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Abstract The present work is focused on modeling

and predicting the cumulative number of deaths from

COVID-19 in México by comparing an artificial

neural network (ANN) with a Gompertz model

applying multiple optimization algorithms for the

estimation of coefficients and parameters, respec-

tively. For the modeling process, the data published by

the daily technical report COVID-19 in Mexico from

March 19th to September 30th were used. The data

published in the month of October were included to

carry out the prediction. The results show a satisfac-

tory comparison between the real data and those

obtained by both models with a R2[ 0.999. The

Levenberg–Marquardt and BFGS quasi-Newton opti-

mization algorithm were favorable for fitting the

coefficients during learning in the ANN model due to

their fast and precision, respectively. On the other

hand, the Nelder–Mead simplex algorithm fitted the

parameters of the Gompertz model faster by

minimizing the sum of squares. Therefore, the ANN

model better fits the real data using ten coefficients.

However, the Gompertz model using three parameters

converges in less computational time. In the predic-

tion, the inverse ANN model was solved by a genetic

algorithm obtaining the best precision with a maxi-

mum error of 2.22% per day, as opposed to the 5.48%

of the Gompertz model with respect to the real data

reported from November 1st to 15th. Finally, accord-

ing to the coefficients and parameters obtained from

both models with recent data, a total of 109,724

cumulative deaths for the inverse ANN model and

100,482 cumulative deaths for the Gompertz model

were predicted for the end of 2020.

Keywords COVID-19 � Dynamic models � Artificial

neural network model � Gompertz model � Optimal

algorithms

1 Introduction

In México, the first death from COVID-19 recognized

by the Ministry of Health was reported on March 19th.

From this date until September 30th, a total of 77,646

cumulative deaths from COVID-19 have been

recorded according to the ‘‘Daily Technical Report’’

[1]. With this number, México ranks in the first places

of mortality from COVID-19 globally, based on data
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registered by the Johns Hopkins University [2]. The

vulnerability that México presents at the national level

due to virus infection depends on the high number of

the sick population with multiple comorbidities. On

April 30, 1859 deaths were registered, determining

that the deceased suffered from other diseases such as

hypertension, diabetes and obesity [3]. On the other

hand, hospitalized patients and those with pneumonia

carry an increased risk of mortality [4]. With these

factors, México will surely continue at risk of

increasing its level of mortality, coupled with the

season of manifestation of other infectious diseases

such as influenza [5] and dengue [6]. Given the

imminent risk due to the spread of the virus, it is

essential to model and predict both the number of

cases of COVID-19 infection and the number of

deaths, in order to provide scenarios for the health

sector that can reinforce the measures of prevention

and control.

In recent months, various investigations have

emerged with the aim of modeling and predicting

the dynamics of COVID-19 applying important mod-

els, as reported: Rahman et al. [7] developed a

fractional-order fuzzy dynamical system for modeling

COVID-19. The results show that when applying a

random model determined by a system of random

differential equations, they obtain better results.

Ndaı̈rou et al. [8] proposed a compartmental mathe-

matical model for the spread of the COVID-19

focused on the transmissibility of super-spreading

individuals. The results show that the model fits well

with the real data of confirmed cases and deaths

presented per day in Wuhan, China. Giordano et al. [9]

proposed a new SIDARTHE model that predicts the

course of the COVID-19 epidemic in Italy. The results

show that when social distancing measures are com-

bined with widespread testing, they can end the course

of the pandemic. Fanelli and Piazza [10] predicted the

spread of COVID-19 in China, Italy and France

through a SIRD model. The results show that the

recovery rate for Italy and China is the same, while the

infection and death rates are different. Acuña-Zegarra

et al. [11] used a modification of the Kermack–

McKendrick SEIR model to analyze the effect of

behavior change and containment of COVID-19 in

México. The results indicate that the maximum

incidence depends on the compliance and the aban-

donment rate of the Sanitary Emergency Measures.

