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Abstract

Motivation: High resolution annotation of gene functions is a central goal in functional genomics. A single gene
may produce multiple isoforms with different functions through alternative splicing. Conventional approaches, how-
ever, consider a gene as a single entity without differentiating these functionally different isoforms. Towards under-
standing gene functions at higher resolution, recent efforts have focused on predicting the functions of isoforms.
However, the performance of existing methods is far from satisfactory mainly because of the lack of isoform-level
functional annotation.

Results: We present IsoResolve, a novel approach for isoform function prediction, which leverages the information
from gene function prediction models with domain adaptation (DA). IsoResolve treats gene-level and isoform-level
features as source and target domains, respectively. It uses DA to project the two domains into a latent variable
space in such a way that the latent variables from the two domains have similar distribution, which enables the gene
domain information to be leveraged for isoform function prediction. We systematically evaluated the performance
of IsoResolve in predicting functions. Compared with five state-of-the-art methods, IsoResolve achieved significantly
better performance. IsoResolve was further validated by case studies of genes with isoform-level functional
annotation.

Availability and implementation: IsoResolve is freely available at https://github.com/genemine/IsoResolve.

Contact: jxwang@mail.csu.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

A central goal of functional genomics is to accurately annotate the
function of genes and their encoded proteins (Severing et al., 2011),
which is fundamental for advancing the understanding of important
biological processes (Schmitz et al., 2012), such as cell differenti-
ation (Mathys et al., 2019; Xu et al., 2019), tissue development and
disease progression (Chen and Crowther, 2012; Guan et al., 2010;
Liu et al., 2020a,b). Much progress has been made in predicting
gene functions by mining heterogeneous functional genomics data
with computational approaches. A binomial model in combination
with Markov random field propagation was proposed to predict

protein functions by mining protein interaction data (Letovsky and
Kasif, 2003). The computational prediction of cancer gene functions
was systematically discussed in a review (Hu et al., 2007). Gene
functions in a hierarchical context were predicted using an ensemble
of support vector machines (Guan et al., 2008). By formulating the
prediction of gene function as a multilabel learning problem, a deci-
sion tree-based method was established (Schietgat et al., 2010). Very
recently, a method integrating sequence and protein–protein inter-
action networks with a learning-to-rank framework was proposed
(You et al., 2019). The semantic similarity based on compressed
Gene Ontology (GO) terms was shown to be promising for gene
function prediction (Zhao et al., 2019).
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A major limitation of gene function prediction is that available
methods treat a gene as a single entity, neglecting the fact that a sin-
gle gene may produce multiple isoforms through alternative splicing
(Baralle et al., 2017; Dominguez et al., 2016; Song et al., 2017;
Weyn-Vanhentenryck et al., 2018) and that the functions of iso-
forms may be largely different and even opposing (Menon et al.,
2011; Pan et al., 2008). For example, the principal isoform of
CASP3 consists of seven exons. Alternative splicing generates a
shorter isoform CASP3-s resulting from the deletion of Exon 6,
which leads to an altered open reading frame and a peptide with
altered amino acid sequences. CASP3-s is anti-apoptotic while the
principal isoform is pro-apoptotic (Vegran et al., 2006). TRPM3
belongs to the transient receptor potential ion channel family. The
two isoforms TRPM3a1 and TRPM3a2 of the same gene were
studied and it was found that their ion selectivities were disparate
(Oberwinkler et al., 2005). The permeability of TRPM3a1 for Ca2þ

and Mg2þ was very poor, while TRPM3a2 could be easily perme-
ated by these divalent cations. The pairs of isoforms for several
genes including Anxa6, Calu and Ptbp1 were analyzed and it was
shown that one isoform of each gene was associated with breast can-
cers while the other was not (Menon et al., 2011). The structural dif-
ferences between the paired isoforms were further revealed by
detailed 3D protein structure modeling with I-TASSER (Yang et al.,
2015). By assaying and comparing the protein–protein interaction
profiles of splice isoforms of a large number of genes, it was found
that the majority of isoform pairs shared less than 50% of their
interactions. This finding strongly supports the high functional di-
versity among isoforms (Yang et al., 2016). Therefore, functional
annotation at the gene level has the intrinsic limitation that func-
tional differences among isoforms are ignored.

