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Abstract
Microbial fuel cells (MFCs) have shown immense potential as a one-stop solution for three major sustainability issues con-
fronting the world today—energy security, global warming and wastewater management. MFCs represent a cross-disciplinary 
platform for research at the confluence of the natural and engineering sciences. The diversity of variables influencing per-
formance of MFCs has garnered research interest across varied scientific disciplines since the beginning of this century. 
The increasing number of research publications has made it necessary to keep track of work being carried out by research 
groups across the globe and consolidate significant findings on a regular basis. Review articles are often the nodal points 
for beginners who are required to undertake an exploratory survey of literature to identify a suitable research problem. This 
‘review of reviews’ is a ready-reckoner that directs readers to relevant reviews and research articles reporting significant 
developments in MFC research in the last two decades. The article also highlights the areas needing research attention which 
when addressed could take this technology a few more steps closer to practical implementation.

Keywords Microbial fuel cells · Microbial electrochemistry · Microbial electron transfer · Wastewater treatment · Alternate 
energy · Bioanode · Biocathode

Introduction

The Earth presently plays host to almost 8 billion human 
beings (UN DESA Population Division 2019) and the num-
ber is expected to go up further and level out by the latter 
half of the Twenty-first century (Gonzalo et al. 2016). Sus-
tainability of natural resources has been a cause for concern 
(Buhaug and Urdal 2013) due to ambitious social and eco-
nomic goals. Dwindling reserves of fossil fuels (Hallenbeck 
and Ghosh 2009) account for over 80% of the world’s pri-
mary energy consumption (Mohr et al. 2015). Greenhouse 
effect, a natural phenomenon that is chiefly responsible for 
the habitability of earth, appears to be assuming unman-
ageable proportions. Unregulated release of carbon dioxide 
and other greenhouse gases resulting from anthropocentric 
activities have led to increased absorption of infrared radia-
tion from the sun leading to above-normal surface tempera-
tures on earth (IPCC 2014). The need to curb such emissions 

underlines the search for sustainable, carbon–neutral sources 
of energy (Arent et al. 2011; Villano et al. 2012). Reinforc-
ing the need to shift to renewable energy, Rittman (2008) 
specifically outlines the potential of microorganisms as a 
source of energy.

Urbanization is on the rise in developing nations (Buhaug 
and Urdal 2013) and the resultant increase in average income 
has ameliorated food preferences, putting pressure on water 
resources (de Fraiture and Wichelns 2010). The increased 
demand for water has impacted water availability (Hadde-
land et al. 2014) and has promoted reuse of wastewater for 
applications such as irrigation (Toze 2006) and landscaping. 
However, in many developing countries, advances in sanita-
tion infrastructure and wastewater treatment have been out-
paced by population growth (Qadir et al. 2010). As a result, 
many of them are on the lookout for reliable and low-cost 
means for treatment of domestic, agricultural and industrial 
wastewater to make it reusable (Massoud et al. 2009). An 
informative and well-illustrated review article by Larsen 
et al. (2016) discusses the need to adopt innovative strategies 
for arriving at resource-efficient solutions for issues related 
to urban water management.
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Past and present of MFCs

Electrical effects resulting from microbial disintegration of 
organic compounds were first described by Potter (1911) 
over a hundred years ago. In the subsequent decades leading 
to the next century, there were only a few isolated reports of 
attempts to extend this fascinating discovery towards prac-
tical applications. Schröder (2011) traces the century-long 
history of microbial electrochemical systems from the time 
they were first reported, highlights significant milestones, 
succinctly outlines the reasons for the initial dearth of inter-
est in taking this technology further, and finally describes 
the relevance and future scope of this discipline following 
its resurgence at the turn of the century.

