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Abstract

Microbial fuel cells (MFCs) have shown immense potential as a one-stop solution for three major sustainability issues con-
fronting the world today—energy security, global warming and wastewater management. MFCs represent a cross-disciplinary
platform for research at the confluence of the natural and engineering sciences. The diversity of variables influencing per-
formance of MFCs has garnered research interest across varied scientific disciplines since the beginning of this century.
The increasing number of research publications has made it necessary to keep track of work being carried out by research
groups across the globe and consolidate significant findings on a regular basis. Review articles are often the nodal points
for beginners who are required to undertake an exploratory survey of literature to identify a suitable research problem. This
‘review of reviews’ is a ready-reckoner that directs readers to relevant reviews and research articles reporting significant
developments in MFC research in the last two decades. The article also highlights the areas needing research attention which
when addressed could take this technology a few more steps closer to practical implementation.

Keywords Microbial fuel cells - Microbial electrochemistry - Microbial electron transfer - Wastewater treatment - Alternate
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Introduction

The Earth presently plays host to almost 8 billion human
beings (UN DESA Population Division 2019) and the num-
ber is expected to go up further and level out by the latter
half of the Twenty-first century (Gonzalo et al. 2016). Sus-
tainability of natural resources has been a cause for concern
(Buhaug and Urdal 2013) due to ambitious social and eco-
nomic goals. Dwindling reserves of fossil fuels (Hallenbeck
and Ghosh 2009) account for over 80% of the world’s pri-
mary energy consumption (Mohr et al. 2015). Greenhouse
effect, a natural phenomenon that is chiefly responsible for
the habitability of earth, appears to be assuming unman-
ageable proportions. Unregulated release of carbon dioxide
and other greenhouse gases resulting from anthropocentric
activities have led to increased absorption of infrared radia-
tion from the sun leading to above-normal surface tempera-
tures on earth (IPCC 2014). The need to curb such emissions
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underlines the search for sustainable, carbon—neutral sources
of energy (Arent et al. 2011; Villano et al. 2012). Reinforc-
ing the need to shift to renewable energy, Rittman (2008)
specifically outlines the potential of microorganisms as a
source of energy.

Urbanization is on the rise in developing nations (Buhaug
and Urdal 2013) and the resultant increase in average income
has ameliorated food preferences, putting pressure on water
resources (de Fraiture and Wichelns 2010). The increased
demand for water has impacted water availability (Hadde-
land et al. 2014) and has promoted reuse of wastewater for
applications such as irrigation (Toze 2006) and landscaping.
However, in many developing countries, advances in sanita-
tion infrastructure and wastewater treatment have been out-
paced by population growth (Qadir et al. 2010). As a result,
many of them are on the lookout for reliable and low-cost
means for treatment of domestic, agricultural and industrial
wastewater to make it reusable (Massoud et al. 2009). An
informative and well-illustrated review article by Larsen
et al. (2016) discusses the need to adopt innovative strategies
for arriving at resource-efficient solutions for issues related
to urban water management.
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Past and present of MFCs

Electrical effects resulting from microbial disintegration of
organic compounds were first described by Potter (1911)
over a hundred years ago. In the subsequent decades leading
to the next century, there were only a few isolated reports of
attempts to extend this fascinating discovery towards prac-
tical applications. Schroder (2011) traces the century-long
history of microbial electrochemical systems from the time
they were first reported, highlights significant milestones,
succinctly outlines the reasons for the initial dearth of inter-
est in taking this technology further, and finally describes
the relevance and future scope of this discipline following
its resurgence at the turn of the century.