To address this issue, several methods have been proposed to
predict isoform functions. In our earlier work, multiple instance
learning (MIL)-based support vector machines (mi-SVMs) was
introduced to predict isoform functions for mice and humans (Eksi
et al., 2013; Panwar et al., 2016). The instance-oriented multiple in-
stance label propagation (iMILP) method was developed in the MIL
framework and was used to annotate isoform functions for humans
(Li et al., 2014). The MIL-based weighted logistic regression model
(WLRM) was shown to be accurate in predicting the functions of
human coding isoforms (Luo et al., 2017). Based on domain adapta-
tion (DA), a deep learning approach DeepIsoFun (Shaw et al., 2019)
was developed, which outperformed the previous methods including
mi-SVM, iMILP and WLRM. DA is capable of transferring know-
ledge of function prediction models in the gene domain (also called
the source domain in general) to the prediction of isoform functions
(the isoform domain, also called the target domain) (Shaw et al.,
2019). IsoFun (Yu et al., 2020a,b) and DisoFun (Wang et al.,
2020a,b) were proposed based on random walks and matrix factor-
ization (Yu et al., 2020a,b), respectively. A novel isoform function
prediction method DIFFUSE was established by combining deep
learning and conditional random field techniques (Chen et al.,
2019). Although significant progress has been made in isoform func-
tion prediction, the performance of current methods is still limited.
Therefore, computational methods that can predict isoform func-
tions with improved accuracy are still needed.

In this article, we present IsoResolve, a DA-based approach to
predict isoform functions. IsoResolve takes both gene-level and
isoform-level features, and annotated gene functions as input.
Because gene-level features and isoform-level features have different
distributions (Hibbs et al., 2007; Trapnell et al., 2012), IsoResolve
treats them as two different domains. It then uses DA (Nikzad-
Langerodi et al., 2018) to project the two domains into a latent vari-
able (LV) space in such a way that the projections of gene and iso-
form features in the LV space are of similar distribution. This
ensures that the information in gene function prediction models can
be leveraged to build isoform function prediction models. Both
DeepIsoFun and IsoResolve are based on DA. DeepIsoFun uses a
neural network autoencoder to generate feature embedding of ori-
ginal gene and isoform features (Shaw et al., 2019), whereas our

method uses a partial least squares (PLS)-based DA approach to pro-
ject features in the two domains.

We apply IsoResolve to three datasets with both gene- and
isoform-level features. We evaluate its performance in predicting
biological functions (GO terms). We investigate how the GO term

size and category influence the performance. Because of the lack of
isoform-level function annotation data, the performance of our

model is validated with single isoform genes (SIGs) for which the
functions are known (the same as their parental genes). Gene-level
function prediction performance is evaluated for multi-isoform

genes (MIGs) for which isoform-level functions are unavailable. We
evaluate the robustness of our method to information leak caused by

paralog genes. We compare IsoResolve with state-of-the-art meth-
ods. Finally, we illustrate that our method is able to identify isoform
functions by using case studies where gene functions are annotated

at the isoform level.

2 Materials and methods

2.1 IsoResolve
In the context of isoform function prediction, a gene may contain

multiple isoforms with different functions. Given a biological func-
tion represented by a GO term, a gene is positive if it is annotated to
the term and negative otherwise. The assumptions of isoform func-

tion prediction are that: (i) for a positive gene, at least one of its iso-
forms should carry out the given function under consideration, and

(ii) for a negative gene, none of its isoforms carries out the function.
The schematic of IsoResolve is shown inFigure 1. Briefly,

IsoResolve implements DA (Nikzad-Langerodi et al., 2018) to pre-
dict isoform functions by leveraging gene function prediction mod-
els. This is motivated by the assumption that the information

learned from gene function prediction can be leveraged for isoform
function prediction. It is detailed in the following section.

2.1.1 Input data in both the gene and isoform domains

The input for our method includes data from both the gene and iso-
form domains. For a given dataset, assume that it contains m genes
and n isoforms. In our study, we consider gene or isoform expres-

sion as features. Let r denote the number of features. As expression
is calculated from RNA-seq data of samples, r is the same as the
number of samples in a given dataset.

Gene-level features. Let an m� r matrix Xgene represent the fea-
ture matrix for genes, where a row is a gene and a column is a fea-

ture. The label of the gene is determined by functional annotation.
For a given function (a GO term) under investigation, the label of

each gene is stored in an m-dimensional vector ygene, where its value
is 1 if the gene is annotated to the function and 0 otherwise.

Isoform-level features. Let an n� r matrix X iso represent the fea-
ture matrix for isoforms, where a row is an isoform and a column is
a feature. Assume that l of n isoforms are from SIGs that contain a

single isoform. The functions of these isoforms are the same as those
of their parental genes. Let an l� r matrix X s

iso denote the feature
matrix of this subset of isoforms. Their labels are stored in an l-di-

mensional vector ys
iso.

The same set of expression features are used to construct

Xgene; X iso and Xs
iso. So these three feature matrices have the same

number of columns. Let X be the concatenated feature matrices of

Xgene and X s
iso and y denote the concatenated label vector of ygene

and ys
iso.