Microbial Fuel Cells (MFCs) have been aptly described 
by Du et al. (2007) as “bioreactors that convert the energy 
in the chemical bonds of organic compounds into electrical 
energy through catalytic activity of microorganisms under 
anaerobic conditions”. Figure 1 is a graphical representa-
tion of a generic two-chambered MFC comprising an anode 
and a cathode chamber separated by a selectively perme-
able membrane. The microbes’ need for a compatible elec-
tron acceptor to deposit electrons is readily fulfilled by the 
anode of an MFC in the absence of a more suitable acceptor 
(Stams et al. 2006). These electrons collected by the anode 
are channelised across an external load (resistor) to har-
ness usable energy. The final step of the electron transport 
occurs at the cathode in the presence of a terminal electron 
acceptor. Thus, a ‘quasi-engineered’ electron transport chain 
that mimics the bacterial respiratory chain forms the core 

of an MFC. Basic concepts relating to MFCs are presented 
in a lucidly written lecture text by Schröder (2018). The 
technical foundations and principles which form the basis 
of this technology are presented in comprehensive review 
articles by Logan et al. (2006) and Santoro et al. (2017). 
These microbe-catalysed electrochemical devices are viewed 
as a potential solution for wastewater management and as a 
source of sustainable and clean energy. To make this solu-
tion practically viable, research on microbial electrochemi-
cal technologies has primarily focused on four aspects, viz. 
minimizing electrochemical losses, improving performance 
efficiency, lowering working costs and scaling up systems 
for practical applications (Fig. 2).

A query submitted for the term ‘microbial fuel cells’ on 
the Web of Science™ platform of Clarivate Analytics (Fig. 3) 
showed a gradual increase in the number of research articles 
on MFCs that were published in the years 2004–2020 in sci-
entific, peer-reviewed journals. It must be noted that this figure 
serves to only emphasize the growth trend and that the output 
of a similar query in different search engines would obviously 

Fig. 1  Schematic of a generic 
two-chambered MFC

Fig. 2  Four major focus areas of MFC research
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return varying numbers based on the websites and databases 
that are indexed by the respective algorithms.

Among the different types of articles that are published in 
scientific journals, review articles represent a starting point 
for budding researchers and a vade mecum for established 
scientists. In general, reviews primarily serve to fulfil the 
following tasks:

 i. classifying the ever-growing information in a subject 
into relevant categories,

 ii. providing references to research papers that describe 
significant advancements, and

 iii. highlighting lacunae to be addressed by researchers.

This article has been compiled with the primary objective 
of aiding beginners to sift through the abundantly available 
scientific literature on MFCs by directing them to focused 
reviews and relevant breakthrough research articles high-
lighting significant advances in the field. The content has 
been divided into independent sub-sections pertaining to 
configuration, microbes, materials, performance characteri-
zation, scale-up and applications for the sake of conveni-
ence. The choice of references cited in this article is based 
entirely on their content and is not influenced by any inten-
tional bias whatsoever.

MFC design and modeling

A wide variety of MFC configurations have been designed 
for specific applications and with the objective of improv-
ing performance by minimizing systemic losses. Some 

of the significant examples include air–cathode single-
chamber MFCs (Liu and Logan 2004), flat-plate MFCs 
(Min and Logan 2004), upflow MFCs (He et al. 2005), 
tubular MFCs (Rabaey et al. 2005), membrane-electrode 
assembly MFCs (Pham et al. 2005), stacked MFCs (Aelter-
man et al. 2006), separator-electrode assembly MFCs (Ahn 
and Logan 2012). However, the most commonly reported 
are the two-chambered, ’H-shaped’ MFCs which, despite 
their low current output, have been the most convenient 
for optimizing performance of new components and char-
acterising operating conditions (Logan et al. 2006). Fig-
ure 4 (adapted) presents some of the different experimental 
designs that have been used in MFC studies and reported 
in literature.

Discussing essential aspects to be considered while 
designing MFCs for various practical applications, an 
article by Logan et al. (2015) highlights the importance 
of electrode configuration and source of organic substrate 
in determining performance. Modeling studies, which 
facilitate detailed analyses of factors affecting the perfor-
mance of MFCs (Jadhav et al. 2020a), include mathemati-
cal modeling (Deb et al. 2020), computer simulations (Xia 
et al. 2018), neural network modeling (Ma et al. 2019) and 
electrochemical modeling (Kadivarian and Karamzadeh 
2020). Given the diversity of dependent variables that can 
determine the performance of MFCs (Oliveira et al. 2013; 
Zhang et al. 2019a), analysing their influence to arrive at 
a valid conclusion depends to a considerable extent on the 
number of replicates of an experiment because repeatabil-
ity is not necessarily assured (Larrosa et al. 2009).

