the annotated
transcriptome [34, 35] by quantifying reads that span exon-exon junctions and provid-
ing bigWig base-pair coverage files [36]. Input RNA-seq reads are aligned using HISAT2
[37] to a reference genome and pseudo-aligned to a reference transcriptome using
kallisto [38] or Salmon [39]. Genes, exons, and exon-exon junctions are then quantified
using featureCounts [14] and regtools [40]. The resulting quality metrics and read quan-
tification outputs are then arranged to create SummarizedExperiment [28] R objects
that combine the read quantification, expression feature information, and processing

Page 3 of 18Eagles et al. BMC Bioinformatics (2021) 22:224 	

and quality metrics. These SummarizedExperiment objects can then be used with a wide
variety of Bioconductor [29] R packages to perform downstream analyses such as differ-
ential expression [8, 9, 30], identification of differentially expressed regions (DER) [41],
and exploratory data analysis [42, 43]. For human samples, SPEAQeasy can also perform
RNA-based genotype calling with BCFtools [44] which can be coupled with DNA-based
genotype data to identify and resolve sample swaps (Fig. 2: downstream). Additionally,
for experiments involving ERCC spike-ins [45], SPEAQeasy generates plots by sample
to quickly visualize expected versus measured concentrations for each of 92 ERCC tran-
scripts (Additional file 1: Figure S1). Thus SPEAQeasy simplifies any RNA-seq based
projects from human, mouse and rat-derived data and provides a bridge to the Bio-
conductor universe. Furthermore, the Nextflow-based implementation allows for more
experienced developers to quickly add additional steps or switch out software, creating a
flexible and scalable RNA-seq processing pipeline. We document a step-by-step example
demonstrating how to replace the trimming tool Trimmomatic [46] with Trim Galore
[47], to serve as a guide for those interested in modifying components of SPEAQeasy
(http://​resea​rch.​libd.​org/​SPEAQ​easy/​softw​are.​html#​using-​custom-​softw​are).

Configuring SPEAQeasy

SPEAQeasy, through Nextflow [27], can be deployed in a variety of high-throughput
computational environments such as: local machines, Sun/Son Grid Engine (SGE) com-
pute clusters, servers that enable Docker [48], and cloud computing environments [49]
such as Amazon AWS. Nextflow provides the ability to run the same code using configu-
ration files that are specific to the computing environment at hand. To facilitate using
SPEAQeasy we provide Docker containers for both the software and annotation files
and a SPEAQeasy configuration file for such environments. For SGE or other clusters,
SPEAQeasy can also use lmod [50] software modules such as the one we provide for
the JHPCE SGE cluster (https://​jhpce.​jhu.​edu/). In order to use SPEAQeasy in a par-
ticular computing environment, identify the example configuration file (Implementa-
tion: configuration; Additional file 3:Table S1) that most resembles the setup, make a
copy and edit accordingly. Our JHPCE lmod files and docker setup files provide installa-
tion instructions for researchers who wish to manually set up the software dependencies
(http://​resea​rch.​libd.​org/​SPEAQ​easy).

To test SPEAQeasy on a particular computer setup, first identify the “main” script
appropriate for the environment. Scripts exist for execution at JHPCE or within SLURM,

Fig. 1  An example samples.manifest. The samples.manifest file for paired-end samples is composed of five
tab separated columns: (1) path to the first FASTQ file in the pair, (2) optional md5 signature for the first FASTQ
file in the pair, (3) path to the second FASTQ file in the pair, (4) optional md5 signature for the second FASTQ
file in the pair, (5) sample ID. The first two entries use the same sample ID, which is useful when a biological
sample was sequenced in multiple lanes and thus generated multiple FASTQ files. The first two pairs of FASTQ
files will be merged

http://research.libd.org/SPEAQeasy/software.html#using-custom-software
https://jhpce.jhu.edu/
http://research.libd.org/SPEAQeasy

Page 4 of 18Eagles et al. BMC Bioinformatics (2021) 22:224

SGE, or local environments. A user of a SLURM-managed cluster would launch a test
run of SPEAQeasy with:

SPEAQeasy provides test samples for each combination of reference organism and
strandness. These test samples are also used if the user does not remove the --small_
test option and doesn’t specify a directory containing the samples.manifest file with
the --input option (Implementation: test samples). While a typical test run may com-
plete in about 15 min, the first execution will take significantly longer, as reference and
annotation-related files must be downloaded and built for a given organism and anno-
tation version. After successful completion, the log file SPEAQeasy_output.log
will indicate this success at the bottom, along with details such as total run time. One
can examine and become familiar with the output files from SPEAQeasy (Results: out-
puts), which by default are placed inside the original repository in a subfolder named
results. Our documentation provides further details (http://​resea​rch.​libd.​org/​SPEAQ​
easy/).

sbatch run_pipeline_slurm.sh

Fig. 2  SPEAQeasy workflow diagram. A simplified workflow diagram for each pipeline execution. The
red box indicates the FASTQ files are inputs to the pipeline; green coloring denotes major output files from
the pipeline; the remaining boxes represent computational steps. Yellow-colored steps are optional or not
always performed; for example, preparing a particular set of annotation files occurs once and uses a cache
for further runs. Finally, blue-colored steps are ordinary processes which occur on every pipeline execution.
The workflow proceeds downward, and each row in the diagram implicitly represents the ability for several
computation steps to execute in parallel

http://research.libd.org/SPEAQeasy/
http://research.libd.org/SPEAQeasy/

Page 5 of 18Eagles et al. BMC Bioinformatics (2021) 22:224 	

Common SPEAQeasy options

Once SPEAQeasy is installed, a researcher must create a manifest file with the infor-
mation about the RNA-seq samples to be processed (Implementation: inputs). Next,
select the “main” script written to work with the job scheduler available, if any (Imple-
mentation: use cases). Within this script, a researcher may modify command options
for the particular analysis. Specifically, a choice of appropriate reference genome is
required to be specified with the option --reference, which may take values “hg19”,
“hg38”, “mm10”, or “rn6”. Specify whether reads are single or paired-end with the option
--sample, which takes values “single” or “paired”. Finally, the researcher would indi-
cate the strandness pattern they expect all samples to obey with the option --strand,
which may be “forward”, “reverse”, or “unstranded”. SPEAQeasy infers the actual strand-
ness pattern present in each sample as a quality control measure (Implementation:
configuration; Fig. 3: main options). See the documentation at http://​resea​rch.​libd.​org/​
SPEAQ​easy for further detailed options (Implementation: configuration).