2.1.2 The algorithm to leverage gene function prediction models for

isoform function prediction

The core of IsoResolve is to leverage the information of gene func-

tion prediction models for the prediction of isoform functions. The
algorithm of IsoResolve is described in detail below.
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(1) IsoResolve predicts isoform function with a partial least square

model

In IsoResolve, a PLS model is used to predict isoform functions as

follows:

ypred ¼ X isob; (1)

where b represents the vector of regression coefficients and ypred

stands for the predicted score of isoforms. The higher ypred is, the

more likely the isoform is to carry out the function under consider-

ation. Based on the theory of PLS, b is calculated as:

b ¼WðPTWÞ�1q (2)

where W is an r�k matrix (k denotes the dimension of the LV

space). Each column of W is an r� 1 weight vector, denoted by wiso

with which the projection of input feature data into the LV space is

calculated. P is an r�k matrix. In PLS, each column of P is called a

loading vector, with the element reflecting the importance of each

feature. q is a k� 1 vector, with the element describing the import-

ance of each latent variable (Abdi, 2010). P and q can be calculated

based on W with conventional PLS (Abdi, 2010).

From Equations (1) and (2), building isoform function prediction

models requires the calculation of wiso, which is detailed in the sec-

tion below.

(2) Formulating wiso as the solution to an optimization problem

that minimizes the difference between gene features and iso-

form features in the LV space

IsoResolve projects Xgene and X iso into the same LV space. Let tgene

and tiso be the projections of gene and isoform feature matrices on

the direction of w, which are calculated as:

tgene ¼ Xgenew; (3)

tiso ¼ X isow: (4)

The solution to w, denoted by wPLS, is calculated by solving the fol-

lowing optimization problem in PLS (Nikzad-Langerodi et al.,

2018):

wPLS ¼ argmin
w
jjX � ywT jj2F (5)

In IsoResolve, wiso is derived by minimizing the distributional differ-

ence between tgene and t iso. The reason is that the more similar the

two projections are, the more information the isoform function pre-

diction can leverage from gene function prediction models. That is,

tgene and t iso are required to obey the same distribution. Because it is

challenging to ensure tgene and t iso to have exactly the same distribu-

tion, we instead require tgene and tiso to have the same mean and ap-

proximately the same variance as an alternative solution previously

proposed in Nikzad-Langerodi et al. (2018). tgene and t iso are there-

fore mean-centered so that they have the same mean (both are zero).

To make them have equal variances, the difference between their

variances must be minimized. To compute wiso, we extend the ob-

jective function in Equation (5) to the following (Nikzad-Langerodi

et al., 2018):

wiso ¼ argmin
w
jjX � ywT jj2F þ kjvarðtgeneÞ � varðtisoÞj (6)

where var(�) means the calculation of variance and the second term

kjvarðtgeneÞ � varðt isoÞj is used to penalize the difference in the var-

iances between tgene and t iso. k is a factor that controls to what ex-

tent the penalty is imposed. A larger k leads to a higher penalty. k is

a tuning parameter in IsoResolve. In Equation (6), the variances of

tgene and t iso are calculated as:

varðtgeneÞ ¼
wTXT

geneXgenew

m� 1
; (7)

varðt isoÞ ¼
wTXT

isoX isow

n� 1
: (8)

(3) Computing W, P and q

Inserting Equations (7) and (8) into Equation (6), we obtain the fol-

lowing optimization problem.

wiso ¼ argminw jjX � ywT jj2F
þ kj 1

m� 1
wTXT

geneXgenew�
1

n� 1
wTXT

isoX isowj
(9)

where m and n denote the numbers of genes and isoforms, respect-

ively. By taking the derivative with respect to wT ; wiso can be com-

puted in the closed form below:

The wiso calculated above represents the first column vector of W in
Equation (2) (corresponding to the first dimension of the LV space).
Based on wiso, the first column vector of P and the first element of q
can be calculated (see details in Supplementary Note S1). Then, the
remaining k–1 column vectors of W and P and the remaining k–1
elements of q can be obtained iteratively (Supplementary Note S1).
With the obtained W, P and q, the regression coefficient vector b
can then be calculated with Equation (2), and the score for an iso-
form to carry out a function can be computed with Equation (1).