Fig. 3  Year-wise trend of publi-
cations based on a search on the 
Web of Science™ portal for the 
keyword ’microbial fuel cell’ 
(2004–2020)
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Electroactive microbes

Microbes play a key role in an MFC by catalysing the release 
of electrons from energy rich bonds of organic substrates 
under anoxic conditions. Review articles by Pant et  al. 
(2010b) and Pandey et al. (2016) describe different pure 
substrates and types of wastewater that have been used as a 
carbon source for microbes in MFCs. The electrons released 
in this process of oxidation travel through versatile microbial 
electron transport chains (Fredrickson et al. 2008; Kracke 
et al. 2015) which comprise serially arranged conductive 
protein complexes, cytochromes, nanowires and redox pro-
teins (Costa et al. 2018) before being donated to the anode 
of the MFC. Schröder explains the fundamental mechanisms 
and energy considerations of anodic electron transfer in a 
classic review (2007). Electron transfer between microbes 
and the electrode (Lovley 2012; Kumar et al. 2017) can be 
either indirect—mediated by naturally produced or artifi-
cially added redox shuttles (Martinez and Alvarez 2018)—or 
by direct extracellular electron transfer (Yang et al. 2012) 
(Fig. 5). Glasser et al. (2017) provide valuable insights into 
endogenous extracellular electron shuttles while Lovley 
(2017) describes the processes associated with direct inter-
species electron transfer which enables long-distance trans-
port of electrons in bioelectrochemical systems. Dynamics 
of electron transfer within microbes (intra), between micro-
bial species (inter), and at the microbe-electrode interface 
have been detailed in a review article by Zheng et al. (2020).

Mixed consortia of electrogenic and electrotrophic 
microbes (Logan 2009; Logan et al. 2019) are known to con-
tribute more effectively to production of current in MFCs as 
compared to pure cultures of bacteria. This difference could 
be attributed to synergistic interactions between syntrophic 
microbial species resulting in effective utilization of available 
substrates (Kiely et al. 2011) by the formation of electrochemi-
cally active biofilms (Borole et al. 2011; Babauta et al. 2012; 
Reguera 2018; Kiran and Patil 2019). Growth and performance 
of electroactive biofilms can be enhanced (Li et al. 2018a) by 
selectively controlling growth conditions (Doyle and Mar-
sili 2015, 2018), using synthetic biology (Glaven 2019) and 
adopting engineering approaches (Angelaalincy et al. 2018; 
Chiranjeevi and Patil 2020). Communities of microbial con-
sortia have also been profiled and characterized using ‘omics’ 
technologies (Rittmann et al. 2008; Lacerda and Reardon 
2009; Moran et al. 2013; Franzosa et al. 2015; Kouzuma et al. 
2018), flow-cytometric approaches (Koch et al. 2014), com-
putational tools (Haft and Tovchigrechko 2012; Segata et al. 
2013) and statistical analysis (Buttigieg and Ramette 2014) to 
obtain insights from a structural and functional perspective 
(Zhi et al. 2014).

Fig. 4  Different designs used in MFC studies: a salt bridge MFC; b, c 
upflow MFCs; d flat-plate MFC; e h-shaped MFC; f, g single-cham-
ber MFCs; h stacked MFC (The figure has been reprinted (adapted) 
with permission from Logan BE, Hamelers B, Rozendal R, et  al. 

(2006) Microbial fuel cells: Methodology and technology. Environ-
mental Science & Technology 40:5181–5192. https:// doi. org/ 10. 
1021/ es060 5016. Copyright © 2006 American Chemical Society.)

https://doi.org/10.1021/es0605016
https://doi.org/10.1021/es0605016
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Electrodes and separators

Efficient electrode materials in MFCs must essentially be 
biocompatible, electrically conductive, non-corrosive and 
electrochemically stable. Wei et al. (2011), in their detailed 
review article, analyse the advantages and disadvantages of 
different materials used as electrodes in MFCs and discuss 
the prospects of electrode development. Assessing the per-
formance of electrodes and separators (Hamelers et al. 2010) 
and use of low-cost materials such as ceramics (Winfield 
et al. 2016), ligno-cellulosic material (Mehta et al. 2020) 
and biochar (Chakraborty et al. 2020a) without significantly 
compromising on efficiency is important for design of effi-
cient MFCs. Breheny et al. (2019) discuss critical aspects for 
improvement of bioelectrodes in MFCs and Pasternak et al. 
(2020) present a new dimension for enhancing performance 
of microbial electrochemical systems using surfactants.