SPEAQeasy output files

Each execution of SPEAQeasy generates a number of output files (Implementation: out-
puts, Additional file 3: Table S2). One of the primary outputs of interest are Ranged-
SummarizedExperiment R objects [28], which contain information about the
sequence ranges, counts, and additional annotation for each feature. SPEAQeasy pro-
duces separate files for each feature type, including genes, exons, and exon-exon junc-
tions. Because the data is packaged into RangedSummarizedExperiment objects, a

Fig. 3  Mandatory options in the main script. a The three required pieces of information the user provides
are the reference genome, sample pattern, and expected strandness pattern present in all samples. The valid
options are depicted horizontally to the right in this figure. b An example of a full command is shown- in this
case, a test run on an SGE scheduler without docker is also specified

http://research.libd.org/SPEAQeasy
http://research.libd.org/SPEAQeasy

Page 6 of 18Eagles et al. BMC Bioinformatics (2021) 22:224

number of Bioconductor packages can immediately be utilized to perform further analy-
sis appropriate for a number of common use cases, starting with interactively explor-
ing the data using tools like iSEE [42]. A collection of quality metrics is also gathered
for each sample, and saved in both an R data frame, and a comma-separated values file
(Additional file 3: Table S3). Users can thus assess metrics of interest at-a-glance, or
utilize the information to control for covariates of interest in further analysis. Metrics
include fractions of concordant, mapped, and unmapped reads during alignment, frac-
tion of reads assigned to genes, and similar quantities.

SPEAQeasy also optionally generates bigWig coverage files for each sample, and one
mean coverage file for each strand [36]. To enable comparison between samples, cov-
erage is normalized to 40 million mapped reads of 100 base pairs. While bigWig files
may be used directly, SPEAQeasy performs an additional step to quantify coverage at
genomic regions of interest. RData files are produced to describe the expressed regions
[41], which provides a foundation for analyses involving finding differentially expressed
regions.

For human samples, variant calling is performed to ultimately produce a single
file for the experiment in Variant Call Format (VCF) [51]. This file contains genotype
information at a list of 740 single nucleotide variant (SNV) missense coding sites with
MAF > 30% (Additional file 4: Supplementary File 1. Each individual typically has a
unique genotype profile after variant calling, and this can be leveraged to identify mis-
labelled samples in conjunction with a table of identity information generated prior to
sequencing, typically using a subset of the high-coverage variants in the RNA-seq data
(Results: example use case involving sample swaps).

Example use case involving sample swaps

We provide a vignette to demonstrate how SPEAQeasy outputs can be utilized to resolve
sample identity issues and perform differential expression analysis (http://​resea​rch.​libd.​
org/​SPEAQ​easy-​examp​le/) using data from the BipSeq PsychENCODE project [52]
which includes bulk RNA-seq data from bipolar disorder affected individuals and neuro-
typical controls from the amygdala and the subgenual anterior cingulate cortex (sACC).
For reproducibility, the vignette walks through how to download the example data and
run SPEAQeasy before performing the follow-up analysis.

First, we show how a self-correlation matrix can be constructed from user-provided
genotype calls made before sequencing. The particular calls at each SNP are represented
as numeric values so that an overall correlation can be computed between any two sam-
ples. The same matrix is generated from genotype calls made by SPEAQeasy (Fig. 4a).
User-provided metadata can then be leveraged to determine if samples correlate to those
of the same labelled donor, and ultimately to resolve conclusive sample swaps or drop
samples with more complex identity problems. Finally, the RangedSummarizedEx-
periment objects from SPEAQeasy can be updated with these findings and example
metadata.

Next, we explore the sources of variability in gene expression visually. First, principal
component analysis is performed to assess the impact of variables such as total number
of reads mapped and concordant map rate on expression (Fig. 4b). We also plot the first

http://research.libd.org/SPEAQeasy-example/
http://research.libd.org/SPEAQeasy-example/

Page 7 of 18Eagles et al. BMC Bioinformatics (2021) 22:224 	

ten principal components for each individual, splitting by sex and then brain region to
understand the influence of these variables on expression.

Afterward, we perform a differential expression analysis (Additional file 3: Table S4
A, Fig. 4c). This involves normalizing counts with edgeR [8], forming a design matrix
of interest, and controlling for heteroscedasticity in counts with voom [53]. limma
[30] is used to construct a linear model of expression, from which an empirical bayes-
ian calculation can determine genes which are significantly differentially expressed. We
then select genes above a particular significance threshold, in this case p < 0.2, and plot
expression against variables of interest. We show how to construct an expression heat-
map with pheatmap [54] for top genes, with clusters labelled with covariates of inter-
est- in this case, sex, brain region, and diagnosis status (Fig. 4d).

At the end, we perform a gene ontology analysis using the package clusterPro-
filer [43]. The goal is to associate significantly differentially expressed genes with
known functionality and biological processes. We show how to form example queries
with the compareCluster function, and write the results to a CSV format (Addi-
tional file 3: Table S4 B).

Fig. 4  Main output files from SPEAQeasy. SPEAQeasy produces the files described in the blue boxes,
as the final products of interest. Counts of genes, exons, and exon-exon junctions are aggregated into
three respective R objects of the familiar RangedSummarizedExperiment class. This allows users to
immediately follow up with a number of Bioconductor tools to perform any desired differential expression
analyses. If the --coverage option is provided, RData files are produced to provide expression information
over regions in the genome. This allows users to compute differentially expressed regions using any of a
number of Bioconductor packages as appropriate for the experiment. Finally, for experiments on human
samples, variants are called to ultimately produce a single VCF file of genotype calls at 740 particular SNVs.
Together with genotype data recorded before sequencing the samples, one can resolve mislabellings and
other identity issues which inevitably occur during the sequencing process (http://​resea​rch.​libd.​org/​SPEAQ​
easy-​examp​le)

http://research.libd.org/SPEAQeasy-example
http://research.libd.org/SPEAQeasy-example

Page 8 of 18Eagles et al. BMC Bioinformatics (2021) 22:224

Discussion
A number of “end-to-end” pipelines for RNA-seq are already publicly available [19–22].
However, the majority are difficult to install or configure, require manual handling of
annotation-related files, or generally lack the degree of features we have developed in
SPEAQeasy (Table S5).