Microbial Fuel Cells (MFCs) have been aptly described
by Du et al. (2007) as “bioreactors that convert the energy
in the chemical bonds of organic compounds into electrical
energy through catalytic activity of microorganisms under
anaerobic conditions”. Figure 1 is a graphical representa-
tion of a generic two-chambered MFC comprising an anode
and a cathode chamber separated by a selectively perme-
able membrane. The microbes’ need for a compatible elec-
tron acceptor to deposit electrons is readily fulfilled by the
anode of an MFC in the absence of a more suitable acceptor
(Stams et al. 2006). These electrons collected by the anode
are channelised across an external load (resistor) to har-
ness usable energy. The final step of the electron transport
occurs at the cathode in the presence of a terminal electron
acceptor. Thus, a ‘quasi-engineered’ electron transport chain
that mimics the bacterial respiratory chain forms the core

Fig. 1 Schematic of a generic
two-chambered MFC

of an MFC. Basic concepts relating to MFCs are presented
in a lucidly written lecture text by Schroder (2018). The
technical foundations and principles which form the basis
of this technology are presented in comprehensive review
articles by Logan et al. (2006) and Santoro et al. (2017).
These microbe-catalysed electrochemical devices are viewed
as a potential solution for wastewater management and as a
source of sustainable and clean energy. To make this solu-
tion practically viable, research on microbial electrochemi-
cal technologies has primarily focused on four aspects, viz.
minimizing electrochemical losses, improving performance
efficiency, lowering working costs and scaling up systems
for practical applications (Fig. 2).

A query submitted for the term ‘microbial fuel cells’ on
the Web of Science™ platform of Clarivate Analytics (Fig. 3)
showed a gradual increase in the number of research articles
on MFCs that were published in the years 2004-2020 in sci-
entific, peer-reviewed journals. It must be noted that this figure
serves to only emphasize the growth trend and that the output
of a similar query in different search engines would obviously
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return varying numbers based on the websites and databases
that are indexed by the respective algorithms.

Among the different types of articles that are published in
scientific journals, review articles represent a starting point
for budding researchers and a vade mecum for established
scientists. In general, reviews primarily serve to fulfil the
following tasks:

i. classifying the ever-growing information in a subject
into relevant categories,
ii. providing references to research papers that describe
significant advancements, and
iii. highlighting lacunae to be addressed by researchers.
This article has been compiled with the primary objective
of aiding beginners to sift through the abundantly available
scientific literature on MFCs by directing them to focused
reviews and relevant breakthrough research articles high-
lighting significant advances in the field. The content has
been divided into independent sub-sections pertaining to
configuration, microbes, materials, performance characteri-
zation, scale-up and applications for the sake of conveni-
ence. The choice of references cited in this article is based
entirely on their content and is not influenced by any inten-
tional bias whatsoever.

MFC design and modeling

A wide variety of MFC configurations have been designed
for specific applications and with the objective of improv-
ing performance by minimizing systemic losses. Some

Year of publication

of the significant examples include air—cathode single-
chamber MFCs (Liu and Logan 2004), flat-plate MFCs
(Min and Logan 2004), upflow MFCs (He et al. 2005),
tubular MFCs (Rabaey et al. 2005), membrane-electrode
assembly MFCs (Pham et al. 2005), stacked MFCs (Aelter-
man et al. 2006), separator-electrode assembly MFCs (Ahn
and Logan 2012). However, the most commonly reported
are the two-chambered, "H-shaped” MFCs which, despite
their low current output, have been the most convenient
for optimizing performance of new components and char-
acterising operating conditions (Logan et al. 2006). Fig-
ure 4 (adapted) presents some of the different experimental
designs that have been used in MFC studies and reported
in literature.

Discussing essential aspects to be considered while
designing MFCs for various practical applications, an
article by Logan et al. (2015) highlights the importance
of electrode configuration and source of organic substrate
in determining performance. Modeling studies, which
facilitate detailed analyses of factors affecting the perfor-
mance of MFCs (Jadhav et al. 2020a), include mathemati-
cal modeling (Deb et al. 2020), computer simulations (Xia
et al. 2018), neural network modeling (Ma et al. 2019) and
electrochemical modeling (Kadivarian and Karamzadeh
2020). Given the diversity of dependent variables that can
determine the performance of MFCs (Oliveira et al. 2013;
Zhang et al. 2019a), analysing their influence to arrive at
a valid conclusion depends to a considerable extent on the
number of replicates of an experiment because repeatabil-
ity is not necessarily assured (Larrosa et al. 2009).
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Fig.4 Different designs used in MFC studies: a salt bridge MFC; b, ¢
upflow MFCs; d flat-plate MFC; e h-shaped MFC; f, g single-cham-
ber MFCs; h stacked MFC (The figure has been reprinted (adapted)
with permission from Logan BE, Hamelers B, Rozendal R, et al.