Fig. 1. Schematic of IsoResolve. (a) IsoResolve takes gene-level expression features (Xgene), isoform-level expression features (X iso) and annotated gene functions in the GO

database as input. The gene label vector ygene is calculated for each GO term separately. (b) By means of DA, IsoResolve projects gene-level features (blue) and isoform-level

features (red) into a latent variable (LV) space such that the projections of gene and isoform features in the LV space have similar distribution, which ensures that the informa-

tion in gene function prediction models (relationship between gene-level features and gene functions) can be leveraged to predict isoform functions. (c) After building the model

ypred¼X isob, the functions (GO terms) of isoforms of the same gene can be predicted and differentiated. The red, blue, green and yellow rectangles represent exons in the iso-

form. Each rectangle represents a single exon while each isoform is made up of multiple exons. For example, Isoform 1 consists of four exons, while both Isoform 2 and 3 con-

tains three exons

524 H.-D.Li et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa829#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa829#supplementary-data


Next, we convert the score predicted with Equation (1) to a
probabilistic value in the range of [0, 1] with the logistic function.
Let ypred;i represent the predicted score for the ith isoform in the test
set. Its probability for carrying out a biological function is calculated
as:

Probi ¼
1

1þ e�ypred;i
(10)

2.2 Datasets
We evaluate the performance of our method in isoform function pre-
diction on three datasets. The numbers of genes, isoforms and fea-
tures for each dataset are provided in Supplementary Table S1.

Dataset A is described in Shaw et al. (2019). From an initial set
of 4643 RNA-Seq experiments obtained from the short-read archive
(SRA) database, the authors selected only samples with 50–100 mil-
lion reads, discarded samples with the alignment ratio of reads lower
than 0.7, and filtered poorly covered genes and corresponding iso-
forms. 1735 RNA-seq experiments of human samples from various
biological conditions were retained. It contains 47 393 isoforms and
19 352 genes, in which 9039 are SIGs and 10 313 are MIGs. Gene-
level features were calculated as the sum of expression of its iso-
forms (Shaw et al., 2019).

Dataset B is described in Eksi et al. (2013), with 811 mouse
RNA-seq experiments downloaded from the SRA database. The
experiments with fewer than 10 million reads or with a mapping
rate of reads less than 50% were filtered. Isoforms that were
detected in fewer than half of the experiments were removed. After
the preprocessing, 365 experiments were kept. Each experiment
contained 19 201 genes and 24 274 isoforms. The numbers of SIGs
and MIGs were 15 974 and 3227, respectively. The sum of isoform
expression was calculated as gene-level expression (Shaw et al.,
2019).

Dataset C is our newly compiled data from the Genotype-Tissue
Expression (GTEx) Project (https://gtexportal.org/home/) (Lonsdale
et al., 2013). In this project, RNA-seq experiments were performed
for samples from 30 tissues. There are multiple samples for each tis-
sue. We downloaded the RNA-seq expression data (version v6) of
8555 samples covering the 30 tissues including lung, kidney, blood,
etc. The unit of expression level is Fragments Per Kilobase of exon
per Million fragments mapped (FPKM). The data were quality con-
trolled with the following procedure. First, in each tissue, only the
isoforms that were expressed (FPKM>1) in more than half of the
samples were retained. Then, we kept the isoforms that were
detected in at least one tissue. This resulted in 17 425 genes and
64 779 isoforms. Of all genes, 4287 are SIGs and 13 138 are MIGs.
The isoform expression matrix contains 8555 features (e.g. RNA-
seq samples), which is of very high dimension and makes it very
time-consuming to build isoform function prediction models for a
large number of functions as done in our work. We therefore
reduced the dimensionality of the isoform expression data with prin-
cipal component analysis (PCA). PCA was applied to the expression
data of each tissue and the principal components (PCs) were sorted
in descending order by their variances. Then a number of the top-
ranked PCs were selected in such a way that these PCs explained
�90% of the variance of the original data. Combining the PCs for
each tissue, we obtained 159 PCs, which were used as features for
this dataset. Gene-level features were computed as the sum of
isoform-level features.

2.3 Parameter optimization of IsoResolve
As described previously, IsoResolve has two parameters. The first is
the maximal allowed number of dimensions of the latent variables
(LVs) space, denoted by k. The optimal number of LVs is often less
than 20 (Filzmoser et al., 2009). In our study, we set k to 20 to
search for optimal models. The second parameter is the penalty fac-
tor, denoted by k, which controls to what extent the distributional
difference between the LV projected from gene-level features and
that from isoform-level features is penalized (discussed in Section
2.1.2). We considered a wide range of k 2 [0.001, 0.01, 0.1, 1, 10,

100]. We found that k and k have significant effects on the perform-
ance on the function prediction. Taking the function (GO: 0055085)
as an example, we showed the prediction performances at different
k and k values based on Dataset A (Supplementary Fig. S1). As can
be seen, the parameter k and k have different degrees of influence on
the prediction ability. For this example, k leads to better perform-
ance when it is in the range from 8 to 10 and k results in better per-
formance when its value is 0.1 or 10. For each function (i.e. a GO
term), the grid search method was used to determine the optimal
values of k and k based on five-fold cross validation.