A common pipeline installation pattern involves the use of conda [55], where users
activate and load environments where the software dependencies are installed. If conda
is already available on the system, the installation process itself is typically straightfor-
ward and well-documented. However, sharing pipeline access among multiple users
(e.g. in a research group/laboratory) is often nontrivial for inexperienced users, may
require every individual to separately install, and this common use-case is not always
documented. In contrast, SPEAQeasy provides more than one installation option, and
multiple users can share a single installation instance with a single copy command: copy-
ing the main script and optionally the configuration file, which can then be modified
for the individual use-case. The preferred installation method relies on Nextflow [27] to
automatically pull pre-specified docker images at run-time unless they were previously
downloaded; this approach is used in some currently-available pipelines [19]. One of the
goals of SPEAQeasy was to provide a straightforward installation method that required
neither knowledge of a software/environment management tool (e.g. conda, docker, sin-
gularity, etc.) nor root access permissions. Consequently, we also provide an alternative
method for Linux users performed via a single command (Implementation: software
management):

Another major focus in SPEAQeasy involves minimizing users needing to configure
the pipeline for the execution environment. While many existing pipelines—in theory—
support execution on a number of resource managers/ job scheduling platforms, few
are pre-configured to truly leverage individual setups. For example, snakemake-based
[56] pipelines [21, 22] allow specification of the total number of CPU cores to allocate,
behaving identically on a local machine as on an arbitrary computing cluster. However,
in practice, cluster users often must consider several other hardware resources, such
as memory or disk space usage. Most notably, users of SLURM-based clusters may be
charged based on specified run times of individual jobs. In the case of Nextflow and
snakemake-based workflows, individual jobs are internally submitted for each pipeline
component, and typically it is implicitly left to the user to worry about time specifica-
tion for every component. To address this common use-case, we have written and tested
configuration files for a number of environments (local execution, SGE-based clusters,
SLURM-based clusters), establishing sensible defaults for variables like job run-time,
memory, and disk usage.

SPEAQeasy provides other miscellaneous features we have not seen frequently or at all
in other available pipelines (Additional file 3: Table S5). The first involves being able to
automatically handle input FASTQ samples split across more than one file. Each line in
the samples.manifest file (Implementation: inputs) specifies the path for one read
or pair of reads for a sample, followed by an associated ID; for samples split across input
FASTQ files just repeat the same ID for each set (line) of input files. Another feature is

bash install_software.sh "local"

Page 9 of 18Eagles et al. BMC Bioinformatics (2021) 22:224 	

custom per-sample logging, which traces the exact series of commands executed, along
with some additional context helpful for debugging such as relevant working directo-
ries, exit statuses, and other logging information for each process (Additional file 2:
Figure S2). We were motivated to implement this feature after observing how as the
pipeline grew in complexity, it became increasingly necessary to understand Nextflow’s
implementation details to debug execution errors. Because even a correctly written soft-
ware pipeline can encounter errors when the input for a processing step is unexpectedly
different or the software has a bug, we believe pipelines without specialized debugging
tools become inaccessible to most users upon errors.

Software pipelines are sometimes not actively maintained. Given our interest in using
SPEAQeasy ourselves [24–26, 57], we are actively maintaining SPEAQeasy by adapt-
ing it as new software is released for different processing steps or bugs are resolved in
newer versions of the SPEAQeasy dependencies. SPEAQeasy includes an example data-
set which we internally use for testing the execution as we make updates to SPEAQeasy.
Given the open-source nature of SPEAQeasy and Nextflow, the SPEAQeasy code can
be adapted if users are interested in switching processing tools or want to expand sup-
port to other genome references beyond mm10, rn6, hg19 and hg38. The SPEAQeasy
code is available on GitHub (https://​github.​com/​Liebe​rInst​itute/​SPEAQ​easy and https://​
github.​com/​Liebe​rInst​itute/​SPEAQ​easy-​examp​le), and can be expanded through inter-
actions with users.

We anticipate that SPEAQeasy will be useful for exploring gene expression at a finer
resolution, such as using exon and exon-exon junction data. The latter is powerful for
exploring the un-annotated transcriptome along with base-pair coverage data [35].
SPEAQeasy will benefit from the development of statistical and bioinformatics methods
that integrate results across multiple levels of expression.

Implementation
Overview

Pipeline execution begins with a preliminary gauge of read quality and other quality
metrics, via FastQC 0.11.8 [15]. Reads are then optionally trimmed using Trimmomatic
0.39 [46], and a post-trimming quality assessment is performed again with FastQC.
Alignment to a reference genome is performed with HISAT2 2.1.0 [37], along with pseu-
doalignment to the transcriptome with kallisto 0.46.1 [38] or Salmon 1.2.1 [39]. A com-
bination of regtools 0.5.1 [40] and featureCounts (Subread 2.0.0) [14] is used to quantify
genes, exons, and exon-exon junctions. At the same time, expressed regions (ERs) are
optionally computed with the Bioconductor [29] R package derfinder [41]. The result
is a RangedSummarizedExperiment [29] object with counts information, RData
files with ER information, and plots visualizing the associated data. Variant calling is also
performed for human samples, using bcftools 1.10.2 [44] to produce a VCF file [51] for
the experiment. SPEAQeasy is flexible and allows for newer versions of software to be
used in place of the ones listed above.

Configuration

Usage of SPEAQeasy involves configuring two files: the “main” script and a configu-
ration file. The “main” script contains the command which runs the pipeline, along

https://github.com/LieberInstitute/SPEAQeasy
https://github.com/LieberInstitute/SPEAQeasy-example
https://github.com/LieberInstitute/SPEAQeasy-example

Page 10 of 18Eagles et al. BMC Bioinformatics (2021) 22:224

with options specific to the input data, and fundamental choices about how the pipe-
line should behave. In this script, the researcher must specify if reads are paired-end
or single-end, the reference species/genome (i.e. hg38, hg19, mm10, or rn6), and the
expected strandness pattern to see in all samples (e.g. “reverse”). Strandness is automat-
ically inferred using pseudoalignment rates with kallisto [38], and the pipeline can be
configured to either halt upon any disagreement between asserted and inferred strand,
or simply warn and continue. In particular, we perform pseudoalignment to the refer-
ence transcriptome using a subset of reads from each sample, trying both the rf-stranded
and fr-stranded command-line options accepted by kallisto. The number of successfully
aligned reads for each option is used to deduce the actual strandness for each sample.
For example, an approximately equal number (40–60%) of aligned reads for each option
suggests the reads lack strand-specificity and are thus “unstranded”; a large enough fold-
difference between the two indicates either “reverse” or “forward”-strandness. Specifi-
cally, greater than 80% of total reads aligned must have aligned using the rf-stranded
option to deduce a sample is “reverse”-stranded, and less than 20% to infer “forward”-
strandness. We have found these cutoffs to reliably identify inaccurate --strand speci-
fication from the user, while not being so strict as to mistakenly disagree with correct
specification. Another example command option in the “main” script controls whether
to trim samples based on adapter content metrics from FastQC [15], trim all samples, or
not perform trimming at all.