Electroactive microbes

Microbes play a key role in an MFC by catalysing the release
of electrons from energy rich bonds of organic substrates
under anoxic conditions. Review articles by Pant et al.
(2010b) and Pandey et al. (2016) describe different pure
substrates and types of wastewater that have been used as a
carbon source for microbes in MFCs. The electrons released
in this process of oxidation travel through versatile microbial
electron transport chains (Fredrickson et al. 2008; Kracke
et al. 2015) which comprise serially arranged conductive
protein complexes, cytochromes, nanowires and redox pro-
teins (Costa et al. 2018) before being donated to the anode
of the MFC. Schroder explains the fundamental mechanisms
and energy considerations of anodic electron transfer in a
classic review (2007). Electron transfer between microbes
and the electrode (Lovley 2012; Kumar et al. 2017) can be
either indirect—mediated by naturally produced or artifi-
cially added redox shuttles (Martinez and Alvarez 2018)—or
by direct extracellular electron transfer (Yang et al. 2012)
(Fig. 5). Glasser et al. (2017) provide valuable insights into
endogenous extracellular electron shuttles while Lovley
(2017) describes the processes associated with direct inter-
species electron transfer which enables long-distance trans-
port of electrons in bioelectrochemical systems. Dynamics
of electron transfer within microbes (intra), between micro-
bial species (inter), and at the microbe-electrode interface
have been detailed in a review article by Zheng et al. (2020).
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(2006) Microbial fuel cells: Methodology and technology. Environ-
mental Science & Technology 40:5181-5192. https://doi.org/10.
1021/es0605016. Copyright © 2006 American Chemical Society.)

Mixed consortia of electrogenic and electrotrophic
microbes (Logan 2009; Logan et al. 2019) are known to con-
tribute more effectively to production of current in MFCs as
compared to pure cultures of bacteria. This difference could
be attributed to synergistic interactions between syntrophic
microbial species resulting in effective utilization of available
substrates (Kiely et al. 2011) by the formation of electrochemi-
cally active biofilms (Borole et al. 2011; Babauta et al. 2012;
Reguera 2018; Kiran and Patil 2019). Growth and performance
of electroactive biofilms can be enhanced (Li et al. 2018a) by
selectively controlling growth conditions (Doyle and Mar-
sili 2015, 2018), using synthetic biology (Glaven 2019) and
adopting engineering approaches (Angelaalincy et al. 2018;
Chiranjeevi and Patil 2020). Communities of microbial con-
sortia have also been profiled and characterized using ‘omics’
technologies (Rittmann et al. 2008; Lacerda and Reardon
2009; Moran et al. 2013; Franzosa et al. 2015; Kouzuma et al.
2018), flow-cytometric approaches (Koch et al. 2014), com-
putational tools (Haft and Tovchigrechko 2012; Segata et al.
2013) and statistical analysis (Buttigieg and Ramette 2014) to
obtain insights from a structural and functional perspective
(Zhi et al. 2014).
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Fig.5 Direct (solid lines) and
indirect (dotted lines) electron
transfer from bacteria to the
anode
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Electrodes and separators

Efficient electrode materials in MFCs must essentially be
biocompatible, electrically conductive, non-corrosive and
electrochemically stable. Wei et al. (2011), in their detailed
review article, analyse the advantages and disadvantages of
different materials used as electrodes in MFCs and discuss
the prospects of electrode development. Assessing the per-
formance of electrodes and separators (Hamelers et al. 2010)
and use of low-cost materials such as ceramics (Winfield
et al. 2016), ligno-cellulosic material (Mehta et al. 2020)
and biochar (Chakraborty et al. 2020a) without significantly
compromising on efficiency is important for design of effi-
cient MFCs. Breheny et al. (2019) discuss critical aspects for
improvement of bioelectrodes in MFCs and Pasternak et al.
(2020) present a new dimension for enhancing performance
of microbial electrochemical systems using surfactants.
Anodes serve as the substratum for biofilm formation and
also function as current collectors in MFCs. Among different
materials that have been reported, carbon is most preferred
for anodes because of its versatility, non-reactivity, high
electrical conductivity and biocompatibility (Logan 2008).
While carbon cloth and carbon felt provide more room for
colonization of microbes by virtue of being more porous
compared to graphite sheets or carbon paper, the innovative
introduction of graphite brush anodes (Logan et al. 2007)
enabled the incorporation of larger surface area of electrodes
for a given volume of the reactor. The high conductivity
and surface area provided by nanomaterials resulted in their
use in the anode chamber of MFCs (Liu et al. 2020). Gnana
kumar et al. (2013) describe the features of anode materials
used in MFCs and different processing techniques that can
improve efficiency of bacterial adhesion, electron capture
and transfer. A comparative account of conventional and
modified anodes (Cai et al. 2020) opens up a new window