3 Results and discussion

Currently, the best performing method for isoform function predic-
tion based on expression is shown to be DeepIsoFun and its highest
accuracy is achieved on Dataset A (Shaw et al., 2019). The authors
dedicated the majority of the analysis to Dataset A because of its
high quality. Therefore, in this section, we first focused our analysis
and compared IsoResolve with DeepIsoFun on Dataset A. Next, we
compared the performance of IsoResolve with the other state-of-the-
art methods including DisoFun, IsoFun, WLRM and mi-SVM on the
three datasets. Following the same five-fold cross-validation method
used in Eksi et al. (2013) and Shaw et al. (2019), we partitioned the
data based on genes rather than isoforms to ensure that all isoforms
of the same gene belong to the same group to avoid information
leak and overfitting.

3.1 Performance of IsoResolve
3.1.1 Performances for GO terms of different sizes and functional

categories

The GO term size and category have been shown to impact the per-
formance of isoform function prediction (Eksi et al., 2013; Shaw
et al., 2019). The number of genes that are annotated to a GO term
is called the GO term size. The GO database contains terms of three
main categories, namely, biological process (BP), cellular component
(CC) and molecular function (MF).

Ideally, our model should be evaluated for isoform-level func-
tional prediction. However, as isoform-level functions are not avail-
able for many genes, we follow the conventional practice (Eksi
et al., 2013; Shaw et al., 2019) and investigate the impact of GO
term sizes and the main category on the performance of our method
at the gene level. For each function (GO term), the maximum score
of its isoforms is taken as the score of the gene. For a given function,
the gold standard of positive (annotated to the term) and negative
(not annotated to the term) genes is constructed using the basic ver-
sion of the GO database.

We tested the performance of IsoResolve on Dataset A. There
are a total of 4272 GO terms. The numbers of BP, CC and MF terms
are 2178, 699 and 1395, respectively. For each GO term, both AUC
and AUPRC were calculated to evaluate the performance. For
AUPRC, its baseline [equal to the percentage of positives in a data-
set, see details in Saito et al. (2015)] varies among different GO
terms because the number of positives, i.e. the number of genes
annotated to each GO term, vary from term to term. The results for
different terms can therefore not be compared. Therefore, the base-
line needs to be set to the same for fair comparison of prediction per-
formance between GO terms. Shaw et al. has unified the baseline of
all terms to 0.1 in the previous work (Shaw et al., 2019). For fair
comparison of our model with that in Shaw et al. (2019), we also
used the same baseline 0.1. Because the maximal GO term size con-
sidered in this study was 1000, the number of negatives (unanno-
tated genes to a GO term) exceeds that of positives. Therefore, for
each GO term, we randomly selected a subset of negatives such that
their number was 9 times that of the positives to have a baseline of
0.1. The average AUC values obtained by our method were 0.812,
0.845 and 0.795 for the BP, CC and MF categories, respectively.
The average AUPRC values for the three categories were 0.327,
0.381 and 0.298, respectively. These results suggest that all the dif-
ferent categories of GO terms could be predicted well, which is con-
sistent with the observation in Shaw et al. (2019).
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As the GO term size has been shown to affect prediction per-
formance, we followed the work (Chen et al., 2019) and divided the
GO terms in each category into four groups with different size
ranges, which were [10, 20], [21, 50], [51, 100] and [101, 1000], re-
spectively. For each category, the AUC and AUPRC values in each
group of terms of different sizes are shown in Figure 2. In terms of
both AUC and AUPRC, we found that the performance of
IsoResolve decreased as the GO term size increases for the three cat-
egories. This trend is the same as that observed in previous studies
on isoform function prediction (Shaw et al., 2019). A potential rea-
son is that GO terms with larger sizes represent more heterogeneous
functions and are therefore more difficult to predict than smaller
terms.

3.1.2 Performances for SIGs and MIGs

We assessed the prediction performances for SIGs and MIGs. As
SIGs contain only one isoform, they were used to assess the perform-
ance in isoform-level function prediction. For MIGs, because their
isoform-level functions were not available, we assessed the perform-
ance in gene-level function prediction instead. That is, for each GO
term, the predicted score of the MIG was computed as the max-
imum of the scores of all its isoforms following the convention
(Chen et al., 2019; Eksi et al., 2013). For this analysis, we divided
the GO terms in each main category into four groups with different
size ranges, which were [10, 20], [21, 50], [51, 100] and [101,
1000]. For BP terms, we observed a trend that the prediction per-
formances for both SIGs and MIGs in terms of AUC and AUPRC
decreases with increasing GO term size (Fig. 3). The average AUC
values for SIGs in the four groups of GO terms were 0.872, 0.849,
0.839 and 0.813, respectively. Correspondingly, the average AUC
values for MIGs were 0.804, 0.782, 0.771 and 0.753. This trend
held for CC and MF terms (Supplementary Fig. S2).