The configuration file allows for fine-tuning of pipeline settings and hardware resource
demands for each pipeline component. Ease of use is a core focus in SPEAQeasy, and
configuration files for SLURM, SGE, and local linux environments are pre-built with
sensible defaults. The user is not required to modify the configuration file at all to appro-
priately run SPEAQeasy; however, a great degree of control and customization exists for
those users who desire it. Advanced users can tweak simple configuration variables to
pass arbitrary command-line arguments directly to each of the software tools invoked
by SPEAQeasy. For example, when creating wiggle coverage files from BAM alignment
files, the default is to normalize counts to 40 million mapped reads of 100 base pairs.
This is achieved by the default value for the following variable in each configuration file:

Suppose a researcher were instead interested in normalizing to 40 million mapped
reads of 150 base pairs, and wanted to skip duplicate hit reads. The above variable could
be adjusted to pass the appropriate command arguments to bam2wig.py [58]:

The same procedure can be used to fine-tune any other software tool used in
SPEAQeasy, allowing a level of control similar to directly running each step. At the same
time, settings related to variables such as strandness, possible pairing of reads, and file
naming choices are automatically accounted for.

bam2wig_args = “− t 4000000000"

bam2wig_args = “− t 6000000000 − u"

Page 11 of 18Eagles et al. BMC Bioinformatics (2021) 22:224 	

Inputs

A single file, called samples.manifest, is used to point SPEAQeasy to the input FASTQ
files, and associate samples with particular IDs. It is a table saved as a tab-delimited text
file, containing the path to each read (or pair of reads), optional MD5 sums, and a sam-
ple ID. Sample IDs can be repeated, which allows samples initially split across multiple
files to be merged automatically (Fig. 5). Input files must be in FASTQ format, with “.fq”
“.fastq” extensions supported, and possibly with the additional “.gz” extension for gzip-
compressed files.

Outputs

SPEAQeasy produces several output files, some of which are produced by the processing
tools themselves (Additional file 3: Table S2) and others by SPEAQeasy for facilitating
downstream analyses (Fig. 2). The main SPEAQeasy output files, relative to the specified
--output directory, are:

Bipolar Control−0
.5

0.
5

1.
0

1.
5

2.
0

2.
5

ZIM2 − ENSG00000269699.6

N
or

m
al

iz
ed

 lo
g2

 E
xp

rs

p=2.07e−06

R
14030

R
13896

R
13904

R
14125

R
14069

R
15120

R
14023

R
14031

R
13985

R
13995

R
13986

R
14091

R
14238

R
14077

R
14296

R
14129

R
14136

R
14202

R
14017

R
14279

R
13903

R
14225

R
14184

R
14304

R
13983

R
14073

R
14223

R
14156

R
14995

R
15068

R
15090

R
14039

R
14071

R
14290

R
14102

R
15016

R
14247

R
15134

R
15058

R
15093

Diagnosis
Sex
Region

Region
Amygdala
sACC

Sex
M
F

Diagnosis
Bipolar
Control−5

0

5

0

0.2

0.4

0.6

0.8

1

−100 −50 0 50

−6
0

−4
0

−2
0

0
20

40

PC1: 20.8% Var Expl

PC
2:

 1
5.

2%
 V

ar
 E

xp
l

Bipolar
Control

a

c
d

b

Fig. 5  Example analysis results from applying SPEAQeasy to a subset of the BipSeq PsychENCODE
dataset. a Heatmap of the spearman correlation across samples using variant information derived from the
RNA-seq data produced by SPEAQeasy. Off-diagonal high correlation values indicate potential sample swaps.
b Top two principal components (PCs) derived from the gene expression counts produced by SPEAQeasy
colored by diagnosis. c Boxplots of the normalized log2 expression for the top differentially expressed
between controls and bipolar disorder affected individuals using a subset of the BipSeq PsychENCODE data
processed using SPEAQeasy. d Heatmap of the top differentially expressed genes with annotations for the
brain region (amygdala or sACC), sex (male or female) and diagnosis (bipolar or control). See http://​resea​rch.​
libd.​org/​SPEAQ​easy-​examp​le/ for the full example analysis

http://research.libd.org/SPEAQeasy-example/
http://research.libd.org/SPEAQeasy-example/

Page 12 of 18Eagles et al. BMC Bioinformatics (2021) 22:224

Under the count_objects/ directory, rse_gene_[experiment_name].
Rdata, rse_exon_[experiment_name].Rdata, rse_jx_[experiment_
name].Rdata and rse_tx_[experiment_name].Rdata: these are Ranged-
SummarizedExperiment objects [29] that contain the raw expression counts (gene &
exon: featureCounts; exon-exon junctions: from regtools; transcript: either kallisto
or Salmon counts), the quality metrics as the sample phenotype data (Additional
file 3: Table S3), and the expression feature information that depends on the refer-
ence genome used.
Under the merged_variants/ directory for human samples, mergedVari-
ants.vcf.gz: this is a Variant Call Format (VCF) file [51] with the information
for 740 common variants that can be used to identify sample swaps. For example, if
two or more brain regions were sequenced from a given donor, the inferred geno-
types at these variants can be used to verify that samples are correctly grouped. If
external DNA genotype information exists from a DNA genotyping chip, one can
then verify that the RNA sample indeed matches the expected donor, to ensure that
downstream expression quantitative trait locus (eQTL) analyses will use the correct
RNA and DNA paired data.
Under the coverage/bigWigs/ directory when SPEAQeasy is run with the
--coverage option,[sample_name].bw for unstranded samples or [sample_
name].forward.bw and [sample_name].reverse.bw for stranded sam-
ples: these are base-pair coverage bigWig files standardized to 40 million 100 base-
pair reads per bigWig file. They can be used for identification of expressed regions in
an annotation-agnostic way [41], for quantification of regions associated with degra-
dation such as in the qSVA algorithm [59], visualization on a genome browser [60],
among other uses.

Software management

SPEAQeasy provides two options for managing software dependencies. If docker [61]
is available on the system the user intends to run the pipeline, software can be man-
aged in a truly reproducible and effortless manner. As a pipeline based on Nextflow,
SPEAQeasy can isolate individual components of the workflow, called processes, inside
docker containers. Containers describe the entire environment and set of software ver-
sions required to run a pipeline command (such as hisat2-align), eliminating common
problems that may occur when a set of software tools (such as SPEAQeasy) is installed
on a different system than it was developed. Each docker image is pulled automatically at
runtime if not already downloaded (on the first pipeline run), and otherwise the locally
downloaded image is used.