Anodes serve as the substratum for biofilm formation and 
also function as current collectors in MFCs. Among different 
materials that have been reported, carbon is most preferred 
for anodes because of its versatility, non-reactivity, high 
electrical conductivity and biocompatibility (Logan 2008). 
While carbon cloth and carbon felt provide more room for 
colonization of microbes by virtue of being more porous 
compared to graphite sheets or carbon paper, the innovative 
introduction of graphite brush anodes (Logan et al. 2007) 
enabled the incorporation of larger surface area of electrodes 
for a given volume of the reactor. The high conductivity 
and surface area provided by nanomaterials resulted in their 
use in the anode chamber of MFCs (Liu et al. 2020). Gnana 
kumar et al. (2013) describe the features of anode materials 
used in MFCs and different processing techniques that can 
improve efficiency of bacterial adhesion, electron capture 
and transfer. A comparative account of conventional and 
modified anodes (Cai et al. 2020) opens up a new window 

for understanding the characteristics of anode materials and 
paves the way for development of next generation MFC 
anodes.

Cathodes provide a common interface for the culmination 
of the microbial electron transfer process in an MFC result-
ing in the confluence of electrons, protons and the terminal 
electron acceptor. On account of their complex role, cath-
odes have been considered as a critical point to determine 
the efficiency of MFCs (Rabaey and Keller 2008). Based 
on the type of electron acceptor used (He et al. 2015), cath-
odes can be classified as chemical or biological. Oxygen 
is often preferred as a terminal electron acceptor due to its 
ubiquity and propensity to get reduced to water. However, 
poor kinetics of the oxygen reduction reaction led to the use 
of expensive, precious-metal catalysts such as platinum at 
the cathode. Studies that focused on reduction of operating 
costs (Zhang et al. 2009) eventually led the way to develop-
ment of more economical, alternate cathode materials based 
on carbon (Peera et al. 2020) and nanocomposites (Dessie 
et al. 2020) devoid of precious metals for improving effi-
ciency of the oxygen reduction reaction (Yuan et al. 2016). 
Erable et al. (2012) describe the application of microbes to 
catalyse the rate-limiting oxygen reduction reaction at the 
cathode. Biocathodes (He and Angenent 2006), comprising 
electrotrophic microbes that can directly accept electrons 
from the electrode (Lovley 2011), can overcome many of 
the shortcomings encountered using chemical cathodes and 
are now being actively pursued as a topic of research interest 
(Song et al. 2019).

A separator in an MFC is a physical barrier that allows 
charges to pass through but serves as a hurdle to prevent 
direct electrical contact between the anode and cathode. 
In the early years, proton exchange membranes such as 
Nafion® were used in MFCs to selectively allow only pro-
tons to the cathode chamber of an MFC (Rahimnejad et al. 

Fig. 5  Direct (solid lines) and 
indirect (dotted lines) electron 
transfer from bacteria to the 
anode
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2014). Eliminating the use of a proton-specific, separating 
membrane in MFCs (Jang et al. 2004) was a significant 
breakthrough for reducing operation costs, but it brought 
along the twin drawbacks of oxygen diffusion into the anoxic 
anode chamber and short circuiting of electrons between the 
anode and cathode, both of which when unregulated have a 
detrimental impact on performance efficiency. In subsequent 
years, expensive membranes were substituted with alterna-
tives like Zirfon® (Pant et al. 2010a; Pasupuleti et al. 2016) 
and low-cost materials having more general transport prop-
erties such as ion exchange membranes (Leong et al. 2013), 
ceramic filtration membranes (Yang et al. 2016a), polymeric 
membrane separators (Bakonyi et al. 2018), sand/activated 
carbon separators (Gao et al. 2018), silk fibroin membranes 
(Pasternak et al. 2019) and polystyrene (Mathuriya and Pant 
2019).