3.1.3 IsoResolve is robust to information leak from paralog genes

During cross validation, it may occur that some genes from one
paralog group are in the training set and the remaining from the
same group are in the test set. This could lead to information leak
and makes the prediction performance of our method better than
what it should be. We therefore tested whether the good perform-
ance of our method resulted from information leak. This could po-
tentially cause information leak and thus overfitting of our models
because paralog genes could be similar in sequences and functions.
Following the method described in Eksi et al. (2013), we partitioned
all genes in such a way that the genes from the same paralog groups
were partitioned into the same fold in five-fold cross-validation to
avoid information leak. The paralog genes were obtained from
Ouedraogo et al. (2012). We identified 903, 665 and 863 paralog
gene groups for Dataset A, Dataset B and Dataset C, respectively.
The paralog genes expressed in Dataset A, Dataset B and Dataset C
are provided in Supplementary Tables S2–S4, respectively. GO slim

terms that represent a broad range of key biological functions were
used in this experiment. We used the set of 150 GO slim terms pro-
vided in Shaw et al. (2019). It is assumed that the term with less
than five annotated genes represent very specific functions and is not
appropriate for model training and testing (Shaw et al., 2019). We
removed such terms and obtained 96 GO slim terms for isoform
function prediction. We performed the cross-validation experiments
ten times and each time the paralog groups were partitioned ran-
domly into five-folds. The mean and standard deviation of AUC and
AUPRC for paralog-based cross-validation and conventional cross-
validation are shown in Supplementary Table S5. First, we found
that the standard deviation of AUC and AUPRC for both ways of
cross-validation are small, suggesting that the performance are ro-
bust regardless of how genes were partitioned. Second, we found
that the performance for the partition based on paralogs was slightly
lower than but comparable to that based on random partition
(Fig. 4 for Dataset A, Supplementary Fig. S3 for Dataset B and C),
being consistent with the results in the previous work (Eksi et al.,
2013). These results suggest that our method is robust to informa-
tion leak from paralog genes.

3.2 Comparison with DeepIsoFun
DeepIsoFun was shown to be of the highest accuracy in isoform
function prediction, and its performance was evaluated extensively
for the 4272 GO terms on Dataset A (Shaw et al., 2019). To com-
prehensively compare our method with DeepIsoFun, we also eval-
uated the performance of IsoResolve for the 4272 GO terms on
Dataset A. The comparison of the performance between IsoResolve
and DeepIsoFun is shown in Figure 5. The average AUC values
obtained by DeepIsoFun for the three GO categories were 0.735,
0.728 and 0.722, respectively. In contrast, the corresponding aver-
age AUC values of our method are 0.812, 0.845 and 0.795, respect-
ively. The improvements of our method over DeepIsoFun were 32.8,
51.3 and 32.9%, respectively (against the baseline 0.5; the improve-
ment is calculated as (b - a)/(a - 0.5), where b and a represent the
AUC of IsoResolve and DeepIsoFun, respectively). The average
AUPRC values were 0.301, 0.279 and 0.294 for DeepIsoFun, and
were 0.327, 0.381 and 0.298 for our method. The improvements of
our method were 12.9, 57.0 and 2.06%, respectively (against the
0.1 baseline). In addition, we also compared IsoResolve with
DeepIsoFun on their performance for SIG and MIG level in terms of
AUC (Supplementary Fig. S4). We found that our method also per-
formed better.

3.3 Comparison of IsoResolve with state-of-the-art

methods
In addition to DeepIsoFun, the state-of-the-art methods for predict-
ing isoform functions based on expression profiles include DisoFun,
IsoFun, WLRM and mi-SVM. IsoFun (Yu et al., 2020a,b) was

Fig. 2. Performance of IsoResolve on GO terms with different sizes in the BP, CC and MF categories
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proposed based on random walks and DisoFun (Wang et al.,
2020a,b) was proposed based on matrix factorization. WLRM for-
mulates isoform function prediction into a logistic regression model
in which a weight is introduced to the isoform of each positive gene
(Luo et al., 2017). mi-SVM is an extension of SVM to deal with the
MIL problem. It was introduced to predict isoform functions in our
previous work (Eksi et al., 2013). DeepIsoFun was compared with
our method in Section 3.2 and was therefore not considered here.

iMILP was not considered because it treats isoform function as a
three-class classification problem and thus cannot be fairly com-
pared. DIFFUSE was also not compared because it requires both ex-
pression and sequence/domain as input (Chen et al., 2019).