Because docker is not always available, or permissions are not trivial to configure,
Linux users may alternatively install software dependencies locally. From within the
repository directory, the user would run the command:

bash install_software.sh "local"

Page 13 of 18Eagles et al. BMC Bioinformatics (2021) 22:224 	

This installs each software utility from source, where available, and as a pre-compiled
binary otherwise. Because installation is performed within a subdirectory of the reposi-
tory, the user need not have root access for the majority of tools. However, we require
that Java and Python3 be globally installed. The motivation for this requirement is that
we expect most users to have these tools already installed globally, and local installation
of these tools is generally advised against because of potential conflicts with other instal-
lations on the system.

Though docker and local software installation are the officially supported and recom-
mended methods for managing software, other alternatives exist for interested users.
SPEAQeasy includes a file called conf/command_paths_long.config, containing
the long paths for each software utility to be called during pipeline execution. Users can
substitute in the paths to already-installed software versions for any utility, in this file.
Those familiar with Lmod environment modules [50] can also trivially specify in their
configuration file module names to use for a particular SPEAQeasy process. However,
this tends to only be a viable option for those with a diverse set of bioinformatics mod-
ules already installed.

Annotation

SPEAQeasy is intended to be greatly flexible with annotation and reference files. By
default, annotation files (the reference genome, reference transcriptome, and transcript
annotation) are pulled from GENCODE [62] for human and mouse samples, or Ensembl
[63] for rat samples. The choice of species is controlled by the command flag “--ref-
erence” in the “main” script, which can hold values “hg38”, “hg19”, “mm10”, or “rn6”. In
the configuration file, simple variables control the GENCODE release or ensembl ver-
sion to be used. When the pipeline run is executed, SPEAQeasy checks if the specified
annotation files have already been downloaded. If so, the download is not performed
again for the current or future runs. This reflects a general feature of SPEAQeasy, pro-
vided by its Nextflow base- processes are never “repeated” if their outputs already exist.
The outputs are simply cached and the associated processes are skipped.

SPEAQeasy also offers easy control over the particular sequences included in the anal-
ysis- a feature we have not seen in other publically-available RNA-seq pipelines utiliz-
ing databases such as GENCODE or Ensembl. In particular, researchers are sometimes
only interested in alignments/results associated with the canonical reference chromo-
somes (e.g. chr1-chr22, chrX, chrY, and chrMT for homo sapiens). Alternatively, some-
times extra contigs (sequences commonly beginning with “GL” or “KI”) are a desired
part of the analysis as well. RNA-seq workflows commonly overlook subtle disagreement
between the sequences aligned against, and sequences included in downstream analysis.
SPEAQeasy provides a single configuration variable, called anno_build, to avoid this
issue, and capture the majority of use cases. Setting the variable to “main’’ uses only the
canonical reference sequences for the entire pipeline; a value of “primary” includes addi-
tional contigs seen in GENCODE [62] annotation files having the “primary” designation
in their names (e.g. GRCh38.primary_assembly.genome.fa).

Users are not limited to using GENCODE/Ensembl annotation, however. Instead, one
can optionally point to a directory containing the required annotation files with the main
command option “--annotation [directory path]”. To specify this directory

Page 14 of 18Eagles et al. BMC Bioinformatics (2021) 22:224

contains custom annotation files, rather than the location to place GENCODE/Ensembl
files, one uses the option “--custom_anno [label]”. The label associates internally-
produced files with a name for the particular annotation used. The required annotation
files include a genome assembly fasta, a reference transcriptome fasta, and a transcrip-
tome annotation GTF. For human samples, a list of sites in VCF format [51] at which to
call variants is also required. Finally, if ERCC quantification is to be performed, an ERCC
index for kallisto must be provided [45].

Use cases

We expect that the majority of users will have access to cloud computing resources or
a local computing cluster, managing computational resources across a potentially large
set of members with a scheduler such as Simple Linux Utility for Resource Manage-
ment (SLURM) or Sun Grid Engine / Son of Grid Engine (SGE). However, SPEAQeasy
can also be run locally on a Linux-based machine. For each of these situations, a “main”
script and associated configuration file are pre-configured for out-of-the-box compat-
ibility. For example, a SLURM user would open run_pipeline_slurm.sh to set
options for his/her experiment, and optionally adjust settings in conf/slurm.config
(or conf/docker_slurm.config for docker users).

In the configuration file, simple variables such as “memory” and “cpus” transparently
control hardware resource specification for each process (such as main memory and
number of CPU cores to use). These syntaxes come from Nextflow, which manages how
to translate these simple user-defined options into a syntax recognized by the cluster (if
applicable). However, Nextflow also makes it simple to explicitly specify cluster-specific
options. Suppose, for example, that a particular user intends to use SPEAQeasy on an
SGE-based computing cluster, but knows his/her cluster limits the default maximum file
size that can be written during a job. If a SPEAQeasy process happens to exceed this
limit, the user can find the process name in the appropriate config file (Additional file 3:
Table S1), and add the line “clusterOptions = ’-l h_fsize = 100G’" (this is the
SGE syntax for raising the mentioned file size limit to 100G per file, a likely more liberal
constraint).

We also expect a common use case would involve sharing a single installation of
SPEAQeasy among a number of users (e.g. a research lab). A new user wishing to run
SPEAQeasy on his/her own dataset simply must copy the appropriate “main” script (e.g.
run_pipeline_slurm.sh) to a desired directory, and modify it for the experiment.
All users then benefit from automatic access to any annotation files which have been
pulled or built by the pipeline in the past, and by default share configuration (poten-
tially reducing work in optimizing setup specific to one’s cluster). However, user-specific
annotation locations or configuration settings can be chosen by simple command-line
options, if preferred.

Test samples

The test samples were downloaded from the Sequence Read Archive (SRA) or simulated
using polyester [64], depending on the organism, strandness, and pairing of the samples.
Each was then subsetted to 100,000 reads.