Organic
i substrate
Bacteria

for understanding the characteristics of anode materials and
paves the way for development of next generation MFC
anodes.

Cathodes provide a common interface for the culmination
of the microbial electron transfer process in an MFC result-
ing in the confluence of electrons, protons and the terminal
electron acceptor. On account of their complex role, cath-
odes have been considered as a critical point to determine
the efficiency of MFCs (Rabaey and Keller 2008). Based
on the type of electron acceptor used (He et al. 2015), cath-
odes can be classified as chemical or biological. Oxygen
is often preferred as a terminal electron acceptor due to its
ubiquity and propensity to get reduced to water. However,
poor kinetics of the oxygen reduction reaction led to the use
of expensive, precious-metal catalysts such as platinum at
the cathode. Studies that focused on reduction of operating
costs (Zhang et al. 2009) eventually led the way to develop-
ment of more economical, alternate cathode materials based
on carbon (Peera et al. 2020) and nanocomposites (Dessie
et al. 2020) devoid of precious metals for improving effi-
ciency of the oxygen reduction reaction (Yuan et al. 2016).
Erable et al. (2012) describe the application of microbes to
catalyse the rate-limiting oxygen reduction reaction at the
cathode. Biocathodes (He and Angenent 2006), comprising
electrotrophic microbes that can directly accept electrons
from the electrode (Lovley 2011), can overcome many of
the shortcomings encountered using chemical cathodes and
are now being actively pursued as a topic of research interest
(Song et al. 2019).

A separator in an MFC is a physical barrier that allows
charges to pass through but serves as a hurdle to prevent
direct electrical contact between the anode and cathode.
In the early years, proton exchange membranes such as
Nafion® were used in MFCs to selectively allow only pro-
tons to the cathode chamber of an MFC (Rahimnejad et al.
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2014). Eliminating the use of a proton-specific, separating
membrane in MFCs (Jang et al. 2004) was a significant
breakthrough for reducing operation costs, but it brought
along the twin drawbacks of oxygen diffusion into the anoxic
anode chamber and short circuiting of electrons between the
anode and cathode, both of which when unregulated have a
detrimental impact on performance efficiency. In subsequent
years, expensive membranes were substituted with alterna-
tives like Zirfon® (Pant et al. 2010a; Pasupuleti et al. 2016)
and low-cost materials having more general transport prop-
erties such as ion exchange membranes (Leong et al. 2013),
ceramic filtration membranes (Yang et al. 2016a), polymeric
membrane separators (Bakonyi et al. 2018), sand/activated
carbon separators (Gao et al. 2018), silk fibroin membranes
(Pasternak et al. 2019) and polystyrene (Mathuriya and Pant
2019).