We compared the performance of IsoResolve with that of the
four methods on the three datasets. We used GO slim terms
(described in Section 3.1.3) for testing. The results in terms of the
average AUC and AUPRC over all the terms are shown in Table 1.

Fig. 3. Performance of IsoResolve for SIGs and MIGs for the four groups of BP terms with different size ranges

Fig. 4. Comparison of the performance achieved by partitioning the genes according to paralog groups with that by partitioning the genes randomly on Dataset A

Fig. 5. Comparison between IsoResolve and DeepIsoFun for the three categories of terms: BP, CC and MF
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The average AUC values obtained by IsoResolve on Datasets A, B
and C were 0.780, 0.741 and 0.742, respectively, which were higher
than those obtained by DisoFun, IsoFun, WLRM and mi-SVM. For
Dataset A, the improvements in AUC by IsoResolve compared with
DisoFun, IsoFun, WLRM and mi-SVM were 39.3, 61.8, 85.4 and
97.2%, respectively (against the baseline of 0.5). The improvements
in AUC compared with that of the other four methods were 31.7,
54.5, 73.4, 81.2% and 28.0, 63.5, 83.3, 87.6% on Dataset B and C,
respectively. In terms of AUPRC, our method also outperformed the
other four methods. Taking Dataset A as an example, the average
AUPRC value obtained by IsoResolve was 0.348, which was higher
than 0.248 (DisoFun), 0.213 (IsoFun), 0.192 (WLRM) and 0.198
(mi-SVM). These results suggest that our method is promising for
isoform function prediction.

Next, we compared the five methods based on the performance
for SIGs because the functions of SIGs are actually at the isoform
level. We computed the prediction performance for IsoResolve,
DisoFun, IsoFun, WLRM and mi-SVM for SIGs. The AUC and
AUPRC values are shown in Figure 6. For the three datasets,
IsoResolve achieved better performance than the other four meth-
ods, suggesting that our method was most accurate in predicting
isoform-level functions.

3.4 Case studies
We further tested the performance of IsoResolve on a small-scale
dataset of genes with annotated isoform functions described in the
work (Shaw et al., 2019). The authors proposed to validate isoform
function prediction models by testing whether the isoforms of genes
annotated with opposite functions can be differentiated (Shaw et al.,
2019). Specifically, the authors focused on the biological function
regulation of apoptosis process whose two child GO terms, i.e. pro-
apoptosis (GO: 0043065) and anti-apoptosis (GO: 0043066), repre-
sent opposite functions. A total of 18 multi-isoform genes annotated
with both pro-apoptosis and anti-apoptosis functions were identi-
fied. Using the same method as described in Shaw et al. (2019), we
evaluated whether the pro- and anti-apoptosis functions of isoforms
of these 18 genes could be differentiated by our method. An isoform
was predicted to carry out a function if its probability predicted by
IsoResolve was higher than 0.5 and vice versa. The results are shown
in Supplementary Table S6. IsoResolve was able to predict the
Regulation of apoptosis function for the isoforms of all 18 genes

(100% recall), the pro-apoptosis function for the isoforms of 17
genes (94.4% recall) and the anti-apoptosis function for the iso-
forms of 17 genes (94.4% recall). As a comparison, the recall values
for these three functions achieved by DeepIsoFun were 94.4%,
72.2% and 77.7%, respectively, which were lower than those of our
method (Supplementary Table S6) [note that the results for mi-SVM
and WLRM are not shown here because they were less accurate
than DeepIsoFun (Shaw et al., 2019)]. Furthermore, we found that
our method successfully differentiated the pro- and anti-apoptosis
functions among isoforms of 14 genes. In contrast, DeepIsoFun dif-
ferentiated the functions for only eight genes, indicating that our
method is more accurate in recognizing genes with functionally dif-
ferentiated isoforms.

Further, motivated by the principle that structures determine
functions, we investigated whether functionally differentiated iso-
forms may have different 3-dimensional (3D) structures. Taking the
two isoforms (NM_001318095 and NM_000600) with differenti-
ated functions of IL6 (Supplementary Table S6) as an example, we
built their three-dimensional models with I-TASSER (Yang et al.,
2015), which is the state-of-the-art software to model 3D structures
of proteins. First, the TM-score of the 3D models of the two iso-
forms were 0.653 and 0.622, respectively, indicating that the models
were accurate (note: 3D models with TM-score > 0.5 are considered
accurate). Second, we found that the 3D models of the two isoforms
were clearly different from each other (Supplementary Fig. S5),
being consistent with their differentiated functions. Another ex-
ample is DNAJA1 with functionally differentiated isoforms, the 3D
models of its two isoforms NM_001539 and NM_001314039 were
accurate, with TM-score equal to 0. 615 and 0. 645 (Supplementary
Fig. S5), respectively. Their 3D models were largely different, sup-
porting the difference in their functions.