Page 15 of 18Eagles et al. BMC Bioinformatics (2021) 22:224 	

Human:

Single-end, reverse: SRS7176970 and SRS7176971 [65]
Single-end, forward: ERS2758385 and ERS2758384
Paired-end reverse: SRS5027402 and SRS5027403 [66]
Paired-end forward: samples dm3_file1 and dm3_file2 from Rail-RNA [67];
samples sample_01 and sample_02 generated with polyester [64]

Mouse

Single-end, reverse: SRS7205735 and ERS3517668
Single-end, forward: all files generated with polyester [64]
Paired-end, reverse: SRS7160912 and SRS7160911
Paired-end, forward: all files generated with polyester [64]

Rat

Single-end, reverse: SRS6431375
Single-end, forward: all files generated with polyester [64]
Paired-end, reverse: SRS6590988 and SRS6590989 [68]
Paired-end, forward: all files generated with polyester [64]

Conclusion
We present SPEAQeasy, an actively maintained pipeline that aggregates counts, qual-
ity metrics, and covariates of interest into RangedSummarizedExperiment [29]
objects for immediate integration with a number of Bioconductor R packages for poten-
tial downstream analyses. SPEAQeasy is designed to be accessible to researchers of any
level of technical experience, and work “out of the box” in many common computational
environments. Configuration automatically handles annotation, hardware resource allo-
cation, and software-specific settings with reasonable defaults, but provides flexibility
for those interested in fine-tuning. We believe SPEAQeasy will be a useful bridging tool
for those accustomed to the Bioconductor world of RNA-seq analysis.

Abbreviations
AWS: Amazon Web Services; CPU: Central processing unit; CSV: Comma-separated values (file format); ER: Expressed
region; ERCC​: External RNA Controls Consortium; eQTL: Expression quantitative trait locus; JHPCE: John Hopkins Perfor‑
mance Computing Environment; MAF: Minor allele frequency; qSVA: Quality surrogate variable analysis; RNA-seq: RNA
sequencing; SGE: Sun Grid Engine or Son of Grid Engine; SLURM: Simple Linux Utility for Resource Management; SNV:
Single nucleotide variant; SPEAQeasy: A scalable pipeline for expression analysis and quantification; SRA: Sequence Read
Archive; sACC​: Subgenual anterior cingulate cortex; VCF: Variant Call Format.

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12859-​021-​04142-3.

Additional file 1. Figure S1: Expected vs. Actual ERCC concentration. SPEAQeasy produces plots for each sample,
for easy visual comparison of expected ERCC transcript abundance with the kallisto-measured concentration.

https://doi.org/10.1186/s12859-021-04142-3

Page 16 of 18Eagles et al. BMC Bioinformatics (2021) 22:224

Additional file 2: Figure S2: SPEAQeasy logs tracing computational steps by sample. To aid transparency and
greatly simplify the source of execution errors, SPEAQeasy automatically generates logs with several pieces of infor‑
mation for every sample. In order of submission, the name of each Nextflow process is printed, along with (1) the
working directory: where all relevant files are present, (2) the exit code: a standard indication of whether the process
succeeded or how it failed, (3) a list of the specific commands run during the given process. Above is a snapshot of
the top of an example log

Additional file 3: Table S1. Available configuration profiles. Configuration files exist under the SPEAQeasy/
conf directory. Configuration profiles exist for SGE and SLURM clusters, as well as local execution on a Linux
machine. These profiles can be customized for specific clusters, such as the JHPCE configuration file jhpce.config,
which runs on an SGE cluster. The file a user chooses also depends on whether software dependencies are managed
with docker, or are installed locally. Table S2. SPEAQeasy output files. Table of intermediary outputs generated by
SPEAQeasy. These do not include the major output files of interest (Fig. 2), but other miscellaneous outputs from
each processing step. In the Filename column, brackets denote one or more values dependent on a relevant vari‑
able; for example, the files [sample_name]_process_trace.log refer to a set of several files, each named
distinctly according to the sample associated with the particular file. An asterisk represents a wildcard matching
more than one file, when individual file names may depend on the experiment. For example, [sample_name]_
trimmed*.fastq could refer to sample1_trimmed_1.fastq and sample1_trimmed_2.fastq.
The next columns provide the directory containing each given file, relative to the output folder, and a description of
the files’ content, respectively. Table S3. Quality metrics recorded in SPEAQeasy outputs. One of the major pipe‑
line outputs is a comma-separated values (CSV) file where fields (columns) are different quality metrics, and each line
(row) is associated with one sample. A list of the exact field names and their descriptions is given above. Table S4.
SPEAQeasy-example differential expression and gene ontology results. (A) Differential expression results using
the subset of BipSeq data analyzed in http://​resea​rch.​libd.​org/​SPEAQ​easy-​examp​le/. (B) Gene ontology enrichment
results from the genes with a p-value < 0.005 in the differential expression results between bipolar disorder affected
individuals and neurotypical controls. Table S5. Pipeline comparison. A comparison of usage-related features
among several publicly available RNA-seq pipelines.

Additional file 4. SNVs supplementary BED files. The common SNVs used for sample identification are stored in
the BED files (A) common_missense_SNVs_hg19.bed and (B) common_missense_SNVs_hg38.bed.

Acknowledgements
We would like to acknowledge the authors of processing software tools SPEAQeasy is based upon, especially those who
answered our questions on GitHub issues, support forums and emails.

Availability and requirements

Project name: SPEAQeasy
Project home page: http://​resea​rch.​libd.​org/​SPEAQ​easy/ and https://​github.​com/​Liebe​rInst​itute/​SPEAQ​easy
Operating system(s): Linux, Mac OS
Programming language: Groovy, R, bash
Other requirements: Java 8 or higher, Python3 with pip
License: Artistic-2.0
Any restrictions to use by non-academics: None

Authors’ contributions
N.J.E.—Conceptualization, Methodology, Software, Writing—Original Draft, Visualization. E.E.B.—Conceptualization,
Methodology, Software. J.L.—Methodology, Software. B.K.B.—Methodology, Software. J.M.S.—Formal Analysis. L.H.—
Data Curation. B.N.P.—Software. V.L.S.—Software. E.G-M. – Software. I.A-O.—Methodology, Software, Project administra‑
tion. A.E.J.—Conceptualization, Methodology, Software, Writing—Review & Editing, Project administration. L.C-T.—Con‑
ceptualization, Methodology, Software, Writing—Original Draft, Writing—Review & Editing, Project administration. All
authors have read and approved the final manuscript.

Funding
This project was supported by the Lieber Institute for Brain Development and NIH R21MH120497-01. All funders had no
role in the design of this study.