Performance characterization

Electrochemical techniques and tools are used to analyze
the effect of modifications made to MFCs with the objec-
tive of minimizing electrochemical losses and enhancing
performance efficiency. Rimboud et al. (2014) present a
detailed perspective on the factors to be considered while
designing anodes for microbial electrochemical systems.
Electroactivity of biofilms has been characterized using
techniques such as cyclic voltammetry (Gimkiewicz and
Harnisch 2013), electrochemical impedance spectros-
copy (ter Heijne et al. 2015), confocal resonance Raman
microscopy (Virdis et al. 2016), interdigitated electrode
array (Yates et al. 2018) and other methods. Technical
aspects such as internal resistance (Zhang and Liu 2010)
and anode potential (Aelterman et al. 2008; Wagner et al.
2010; Zhu et al. 2013) have to be understood and com-
monly encountered issues such as power overshoot (Wat-
son and Logan 2011; Winfield et al. 2011) and voltage
reversal (Kim et al. 2020) must be analysed to minimise
losses and enhance performance of MFCs. Tutorial articles
provide the necessary support to beginners to understand
fundamental concepts in electronic circuitry (Sanchez
et al. 2020), choice of electrode configurations and oper-
ating conditions for electroanalysis (Zhao et al. 2009) and
nuances of techniques such as cyclic voltammetry (Har-
nisch and Freguia 2012; Elgrishi et al. 2018) and elec-
trochemical impedance spectroscopy (He and Mansfeld
2009). Other useful reviews outline performance indi-
cators (Sharma et al. 2014) and terms used to describe
performance of microbial electrochemical systems (Wang
and He 2020). Challenges encountered due to the diverse
configurations of MFCs and different techniques available
for characterizing activity of electroactive microbes can be
addressed by having a standardized framework (Harnisch
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and Rabaey 2012) and fundamental guidelines to plan
experiments, analyse observations and report results in a
more meaningful manner (Logan 2012).

Scaling up

Schroder (2011) reported that the performance of MFCs
improved by close to three orders of magnitude—from
few pA/cm? to over 1 mA/cm’>—during the first decade
of this century. Microscale (Wang et al. 2011; Choi 2015)
and microfluidic (Yang et al. 2016b; Parkhey and Sahu
2020) MFCs have shown enhanced performance in terms
of power production. Although pL and mL scale labora-
tory experiments provide cues and clues regarding dif-
ferent mechanisms involved in the functioning of MFCs,
systemic understanding obtained from such studies must
be transferred and translated (Janicek et al. 2014; Butti
et al. 2016) to enable setting up of pilot-scale systems
(Logan 2010). Knowledge of the different components and
processes involved is critical to make upscaling of MFCs
practically feasible (Logan et al. 2015). Significant pro-
gress has been achieved over the past decade in developing
scaled-up MFC systems for practical applications (Gajda
et al. 2018; Abdallah et al. 2019; Jadhav et al. 2020b).

Applications

The primary application of MFCs is wastewater treatment
with concomitant production of electricity (Pant et al.
2012). Lefebvre et al. (2011) describe energetics of MFCs
with the objective of developing a self-sustaining domestic
wastewater treatment process (Oh et al. 2010). Harness-
ing the potential of MFCs as a power source (Wang et al.
2015) and for production of valuable products by micro-
bial electrosynthesis (Rabaey and Rozendal 2010; Har-
nisch and Urban 2018) requires an in-depth understand-
ing of factors that limit performance (Sleutels et al. 2012)
along with the principles of energy capture and storage
(Sun et al. 2016).

Evolution of microbes has favoured the diversification
of MFCs into a number of technologies (Schroder and Har-
nisch 2017) with varied applications (Schroder et al. 2015),
resulting in the more generic term ‘microbial electrochemi-
cal cells’ (MXCs) (Fig. 6). Table 1 presents an overview of
the multifarious applications of microbial electrochemical
technologies and provides references to recently published
review articles. Torres (2014) emphasizes on the need to
“identify, understand and predict” different phenomena that
govern the performance of such systems.
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Fig.6 Diversification of micro-
bial electrochemical cells
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Table 1 Applications of microbial electrochemical technologies

MICROBIAL
CARBON CAPTURE

MICROBIAL
DESALINATION
CELL
(MDC)

CELL

MICROBIAL
ELECTROLYSIS

CELL
(MEC)
MICROBIAL
ELECTROCHEMICAL
CELLS
(MXCs)

MICROBIAL
FUEL
CELL
(MFC)

MICROBIAL PHOTOSYNTHETIC
METHANOGENESIS MICROBIAL
CELL FUEL CELL
(MMC) (pMFC)