4 Conclusion

Gene-level function prediction is of limited precision because it
treats a gene as a single entity, without differentiating isoforms that
may carry out different or even opposite biological functions. In re-
cent years, significant effort has been dedicated to the prediction of
isoform functions, aiming for gene function annotation at a finer
resolution. Isoform function prediction is challenging because of the
lack of experimentally verified functions annotated to isoforms. To
address this challenge, methods including mi-SVM, WLRM, isoFun,
DisoFun and DeepIsoFun, have been proposed to predict isoform
functions. These methods have been proven promising in predicting
isoform functions.

We are motivated to further improve the performance in predict-
ing isoforms. We propose IsoResolve, which is able to leverage the
information of gene function prediction models for isoform function
prediction with DA. We show that our method is superior to state-
of-the-art methods on three datasets. The overall performance of
IsoResolve in functional prediction is more accurate. Based on mi-
SVM described in Eksi et al. (2013), it is observed that the predic-
tion performance for MIGs is higher than that of SIGs. However,
the prediction performance for SIGs is higher than MIGs based on

Table 1. Comparison of IsoResolve with state-of-the-art methods

Method Dataset A Dataset B Dataset C

AUC AUPRC AUC AUPRC AUC AUPRC

IsoResolve 0.780 0.348 0.741 0.258 0.742 0.293

DisoFun 0.701 0.248 0.683 0.215 0.689 0.224

IsoFun 0.673 0.213 0.656 0.194 0.648 0.181

WLRM 0.651 0.192 0.639 0.182 0.632 0.165

mi-SVM 0.642 0.198 0.633 0.209 0.629 0.184

Fig. 6. Comparison of the performance for SIGs in terms of AUC and AUPRC on (a) Dataset A, (b) Dataset B and (c) Dataset C
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IsoResolve. One possible reason why we have observed this differ-
ence is that in mi-SVM, the selection of ’witness’ (i.e. the positive
isoform) in MIGs is iteratively optimized so as to be separated from
negative isoforms based on the multiple-instance learning frame-
work, which may lead to better accuracy for MIGs. In contrast, be-
cause IsoResolves does not optimize the selection of positive
isoforms in MIGs, its performance for MIGs is relative lower than
that for SIGs. Integrating positive isoform selection with IsoResolve
might improve isoform function prediction model, which is interest-
ing and would be studied in our future work. We also illustrate that
our method performs better in identifying genes with functionally
differentiated isoforms in a case study of pro- and anti-apoptosis
function. A possible explanation for the high accuracies of our
method is that it is able to effectively leverage the knowledge gained
from gene function prediction models and that the PLS model used
in IsoResolve has the built-in ability to deal with high dimensional
and multi-correlated features for extracting latent variables that are
predictive of biological functions.

Though beyond the scope of this work, our method can be fur-
ther improved in several ways including data denoising, because
large datasets involving many tissues and biological conditions may
be of high noise level. In addition, because many features are redun-
dant and may be irrelevant to the functions of isoforms, developing
feature selection methods for isoform function prediction could be
valuable to this field. Further, integrating other types of genomic
data in addition to gene expression used in this study could be a
promising way to build more accurate models as heterogeneous data
may complement each other and thus provide additional predictive
value for isoform function prediction. In fact, in addition to expres-
sion, sequence and domain features of isoforms were integrated in
the DIFFUSE method (Chen et al., 2019), and the results were better
than ours. Though, our method based on only expression data was
comparable to that of DIFFUSE. In the future, an important ques-
tion to consider is to design methods that can effectively integrate
different types of data to improve isoform function prediction.
There are two main strategies. The first is to combine different types
of input features such as sequence, expression and domain into a sin-
gle feature matrix, followed by building a model on the combined
feature matrix. The second is to build an isoform function prediction
model based on each type of feature and then integrate the predic-
tion results of each individual model. Integrating heterogeneous fea-
ture data face several challenges: (i) Missing values may exist for
some types of feature data; how to handle missing data to maximize
the usability of data is a challenge. (ii) The characteristics and levels
of noise in different types of data is different, making it challenging
to design methods that can cope with such heterogeneous noise.
(iii) In the context of limited availability of isoform-level function
annotation, how to determine the weight of different types of data
and how to design methods to identify a set of predictive features
(Liu et al., 2020a,b; Pes, 2017) are also challenging. It is our expect-
ation that more powerful methods for the isoform function predic-
tion will be developed in the future and that the isoform-level
annotation of functions will advance our understanding of biologic-
al processes and disease pathways.
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