Performance characterization

Electrochemical techniques and tools are used to analyze 
the effect of modifications made to MFCs with the objec-
tive of minimizing electrochemical losses and enhancing 
performance efficiency. Rimboud et al. (2014) present a 
detailed perspective on the factors to be considered while 
designing anodes for microbial electrochemical systems. 
Electroactivity of biofilms has been characterized using 
techniques such as cyclic voltammetry (Gimkiewicz and 
Harnisch 2013), electrochemical impedance spectros-
copy (ter Heijne et al. 2015), confocal resonance Raman 
microscopy (Virdis et al. 2016), interdigitated electrode 
array (Yates et al. 2018) and other methods. Technical 
aspects such as internal resistance (Zhang and Liu 2010) 
and anode potential (Aelterman et al. 2008; Wagner et al. 
2010; Zhu et al. 2013) have to be understood and com-
monly encountered issues such as power overshoot (Wat-
son and Logan 2011; Winfield et al. 2011) and voltage 
reversal (Kim et al. 2020) must be analysed to minimise 
losses and enhance performance of MFCs. Tutorial articles 
provide the necessary support to beginners to understand 
fundamental concepts in electronic circuitry (Sánchez 
et al. 2020), choice of electrode configurations and oper-
ating conditions for electroanalysis (Zhao et al. 2009) and 
nuances of techniques such as cyclic voltammetry (Har-
nisch and Freguia 2012; Elgrishi et al. 2018) and elec-
trochemical impedance spectroscopy (He and Mansfeld 
2009). Other useful reviews outline performance indi-
cators (Sharma et al. 2014) and terms used to describe 
performance of microbial electrochemical systems (Wang 
and He 2020). Challenges encountered due to the diverse 
configurations of MFCs and different techniques available 
for characterizing activity of electroactive microbes can be 
addressed by having a standardized framework (Harnisch 

and Rabaey 2012) and fundamental guidelines to plan 
experiments, analyse observations and report results in a 
more meaningful manner (Logan 2012).

Scaling up

Schröder (2011) reported that the performance of MFCs 
improved by close to three orders of magnitude—from 
few μA/cm2 to over 1 mA/cm2—during the first decade 
of this century. Microscale (Wang et al. 2011; Choi 2015) 
and microfluidic (Yang et al. 2016b; Parkhey and Sahu 
2020) MFCs have shown enhanced performance in terms 
of power production. Although μL and mL scale labora-
tory experiments provide cues and clues regarding dif-
ferent mechanisms involved in the functioning of MFCs, 
systemic understanding obtained from such studies must 
be transferred and translated (Janicek et al. 2014; Butti 
et al. 2016) to enable setting up of pilot-scale systems 
(Logan 2010). Knowledge of the different components and 
processes involved is critical to make upscaling of MFCs 
practically feasible (Logan et al. 2015). Significant pro-
gress has been achieved over the past decade in developing 
scaled-up MFC systems for practical applications (Gajda 
et al. 2018; Abdallah et al. 2019; Jadhav et al. 2020b).

Applications

The primary application of MFCs is wastewater treatment 
with concomitant production of electricity (Pant et al. 
2012). Lefebvre et al. (2011) describe energetics of MFCs 
with the objective of developing a self-sustaining domestic 
wastewater treatment process (Oh et al. 2010). Harness-
ing the potential of MFCs as a power source (Wang et al. 
2015) and for production of valuable products by micro-
bial electrosynthesis (Rabaey and Rozendal 2010; Har-
nisch and Urban 2018) requires an in-depth understand-
ing of factors that limit performance (Sleutels et al. 2012) 
along with the principles of energy capture and storage 
(Sun et al. 2016).