Analyzing previous the research works, focused on

modeling and predicting the dynamics of COVID-19,

it is noted that they are based on complex mathemat-

ical models. Therefore, the application of alternative

models becomes feasible when they demonstrate the

ability to solve nonlinear dynamic problems. An

example is the Gompertz model, based on a differen-

tial equation designed to analyze the dynamics of a

specific behavior through growth curves. This model

has been implemented in the dynamics of COVID-19,

as reported by: Manca et al. [12] applied simple

models to predict intensive care unit beds and

mortality rate for hospital emergency planning due

to COVID-19. The results show that the Gompertz

model has better accuracy and reliability in predicting

deaths compared to other simple models. Sánchez-

Villegas and Codina [13] described a methodology

based on Gompertz curves to predict factors that are

key in the COVID-19 epidemic. The authors empha-

size that a simple model can be effective by using only

the observed data, without applying some type of

external covariate. Perez et al. [14] compared an

autoregressive integrated moving average (ARIMA)

and a Gompertz function growth model in the COVID-

19 cases applied for Austria, Switzerland and Israel.

The results show that both models have a correlation

index higher than 0.999, predicting that the end of the

pandemic is close in the three countries. Another

example of an alternative model, where it has been

applied to model the dynamics of COVID-19, is

through artificial neural networks (ANNs), as

described by: Wieczorek et al. [15] developed a neural

network model for COVID-19 spread prediction in

various countries. The results show a high precision

with 99% in some cases and a general precision

87.70% in most of the regions. Torrealba-Rodriguez

et al. [16] applied mathematical and computational

models to predict the number of COVID-19 cases in

México. The results show a better correlation between

the observed data and those obtained by an artificial

neural network with respect to the mathematical

models. Mollalo et al. [17] examined an artificial

neural network model for the nationwide prediction of

COVID-19 incidence in the USA. The results show

that with the precision obtained in various factors, they

can reveal relevant information to monitor the

COVID-19 outbreak.

The aim of this paper is to compare an artificial

neural network with respect to a Gompertz model to
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carry out the prediction of the dynamics of deaths

caused by COVID-19 in México. Before carrying out

the prediction, it is necessary to develop the modeling

process applying multiple optimization algorithms to

obtain the best data fit. To estimate the coefficients of

the ANN model during learning, the optimization

algorithms were applied: Levenberg–Marquardt,

BFGS quasi-Newton and batch gradient descent. To

estimate the parameters of the Gompertz model in the

sense of least squares, the optimization algorithms

were applied: Nelder–Mead simplex, nonlinear

regression and curve fitting. The data published by

the daily technical report COVID-19 in Mexico from

March 19th to September 30th were used for the

development of both models. Once the best optimiza-

tion algorithm to fit the data has been determined, the

prediction of cumulative deaths from COVID-19 is

carried out including recent data for the month of

October.

In summary, the main contributions of this paper

are:

1. Comparison of two models with different

approaches applied for the modeling and predic-

tion of the dynamics of deaths from COVID-19 in

México.

2. Propose an efficient optimization algorithm that

performs the fit of the real data for each model

based on the calculation time and convergence.

3. Determine similarities and differences during the

development of both models.

4. Demonstrate that the proposed models can predict

reliable data within a suitable time period for

decision making.

The remainder of this paper is organized as follows:

In Sect. 2, details on the source and behaviors of the

data set are presented. In Sect. 3, the artificial neural

network and Gompertz methodologies are specified,

as well as the statistical criteria to evaluate both

models, containing three subsections: the first focused

on describing the development of the artificial neural

network, its inverse and the optimization algorithms

used to fit the coefficients. The second dedicated to

explaining the development of the Gompertz model,

its reparametrization and the optimization algorithms

to fit the parameters. The third aimed at determining

the correlation and difference when comparing the real

data with respect to those fitted by both models. In

Sect. 4, the results of the modeling and prediction are

presented for each methodology, as well as a compar-

ison between both, divided into three subsections: the

first exposes the modeling and prediction of the

dynamics of deaths applying the artificial neural

networks model. The second is the modeling and

prediction of the dynamics of deaths applying the

Gompertz model are presented. The third shows an

analysis, resulting from the comparison of both

models, highlighting their similarities and differences.

Finally, the last section presents the conclusions.