Availability of data and materials
SPEAQeasy makes use of test samples, which were originally obtained SRA, Rail-RNA [67], or generated using polyester
[64] (Implementation: test samples). These data are all available from directly within SPEAQeasy (https://​github.​com/​
Liebe​rInst​itute/​SPEAQ​easy). The code that uses the example data from the BipSeq PsychENCODE project [52] is available
at https://​github.​com/​Liebe​rInst​itute/​SPEAQ​easy-​examp​le.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

http://research.libd.org/SPEAQeasy-example/
http://research.libd.org/SPEAQeasy/
https://github.com/LieberInstitute/SPEAQeasy
https://github.com/LieberInstitute/SPEAQeasy
https://github.com/LieberInstitute/SPEAQeasy
https://github.com/LieberInstitute/SPEAQeasy-example

Page 17 of 18Eagles et al. BMC Bioinformatics (2021) 22:224 	

Conflict of interest
J.L., V.L.S., E.G-M., I.A-O. were employed by Winter Genomics. All other authors have no conflicts of interest to declare.
Winter Genomics had no role in the design of this study.

Author details
1 Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA. 2 Winter Genomics,
Salaverry 874 int 100, Lindavista, CDMX 07300, Mexico. 3 QuestBridge Scholar, Palo Alto, CA 94303, USA. 4 Department
of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA. 5 Computational Biology Department,
School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA. 6 Medical Scientist Training Program,
School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA. 7 Instituto Politécnico Nacional, Escuela Nacional
de Ciencias Biológicas, Mexico City, CDMX 11340, Mexico. 8 Department of Supercomputing, Instituto Nacional de
Medicina Genómica (INMEGEN), Mexico City, CDMX 14610, Mexico. 9 Center for Computational Biology, Johns Hopkins
University, Baltimore, MD 21205, USA. 10 Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health,
Baltimore, MD 21205, USA. 11 Department of Genetic Medicine, McKusick‑Nathans Institute of Genetic Medicine, Johns
Hopkins University School of Medicine, Baltimore, MD 21205, USA. 12 Department of Psychiatry and Behavioral Sciences,
Johns Hopkins School of Medicine, Baltimore, MD 21205, USA. 13 Department of Mental Health, Johns Hopkins Bloomb‑
erg School of Public Health, Baltimore, MD 21205, USA.

Received: 29 January 2021 Accepted: 21 April 2021

References
	1.	 Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of next-generation sequencing technologies.

Nat Rev Genet. 2016;17:333–51.
	2.	 Hawkins RD, Hon GC, Ren B. Next-generation genomics: an integrative approach. Nat Rev Genet. 2010;11:476–86.
	3.	 Metzker ML. Sequencing technologies - the next generation. Nat Rev Genet. 2010;11:31–46.
	4.	 Stark R, Grzelak M, Hadfield J. RNA sequencing: the teenage years. Nat Rev Genet. 2019;20:631–56.
	5.	 K. Van den Berge et al., RNA sequencing data: hitchhiker’s guide to expression analysis. Annu. Rev. Biomed. Data Sci. 2

(2019). https://​doi.​org/​10.​1146/​annur​ev-​bioda​tasci-​072018-​021255.
	6.	 Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10:57–63.
	7.	 Cock PJA, Fields CJ, Goto N, Heuer ML, Rice PM. The Sanger FASTQ file format for sequences with quality scores, and

the Solexa/Illumina FASTQ variants. Nucleic Acids Res. 2010;38:1767–71.
	8.	 Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital

gene expression data. Bioinformatics. 2010;26:139–40.
	9.	 Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.

Genome Biol. 2014;15:550.
	10.	 Ballouz S, Dobin A, Gingeras TR, Gillis J. The fractured landscape of RNA-seq alignment: the default in our STARs.

Nucleic Acids Res. 2018;46:5125–38.
	11.	 Trapnell C, Salzberg SL. How to map billions of short reads onto genomes. Nat Biotechnol. 2009;27:455–7.
	12.	 Dobin A, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21.
	13.	 Anders S, Pyl PT, Huber W. HTSeq — a Python framework to work with high-throughput sequencing data. Bioinfor‑

matics. 2015;31:166–9.
	14.	 Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to

genomic features. Bioinformatics. 2014;30:923–30.
	15.	 S. Andrews, Babraham Bioinformatics - FastQC A Quality Control tool for High Throughput Sequence Data (2018),

(available at https://​www.​bioin​forma​tics.​babra​ham.​ac.​uk/​proje​cts/​fastqc/).
	16.	 Pertea M, et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol.

2015;33:290–5.
	17.	 Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: summarize analysis results for multiple tools and samples in a

single report. Bioinformatics. 2016;32:3047–8.
	18.	 Collado-Torres L, et al. Reproducible RNA-seq analysis using recount2. Nat Biotechnol. 2017;35:319–21.
	19.	 P. Ewels et al. nf-core/rnaseq: nf-core/rnaseq version 1.4.2. Zenodo 2019;https://​doi.​org/​10.​5281/​zenodo.​35038​87.
	20.	 Federico A, et al. Pipeliner: A Nextflow-Based Framework for the Definition of Sequencing Data Processing Pipelines.

Front Genet. 2019;10:614.
	21.	 Cornwell M, et al. VIPER: Visualization Pipeline for RNA-seq, a Snakemake workflow for efficient and complete RNA-

seq analysis. BMC Bioinformatics. 2018;19:135.
	22.	 S. Orjuela, R. Huang, K. M. Hembach, M. D. Robinson, C. Soneson, ARMOR: An Automated Reproducible MOdular

Workflow for Preprocessing and Differential Analysis of RNA-seq Data. G3 (Bethesda). 9, 2089–2096 (2019).
	23.	 Seelbinder B, et al. GEO2RNAseq: An easy-to-use R pipeline for complete pre-processing of RNA-seq data. BioRxiv.

2019. https://​doi.​org/​10.​1101/​771063.
	24.	 Collado-Torres L, et al. Regional heterogeneity in gene expression, regulation, and coherence in the frontal cortex

and hippocampus across development and schizophrenia. Neuron. 2019;103:203-216.e8.
	25.	 Jaffe AE, et al. Profiling gene expression in the human dentate gyrus granule cell layer reveals insights into schizo‑

phrenia and its genetic risk. Nat Neurosci. 2020;23:510–9.
	26.	 Burke EE, et al. Dissecting transcriptomic signatures of neuronal differentiation and maturation using iPSCs. Nat

Commun. 2020;11:462.
	27.	 Di Tommaso P, et al. Nextflow enables reproducible computational workflows. Nat Biotechnol. 2017;35:316–9.
	28.	 M. Morgan, V. Obenchain, J. Hester, H. Pagès, SummarizedExperiment: SummarizedExperiment container (2019).
	29.	 Huber W, et al. Orchestrating high-throughput genomic analysis with Bioconductor. Nat Methods. 2015;12:115–21.

https://doi.org/10.1146/annurev-biodatasci-072018-021255
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://doi.org/10.5281/zenodo.3503887
https://doi.org/10.1101/771063

Page 18 of 18Eagles et al. BMC Bioinformatics (2021) 22:224

	30.	 Ritchie ME, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic
Acids Res. 2015;43:e47.

	31.	 Huang J, Chen J, Lathrop M, Liang L. A tool for RNA sequencing sample identity check. Bioinformatics.
2013;29:1463–4.