Evolution of microbes has favoured the diversification 
of MFCs into a number of technologies (Schröder and Har-
nisch 2017) with varied applications (Schröder et al. 2015), 
resulting in the more generic term ‘microbial electrochemi-
cal cells’ (MXCs) (Fig. 6). Table 1 presents an overview of 
the multifarious applications of microbial electrochemical 
technologies and provides references to recently published 
review articles. Torres (2014) emphasizes on the need to 
“identify, understand and predict” different phenomena that 
govern the performance of such systems.
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Conclusions

The pursuit of alternate sources of energy due to the con-
sequences of an unabated rise in human population has 
directed attention of researchers towards MFCs which 
essentially perform a dual-role of wastewater treatment 
and clean energy production. The steady increase in the 
number of research articles published on MFCs (Md 
Khudzari et al. 2018) over the last 15 years is an indica-
tor of the steadfastness and commitment of the research 
community. Moreover, among the several books written or 
compiled on MFCs, the following three which encapsulate 

significant advances pertaining to construction, charac-
terization, applications and diversification of this tech-
nology deserve a mention: Microbial fuel cells (Wiley-
Interscience) (Logan 2008), Microbial Electrochemical 
Technology: Sustainable Platform for Fuels, Chemicals 
and Remediation (Elsevier) (Venkata Mohan et al. 2018) 
and Microbial Electrochemical Technologies (Routledge/
CRC Press) (Tiquia-Arashiro and Pant 2020).

However, what goes unnoticed is the increasing num-
ber of students opting for MFCs and related technologies 
for their projects at high school and university levels due 
to the societal relevance of these topics. Considering the 
fact that data presented in such project reports often trigger 

Fig. 6  Diversification of micro-
bial electrochemical cells

Table 1  Applications of microbial electrochemical technologies

Application Reference

1 Electrobioremediation of recalcitrant pollutants and xenobiotics (Sevda et al. 2018; Chakraborty et al. 2020b; Chandrasekhar et al. 
2020; Wang et al. 2020b)

2 In situ remediation of groundwater and soil (Cecconet et al. 2020; Li et al. 2020)
3 MFC-coupled hybrid systems for environmental remediation and 

resource recovery
(Yang et al. 2019; Zhang et al. 2019b; Elmaadawy et al. 2020; Wang 

et al. 2020a)
4 Energy recovery from urine and solid wastes (Gurjar and Behera 2020; Santoro et al. 2020)
5 Recycling elements using self-sustaining photosynthetic MFCs (Greenman et al. 2019; Mekuto et al. 2020)
6 MFC-based biosensors (Sun et al. 2015; ElMekawy et al. 2018; Jiang et al. 2018; Sevda et al. 

2020)
7 Energy harvesting and storage in combination with electrochemical 

capacitors and as supercapacitive MFCs
(Caizán-Juanarena et al. 2020; Soavi and Santoro 2020)

8 Carbon capture and microbial electrosynthesis of value-added 
products

(Roy et al. 2015; Das et al. 2019; Chu et al. 2020)

9 Platform technology for novel applications (Butti et al. 2016; Zou and He 2018; Hoareau et al. 2019)
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more specialized and resource intensive studies, it might be 
worthwhile exploring the creation of a platform to document 
and collate promising results from such projects. Moreover, 
acknowledging the efforts of these young contributors, in a 
noteworthy manner, in research publications resulting from 
these leads would encourage more exploratory studies by 
students.

Planning for a student project or designing a research 
experiment might seem to be an elementary process because 
of the seemingly limitless possibilities that exist to observe 
the effects of tweaking the diverse physico-chemical and 
biological variables that directly or indirectly influence 
MFC performance. However, it would preferable to align 
the scope of such investigations to the aforementioned four 
major objectives of MFC research—keeping electrochemi-
cal losses under check, boosting electron transfer efficiency, 
bringing down operational costs and upscaling systems for 
practical applications—so that it results in a significant con-
tribution to the existing body of knowledge.

MFCs have been prototyped in various shapes and sizes; 
each new configuration presenting an improvement over the 
others in some aspect of performance. Alterations to MFC 
configurations will continue in the quest for models that 
can be effectively implemented on a large scale. The under-
standing of variables associated with MFC performance has 
certainly improved over the years and the inventory of mate-
rials that improve the performance of MFCs is also continu-
ally expanding. These must go hand-in-hand with efforts 
to curb costs of scaled-up systems. Agricultural wastes, for 
instance, are carbon-rich materials that can be carbonized 
and exploited as low-cost electrode material. However, such 
substitutions can imply a trade-off with performance effi-
ciency, opening up new avenues for detailed optimization 
studies using statistical methods such as response surface 
methodology.