2 Dataset

In this work, the data set used to develop the artificial

neural network and the Gompertz model was obtained

from the ‘‘Daily Technical Report’’ [1] by the Ministry

of Health. The government of México issues the

analysis and results of the data referring to COVID-19

obtained from the health authorities of all the states of

the country through the transmission by national

television network, beginning the transmission at

7:00 pm and ending at 8 pm (Time in México City,

CDMX). The information issued is detailed in the

‘‘Daily Technical Report,’’ which is made available

with other documents on the official website of the

Federal Health Secretariat, through the General

Directorate of Epidemiology.

Figure 1 shows the daily deaths recorded at the

national level from March 19th to September 30th

(196 real data) and cumulative number of deaths by

COVID-19, registering a maximum value of 1092

deaths (June 3rd). The data reflect ups and downs

uniform in the last months, so it is difficult to

determine an overall trend, unlike the confirmed cases

of COVID-19. For this reason, the present work

focuses on modeling cumulative number of deaths,

considering that the ups and downs will test the

capacity of both models.

3 Methodology

In this section, the particular specifications to apply

the artificial neural network and the Gompertz model

are described in order to perform the modeling and

prediction of the dynamics of deaths from COVID-19

in Mexico.

123

Comparison of an artificial neural network and Gompertz model 4657



3.1 Artificial neural network model

3.1.1 Development of the artificial neural network

An artificial neural network (ANN) is based on a

computational structure of layers, in which informa-

tion is introduced in order to model linear and

nonlinear outputs through a learning process. The

ANN model of the feedforward type has demonstrated

the efficiency of combined local and global approx-

imation capabilities [18].

The general architecture of a simple ANN is

designed with three layers. The input layer, which is

determined from the input variables (ln) and the

number of input data (k) to be used, assigns a weight

factor (Wi) for each one and adds a compensation

value called bias (b1) to generate an input (ns), as

described in the following equation:

ns ¼
XK

k¼1

Wis;k � lnk þ b1 sð Þ
� �

ð1Þ

In the hidden layer, the number of neurons (s) is

determined through the application of a transfer

function to represent the desired output, highlighting

the hyperbolic tangent sigmoid transfer function

(TANSIG). In the output layer, the associated coeffi-

cients in the hidden layer (W0, b2) are coupled and

grouped in matrices to generate a final output.

Generally, a linear function (PURELIN) is used to

represent the final output of the artificial neural

network.

The transfer functions are given by the following:

TANSIG ¼ 2

1 þ e�2ns
� 1 ð2Þ

PURELIN ¼ ns ð3Þ

To carry out the development of the ANN model,

the data must be divided randomly. The division aims

to generate information to train (60%), test (20%) and

validate (20%) the ANN model. The input variable

(Xn) was normalized in the interval [0.1–0.9] using the

following equation:

xN ¼ 0:8 � Xn � Xmin

Xmax � Xmin

� �
þ 0:1 ð4Þ

The output value to be modeled (cumulative

number of deaths) was divided by 1000 to avoid

obtaining large coefficients and improve computing

time. With the normalized data, a learning process is

executed in order to minimize the difference between

the desired output and the result obtained by the ANN

model through a backpropagation algorithm. The

square root of the mean error (RMSE) was applied

as a criterion to determine the fit of the ANN model

during training. Figure 2 shows in a general way the

development of the ANN model, described above.

The ANN model in general proposed to model the

cumulative number of deaths (ND) from COVID-19 is

represented by the following equation:

Fig. 1 Number of daily and cumulative deaths from COVID-19 in Mexico
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ND ¼ b2 �
Xs

s¼1

Wo sð Þ þ
Xs

s¼1

2Wo sð Þ

1 þ e �2� Wi sð Þ�tþb1 sð Þð Þð Þ

 !

ð5Þ

where t is the number of days since the first death.

3.1.2 Inverted ANN model approach

The inverse ANN prediction methodology has been

applied as an extrapolation tool to determine values of

interest [19]. The development of the inverse ANN

model consists of applying the coefficients obtained

by the ANN model to propose an objective function,

which allows extrapolating the output value depend-

ing on the search for the input value. To carry out the

prediction of the cumulative number of deaths using

the inverse ANN model, it is necessary to propose an

objective function for calculating the number of days

tð Þ on which a certain number of cumulative deaths

(ND) from COVID-19 will occur. This can be repre-

sented through the following equation:

Fun tð Þ¼�NDþb2�
Xs

s¼1

Wo sð Þ þ
Xs

s¼1

2Wo sð Þ

1þe �2� Wi sð Þ�tþb1 sð Þð Þð Þ

 !