Application

Reference

1 Electrobioremediation of recalcitrant pollutants and xenobiotics

In situ remediation of groundwater and soil

3 MFC-coupled hybrid systems for environmental remediation and
resource recovery

Energy recovery from urine and solid wastes
5  Recycling elements using self-sustaining photosynthetic MFCs
MFC-based biosensors

7  Energy harvesting and storage in combination with electrochemical
capacitors and as supercapacitive MFCs

8  Carbon capture and microbial electrosynthesis of value-added
products

9  Platform technology for novel applications

(Sevda et al. 2018; Chakraborty et al. 2020b; Chandrasekhar et al.
2020; Wang et al. 2020b)

(Cecconet et al. 2020; Li et al. 2020)

(Yang et al. 2019; Zhang et al. 2019b; Elmaadawy et al. 2020; Wang
et al. 2020a)

(Gurjar and Behera 2020; Santoro et al. 2020)
(Greenman et al. 2019; Mekuto et al. 2020)
(Sun et al. 2015; EIMekawy et al. 2018; Jiang et al. 2018; Sevda et al.

2020)
(Caizan-Juanarena et al. 2020; Soavi and Santoro 2020)

(Roy et al. 2015; Das et al. 2019; Chu et al. 2020)

(Butti et al. 2016; Zou and He 2018; Hoareau et al. 2019)

Conclusions

The pursuit of alternate sources of energy due to the con-
sequences of an unabated rise in human population has
directed attention of researchers towards MFCs which
essentially perform a dual-role of wastewater treatment
and clean energy production. The steady increase in the
number of research articles published on MFCs (Md
Khudzari et al. 2018) over the last 15 years is an indica-
tor of the steadfastness and commitment of the research
community. Moreover, among the several books written or
compiled on MFCs, the following three which encapsulate

significant advances pertaining to construction, charac-
terization, applications and diversification of this tech-
nology deserve a mention: Microbial fuel cells (Wiley-
Interscience) (Logan 2008), Microbial Electrochemical
Technology: Sustainable Platform for Fuels, Chemicals
and Remediation (Elsevier) (Venkata Mohan et al. 2018)
and Microbial Electrochemical Technologies (Routledge/
CRC Press) (Tiquia-Arashiro and Pant 2020).

However, what goes unnoticed is the increasing num-
ber of students opting for MFCs and related technologies
for their projects at high school and university levels due
to the societal relevance of these topics. Considering the
fact that data presented in such project reports often trigger
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more specialized and resource intensive studies, it might be
worthwhile exploring the creation of a platform to document
and collate promising results from such projects. Moreover,
acknowledging the efforts of these young contributors, in a
noteworthy manner, in research publications resulting from
these leads would encourage more exploratory studies by
students.

Planning for a student project or designing a research
experiment might seem to be an elementary process because
of the seemingly limitless possibilities that exist to observe
the effects of tweaking the diverse physico-chemical and
biological variables that directly or indirectly influence
MEFC performance. However, it would preferable to align
the scope of such investigations to the aforementioned four
major objectives of MFC research—keeping electrochemi-
cal losses under check, boosting electron transfer efficiency,
bringing down operational costs and upscaling systems for
practical applications—so that it results in a significant con-
tribution to the existing body of knowledge.

MFCs have been prototyped in various shapes and sizes;
each new configuration presenting an improvement over the
others in some aspect of performance. Alterations to MFC
configurations will continue in the quest for models that
can be effectively implemented on a large scale. The under-
standing of variables associated with MFC performance has
certainly improved over the years and the inventory of mate-
rials that improve the performance of MFCs is also continu-
ally expanding. These must go hand-in-hand with efforts
to curb costs of scaled-up systems. Agricultural wastes, for
instance, are carbon-rich materials that can be carbonized
and exploited as low-cost electrode material. However, such
substitutions can imply a trade-off with performance effi-
ciency, opening up new avenues for detailed optimization
studies using statistical methods such as response surface
methodology.

Carrying out mathematical modeling and computer simu-
lations can provide a near-realistic estimate of the optimal
configuration, components and operating parameters to be
employed under a given set of conditions for specific appli-
cations. Designing high-throughput methods for screening
performance of components and operating parameters is a
challenge that is still relevant and needs attention; especially
because of the inter-relationships among the physico-chem-
ical and variables influencing MFCs.