Carrying out mathematical modeling and computer simu-
lations can provide a near-realistic estimate of the optimal 
configuration, components and operating parameters to be 
employed under a given set of conditions for specific appli-
cations. Designing high-throughput methods for screening 
performance of components and operating parameters is a 
challenge that is still relevant and needs attention; especially 
because of the inter-relationships among the physico-chem-
ical and variables influencing MFCs.

The fact remains, however, that the biological component 
will always be a complex variable that cannot be precisely 
modelled; and thus needs more focused attention for unravel-
ling unknown facets of bacterial metabolism and energetics 
specifically in the context of bioelectrochemical systems. 
Community dynamics of microbial consortia in electroac-
tive biofilms powering microbial electrochemical systems 
are still being understood. In silico analyses of genomic and 
proteomic data in openly available repositories such as the 

National Center for Biotechnology Information (www. ncbi. 
nlm. nih. gov), Worldwide Protein Data Bank (www. wwpdb. 
org), European Bioinformatics Institute (www. ebi. ac. uk) 
and many others make it possible to gain insights into the 
mechanistic aspects of bacterial electron transfer systems 
and processes. Metagenomic approaches for microbial com-
munity profiling are gaining relevance as they also account 
for bacteria which cannot be easily cultured in laboratory 
conditions. Sophisticated protein modelling and visualiza-
tion tools available today can uncover hitherto unknown 
aspects of bacterial respiratory proteins and biofilm-associ-
ated proteins (www. biofi lms. biosim. pt). Protocols employed 
for control of biofilms, especially in the food and healthcare 
sectors where they are known to be a nuisance, could pro-
vide useful hints to develop methods for promoting their 
growth in bioelectrochemical systems.

Tutorial articles on a design of experiments approach to 
effectively plan experiments and on electrochemical tech-
niques for performance characterization will help in hand-
holding students and scientists from diverse backgrounds to 
set-up the working environment. Limited access to equip-
ment for electrochemical characterization, often not afford-
able for school and colleges not having established routes 
to obtain funding, can be a major bottleneck for obtaining 
reliable results. Efforts to bring down costs of basic instru-
mentation using micro-controllers (Meloni 2016; Li et al. 
2018b) would bolster the quality of results of academic pro-
jects relating to MFCs.

As evidenced by literature, what began as a fascinating 
phenomenon over a century ago has evolved into a fertile 
avenue for researchers from different disciplines to con-
verge and contribute (Fig. 7). The journey of MFCs seems 
to be akin to the folk-tale of the six blind men who tried to 
describe an elephant; each one basing his judgement on a 
part of the animal that he felt with his hands. It was only 
when all their views were rationally consolidated that they 
perceived the bigger picture and came to the conclusion that 
an elephant is actually much more than just fan-like ears, 
pillar-like legs, spear-like tusks, a tube-like trunk, a rope-
like tail and a wall-like body. Multidisciplinary approaches 
and transdisciplinary efforts have demolished traditional 
barriers and bridged the gaps which had prevailed in the 
earlier years on account of adopting a simplex approach 

Fig. 7  MFC research can be classified under many subject areas

http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/
http://www.wwpdb.org/
http://www.wwpdb.org/
http://www.ebi.ac.uk
http://www.biofilms.biosim.pt
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towards harnessing energy from wastewater using micro-
bial catalysts.

The plethora of applications conceptualized, demon-
strated and envisaged portray microbial electrochemical 
technologies as a ’magic bullet’ for impending sustain-
ability crises. However, global sustainability issues can 
be successfully addressed by MFCs only if the efforts are 
collated, structured and directed towards a common objec-
tive of practical application of these technologies. Singular 
efforts in multiple directions would only result in a tug-of-
war between research groups of varying skills and capabili-
ties. Rather, a collaborative approach at the regional level 
could optimally utilize the available pool of expertise for the 
output of MFCs to reach usable levels in large scale applica-
tions at affordable costs. Established groups must take the 
lead in their respective regions for drawing up a framework 
and charting a roadmap for other fledgling groups to also 
contribute in their respective niche areas towards a com-
mon objective of societal benefit. The untiring efforts of 
the International Society for Microbial Electrochemistry and 
Technology (www. is- met. org) in this direction will certainly 
go a long way in making this possible. As it has been rightly 
said: “Coming together is a beginning. Keeping together is 
progress. Working together is success.”
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