ð6Þ

The objective function must be minimized as close

to zero as possible to obtain with certainty the number

of deaths with respect to the number of days.

3.1.3 Optimization algorithms for estimating

the coefficients in data fit

To estimate the coefficients (weights and bias) during

the learning process of the ANN model, an optimiza-

tion algorithm must be applied. In this work, three

different optimization algorithms were tested, out-

standing for solving complex optimization problems

and effective in finding coefficients in artificial neural

networks. The Levenberg–Marquardt algorithm was

designed to approach second-order training fast with-

out having to compute the Hessian matrix obtaining

better convergence when training neural networks

[20]. The quasi-Newton BFGS is an iterative algo-

rithm that belongs to the quasi-Newton methods,

which avoid the inversion of the Hessian matrix by

directly calculating the inverse of a pseudo-Hessian

matrix, improving the computational efficiency of the

whole calculation [21] and demonstrating a better
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performance in the development of the ANN model

architecture [22]. The batch gradient descent algo-

rithm is based on calculating the coefficients in the

direction of the negative gradient and is characterized

by reducing the error of the neural network as rapidly

as possible [23]. All the calculations necessary to

develop the ANN model and the application of the

optimization algorithms were carried out with

MATLAB mathematical software.

3.2 Gompertz model

3.2.1 Development of the Gompertz model

The Gompertz model was developed to determine

human mortality through a growth curve [24]. Sub-

sequently, it was applied in aspects related to health

such as tumor growth [25], bacterial growth [26],

among others. The Gompertz model uses a differential

equation, where a sigmoidal growth curve for specific

behavior is described. The basic equation of Gom-

pertz model can be written in the following form:

dL tð Þ
dt

¼ �aL tð Þln L tð Þ
C

ð7Þ

where L tð Þ is the dependent variable in the model (the

number of cumulative deaths at time t), a are the

parameters for the growth rate in the model and C is

the maximum possible value obtained from the model

(the maximum number of cumulative deaths per unit

of time).

3.2.2 Reparameterization of the Gompertz model

The reparameterization of the growth model is

essential to obtain mathematical parameters with an

important meaning in the generated function. The

growth curves of the Gompertz model can be

expressed in different ways depending on the number

of parameters to be used, but they coincide in

including a double exponential. In this work, an

equation with three parameters was applied to model

the dynamics of deaths from COVID-19:

L tð Þ ¼ ae�e�b t�cð Þ ð8Þ

where L tð Þ is the number of cumulative deaths for

each day tð Þ; a is the maximum number of cumulative

deaths at the end of the epidemic; b is the estimated
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relative growth rate of total deaths;ðtÞ is the number of

days from the first case and cð Þ is the moment at which

the inflection point of the curve is estimated. Figure 3

shows in a general way the proposed procedure to

apply the Gompertz model to carry out the modeling of

the dynamics of deaths.

3.2.3 Optimization algorithms for estimating

the parameters in data fit

To carry out the estimation of parameters in the

Gompertz model, it is necessary to apply an optimiza-

tion algorithm to fit the data. For the particular case of

the Gompertz model, three optimization algorithms

were tested, notable for performing the search for

parameters in the shortest possible time starting from

initial conditions. The Nelder–Mead simplex algo-

rithm was designed to solve nonlinear optimization

problems without restrictions and does not require

derivative computation of the function under test [27].