	32.	 Fort A, et al. MBV: a method to solve sample mislabeling and detect technical bias in large combined genotype and
sequencing assay datasets. Bioinformatics. 2017;33:1895–7.

	33.	 Deelen P, et al. Calling genotypes from public RNA-sequencing data enables identification of genetic variants that
affect gene-expression levels. Genome Med. 2015;7:30.

	34.	 Morillon A, Gautheret D. Bridging the gap between reference and real transcriptomes. Genome Biol. 2019;20:112.
	35.	 D. Zhang et al., Incomplete annotation has a disproportionate impact on our understanding of Mendelian and

complex neurogenetic disorders. Sci. Adv. 6, eaay8299 (2020).
	36.	 Kent WJ, Zweig AS, Barber G, Hinrichs AS, Karolchik D. BigWig and BigBed: enabling browsing of large distributed

datasets. Bioinformatics. 2010;26:2204–7.
	37.	 Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and genotyping with HISAT2 and

HISAT-genotype. Nat Biotechnol. 2019;37:907–15.
	38.	 Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol.

2016;34:525–7.
	39.	 Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of transcript

expression. Nat Methods. 2017;14:417–9.
	40.	 Feng Y-Y, et al. RegTools: Integrated analysis of genomic and transcriptomic data for discovery of splicing variants in

cancer. BioRxiv. 2018. https://​doi.​org/​10.​1101/​436634.
	41.	 Collado-Torres L, et al. Flexible expressed region analysis for RNA-seq with derfinder. Nucleic Acids Res. 2017;45:e9.
	42.	 K. Rue-Albrecht, F. Marini, C. Soneson, A. T. L. Lun, iSEE: Interactive SummarizedExperiment Explorer. [version 1; peer

review: 3 approved]. F1000Res. 7, 741 (2018).
	43.	 Yu G, Wang L-G, Han Y, He Q-Y. clusterProfiler: an R package for comparing biological themes among gene clusters.

OMICS. 2012;16:284–7.
	44.	 Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical

parameter estimation from sequencing data. Bioinformatics. 2011;27:2987–93.
	45.	 Lee H, Pine PS, McDaniel J, Salit M, Oliver B. External RNA controls consortium beta version update. J Genomics.

2016;4:19–22.
	46.	 Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics.

2014;30:2114–20.
	47.	 F. Krueger, GitHub - FelixKrueger/TrimGalore: A wrapper around Cutadapt and FastQC to consistently apply adapter

and quality trimming to FastQ files, with extra functionality for RRBS data (2019), (available at https://​github.​com/​
Felix​Krueg​er/​TrimG​alore).

	48.	 D. Merkel, Docker: Lightweight Linux Containers for Consistent Development and Deployment. Linux J. 2014 (2014).
	49.	 Langmead B, Nellore A. Cloud computing for genomic data analysis and collaboration. Nat Rev Genet.

2018;19:208–19.
	50.	 McLay R, Schulz KW, Barth WL, Minyard T. in State of the Practice Reports on - SC ’11. New York, New York, USA: ACM

Press; 2011. p. 1.
	51.	 Danecek P, et al. The variant call format and VCFtools. Bioinformatics. 2011;27:2156–8.
	52.	 PsychENCODE Knowledge Portal. Synapse. 2016. https://​doi.​org/​10.​7303/​syn49​21369.
	53.	 Law CW, Chen Y, Shi W, Smyth GK. voom: Precision weights unlock linear model analysis tools for RNA-seq read

counts. Genome Biol. 2014;15:R29.
	54.	 R. Kolde, pheatmap: Pretty Heatmaps (2019).
	55.	 Anaconda, Anaconda Software Distribution (Anaconda, 2016).
	56.	 Köster J, Rahmann S. Snakemake–a scalable bioinformatics workflow engine. Bioinformatics. 2012;28:2520–2.
	57.	 Price AJ, et al. Divergent neuronal DNA methylation patterns across human cortical development reveal critical

periods and a unique role of CpH methylation. Genome Biol. 2019;20:196.
	58.	 Wang L, Wang S, Li W. RSeQC: quality control of RNA-seq experiments. Bioinformatics. 2012;28:2184–5.
	59.	 Jaffe AE, et al. qSVA framework for RNA quality correction in differential expression analysis. Proc Natl Acad Sci USA.

2017;114:7130–5.
	60.	 Kent WJ, et al. The human genome browser at UCSC. Genome Res. 2002;12:996–1006.
	61.	 W. Zhang et al., Lightweight Container-based User Environment (2019).
	62.	 Frankish A, et al. GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res.

2019;47:D766–73.
	63.	 Cunningham F, et al. Ensembl 2019. Nucleic Acids Res. 2019;47:D745–51.
	64.	 A. C. Frazee, A. E. Jaffe, R. Kirchner, J. T. Leek, polyester: Simulate RNA-seq reads (2020).
	65.	 Y. Han et al., Identification of SARS-CoV-2 inhibitors using lung and colonic organoids. Nature. 589, 270–275.
	66.	 Magini P, et al. Loss of SMPD4 causes a developmental disorder characterized by microcephaly and congenital

arthrogryposis. Am J Hum Genet. 2019;105:689–705.
	67.	 Nellore A, et al. Rail-RNA: scalable analysis of RNA-seq splicing and coverage. Bioinformatics. 2017;33:4033–40.
	68.	 Xiao G, et al. Transcriptomic analysis identifies Toll-like and Nod-like pathways and necroptosis in pulmonary arterial

hypertension. J Cell Mol Med. 2020;24:11409–21.
	69.	 Li H, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–9.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1101/436634
https://github.com/FelixKrueger/TrimGalore
https://github.com/FelixKrueger/TrimGalore
https://doi.org/10.7303/syn4921369

	SPEAQeasy: a scalable pipeline for expression analysis and quantification for Rbioconductor-powered RNA-seq analyses
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	Results
	Overview
	Configuring SPEAQeasy
	Common SPEAQeasy options
	SPEAQeasy output files
	Example use case involving sample swaps

	Discussion
	Implementation
	Overview
	Configuration
	Inputs
	Outputs
	Software management
	Annotation
	Use cases
	Test samples

	Conclusion
	Acknowledgements
	References