The fact remains, however, that the biological component
will always be a complex variable that cannot be precisely
modelled; and thus needs more focused attention for unravel-
ling unknown facets of bacterial metabolism and energetics
specifically in the context of bioelectrochemical systems.
Community dynamics of microbial consortia in electroac-
tive biofilms powering microbial electrochemical systems
are still being understood. In silico analyses of genomic and
proteomic data in openly available repositories such as the
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National Center for Biotechnology Information (www.ncbi.
nlm.nih.gov), Worldwide Protein Data Bank (www.wwpdb.
org), European Bioinformatics Institute (www.ebi.ac.uk)
and many others make it possible to gain insights into the
mechanistic aspects of bacterial electron transfer systems
and processes. Metagenomic approaches for microbial com-
munity profiling are gaining relevance as they also account
for bacteria which cannot be easily cultured in laboratory
conditions. Sophisticated protein modelling and visualiza-
tion tools available today can uncover hitherto unknown
aspects of bacterial respiratory proteins and biofilm-associ-
ated proteins (www.biofilms.biosim.pt). Protocols employed
for control of biofilms, especially in the food and healthcare
sectors where they are known to be a nuisance, could pro-
vide useful hints to develop methods for promoting their
growth in bioelectrochemical systems.

Tutorial articles on a design of experiments approach to
effectively plan experiments and on electrochemical tech-
niques for performance characterization will help in hand-
holding students and scientists from diverse backgrounds to
set-up the working environment. Limited access to equip-
ment for electrochemical characterization, often not afford-
able for school and colleges not having established routes
to obtain funding, can be a major bottleneck for obtaining
reliable results. Efforts to bring down costs of basic instru-
mentation using micro-controllers (Meloni 2016; Li et al.
2018b) would bolster the quality of results of academic pro-
jects relating to MFCs.

As evidenced by literature, what began as a fascinating
phenomenon over a century ago has evolved into a fertile
avenue for researchers from different disciplines to con-
verge and contribute (Fig. 7). The journey of MFCs seems
to be akin to the folk-tale of the six blind men who tried to
describe an elephant; each one basing his judgement on a
part of the animal that he felt with his hands. It was only
when all their views were rationally consolidated that they
perceived the bigger picture and came to the conclusion that
an elephant is actually much more than just fan-like ears,
pillar-like legs, spear-like tusks, a tube-like trunk, a rope-
like tail and a wall-like body. Multidisciplinary approaches
and transdisciplinary efforts have demolished traditional
barriers and bridged the gaps which had prevailed in the
earlier years on account of adopting a simplex approach

ECOLOGY

WASTE MANAGEMENT
WATER RESOURCES
BIOCHEMISTRY MATERIALS SCIENCE

ELECTROCHEMISTRY,ENERGY

DESIGN MICROBIOLOGY
MATHEMATICAL & COMPUTATIONAL SCIENCE

ENGINEERING ENVIRONMENTAL SCIENCE

Fig.7 MFC research can be classified under many subject areas
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towards harnessing energy from wastewater using micro-
bial catalysts.

The plethora of applications conceptualized, demon-
strated and envisaged portray microbial electrochemical
technologies as a “magic bullet’ for impending sustain-
ability crises. However, global sustainability issues can
be successfully addressed by MFCs only if the efforts are
collated, structured and directed towards a common objec-
tive of practical application of these technologies. Singular
efforts in multiple directions would only result in a tug-of-
war between research groups of varying skills and capabili-
ties. Rather, a collaborative approach at the regional level
could optimally utilize the available pool of expertise for the
output of MFCs to reach usable levels in large scale applica-
tions at affordable costs. Established groups must take the
lead in their respective regions for drawing up a framework
and charting a roadmap for other fledgling groups to also
contribute in their respective niche areas towards a com-
mon objective of societal benefit. The untiring efforts of
the International Society for Microbial Electrochemistry and
Technology (www.is-met.org) in this direction will certainly
go a long way in making this possible. As it has been rightly
said: “Coming together is a beginning. Keeping together is
progress. Working together is success.”
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