Nonlinear regression algorithm is a type of regression

to determine parameters of a model that requires fitting

real data [28]. Curve fitting algorithm is characterized

by solving equations with multiple parameters asso-

ciated with the curve jointly [29]. All the calculations

necessary to develop the Gompertz model and the

application of the optimization algorithms were car-

ried out with MATLAB mathematical software. These

algorithms determine the parameters using the least

squares method in order to minimize the sum of the

squared of the differences between the data obtained

from the Gompertz model and the real data, as

represented by the following equation:

Mina;b;c SSE ¼
Xn

i¼1

yreal
i � yimodel

� �2

( )
ð9Þ

3.3 Evaluation of the models

From the coefficients and parameters estimated for the

artificial neural network and the Gompertz model, the

modeled data were compared with the real data. To

evaluate the fit of the models, statistical criteria were

applied to determine the correlation index and error

measurement. The regression coefficient (R2) is

widely used to infer the degree of linear correlation

between the data. The mean absolute percentage error

(MAPE) measures the size of the absolute error in

percentage terms. These criteria are calculated

through the following equations:

R2 ¼ 1 �
Pn

i¼1 xreal ið Þ � xmodel ið Þ
� �2

Pn
i¼1 xreal ið Þ � xreal
� �2

ð10Þ

MAPE ¼
Pn

i¼1

xreal ið Þ�xmodel ið Þ
xreal ið Þ

���
���

n
� 100 %ð Þ ð11Þ

where x ¼ 1
n

Pn

i¼1

x ið Þ is the average of the real value;

xmodel ið Þ is the output value obtained by the model; and

xreal ið Þ is the real value.

4 Results and discussion

In this section, the results obtained from modeling and

predicting the dynamics of deaths in Mexico with the

application of the models are presented. In the

modeling process, various optimization algorithms

were used to obtain a proof equation and thus support

the prediction. Finally, a comparative analysis

between both models is described.

4.1 Modeling and prediction of death dynamics

applying artificial neural networks

4.1.1 Modeling the cumulative number of deaths

with ANN

The ANN model was developed using an optimal

architecture to carry out the modeling of cumulative

number of deaths by COVID-19 in México from

March 19th to September 30th. To estimate the

coefficients, three optimization algorithms were

applied, which fit the weights and biases through a

feedforward backpropagation. All calculations were

performed on a computer with the following charac-

teristics: Intel� CoreTM i3-3217U CPU, 1.80 GHz,

4 GB RAM and 500 GB hard disk. Figure 4 shows the

real data of cumulative deaths by COVID-19, as well

as the estimated data of the ANN model applying the

optimization algorithms: a) Levenberg–Marquardt, b)

BFGS quasi-Newton and c) batch gradient descent.

The comparison between the real data and those

obtained by the ANN model when using the opti-

mization algorithms presents a satisfactory correlation

with an R2[ 0.999. Table 1 shows the errors (RMSE)
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Fig. 4 Comparison between cumulative deaths and those estimated by the ANN model applying the optimization algorithms:

a Levenberg–Marquardt, b BFGS quasi-Newton and c batch gradient descent
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and times in which the coefficients were estimated

during the learning process. The criterion of MAPE

was useful to determine the percentage error of the real

data with respect to the models focused on the last

trimester of the period studied; this is because the

registered deaths show uniform ups and downs and the

models adapt better.

The results show that the Levenberg–Marquardt

algorithm estimated the coefficients in the shortest

possible time (46.23 s) using an architecture of three

neurons in the hidden layer. On the other hand, the

BFGS quasi-Newton algorithm demonstrated greater

precision during reflected training with an RMSE of

0.2165 and MAPE of 0.33% using an architecture of

three neurons in the hidden layer. Finally, the batch

gradient descent algorithm presented the least capacity

to model the real data, as it required of six neurons in

the hidden layer and a greater computation time

(268.75 s). Based on computation time, the Leven-

berg–Marquardt algorithm is the most suitable for

modeling the dynamics of deaths. With the best

optimal architecture (1–3-1) and hyperbolic tangent

sigmoid transfer function (TANSIG).

In this work, Eqs. (12–15) are presented as proof to

demonstrate the coupling of the coefficients obtained

during the learning process to the ANN model (Eq. 5),

as well as illustrating that using three neurons in the

hidden layer, ten coefficients are generated. Therefore,

Eqs. (12–15) can be applied directly to simulate the

cumulative number of deaths (ND).

ND¼45:0504� �44:8528ð Þþ 2:1309ð Þþ 3:7335ð Þ½ �

þ 2 � �44:8528ð Þ
1þe x1ð Þ þ2 � 2:1309ð Þ

1þe x2ð Þ þ2 � 3:7335ð Þ
1þe x3ð Þ

� �

ð12Þ

where in x, the input variable (t) is integrated for the

3 neurons in the hidden layer.

x1 ¼ �2 � �3:3207ð Þ � t þ 2:1520ð Þ ð13Þ

x2 ¼ �2 � �8:9762ð Þ � t þ 1:5450ð Þ ð14Þ

x3 ¼ �2 � 12:9962ð Þ � t þ �5:9835ð Þð Þ ð15Þ

*Remember that it is necessary to normalize the

input value (t) according to Eq. (4) and the final result

(ND) multiply by 1000.

4.1.2 Prediction of the cumulative number of deaths

with inverse ANN

To carry out the prediction of cumulative number of

deaths, the ANN model was developed again using

recent data (month of October) in order to obtain a

better prediction in the data extrapolation. To estimate

the coefficients of the ANN model, the Levenberg–

Marquardt algorithm was applied based on its effi-

ciency (previously demonstrated). Table 2 presents the

Table 1 Application of three optimization algorithms to fit the coefficients for the ANN model

Optimization algorithm Function Epoch Architecture RMSE R2 MAPE (%) Computing time (s)

Levenberg–Marquardt trainlm 1000 1-3-1 0.2290 0.9999 0.39 46.23

BFGS quasi-Newton trainbfg 1000 1-3-1 0.2165 0.9999 0.33 118.72

Batch gradient descent traingd 1000 1-6-1 0.7722 0.9992 1.38 268.75

Table 2 Estimated coefficients for the inverse ANN model considering the real data from March 19th to October 31st

Number of neurons (s) Weights Bias

Hidden layer (Wi) Output layer (Wo) b1 b2

1 - 1.0263 - 336.5629 - 0.2883 - 146.1826

2 8.7078 - 127.7666 - 1.6389

3 10.2600 83.3257 - 1.9807

*s is the number of neurons in the hidden layer
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coefficients to predict the cumulative number of

deaths applying three neurons in the hidden layer.

Subsequently, the coefficients are coupled in Eq. (6)

to propose the inverse ANN model. The resulting

objective function is minimized by applying a genetic

algorithm, as shown in Fig. 5.

Table 3 compares the number of real cumulative

deaths and those predicted by the inverse ANN model

from November 1st to 15th. The purpose of the

comparison is to verify that the proposed model can

serve as a guide to predict and control the number of

deaths caused by COVID-19 infection taking advan-

tage of a period of 15 days to strengthen sanitary

measures. The maximum error when comparing the

real and predicted data was 2.22% per day, which is

satisfactory for making decisions.

4.2 Modeling and prediction of death dynamics

applying Gompertz model

4.2.1 Modeling the cumulative number of deaths

with Gompertz model

The Gompertz model was developed to carry out the

modeling of cumulative number of deaths from

COVID-19 in México from March 19th to September

30th. To estimate the parameters, optimization algo-

rithms were applied, which minimize the sum of the

nonlinear squares in the shortest possible time and

obtain a significant correlation in the data fit. Figure 6

shows the real data of cumulative deaths by COVID-

19, as well as the estimated data of the Gompertz

model applying the optimization algorithms a)

Nelder–Mead simplex, b) nonlinear regression and

c) curve fitting. The comparison between the real data

and those obtained by the Gompertz model when using

the optimization algorithms presents a good fit with an

R2[ 0.999. All calculations were performed on a

computer with the same characteristics used to

develop the ANN model. Table 4 shows that the

optimization algorithms present the same coefficient

of determination of 0.9998 and percentage error of

0.65%. (The MAPE was applied to the real data with

respect to the models in the last trimester of the period

studied.)

The results show that the Nelder–Mead simplex

algorithm estimated the parameters with the shortest

possible time (0.26 s), followed by the nonlinear

regression (0.42 s) and finally the curve fitting

(1.51 s). Based on this factor, the Nelder–Mead

simplex optimization algorithm is the most appropri-

ate to model the cumulative number of deaths from

COVID-19.

Fig. 5 Minimization of the objective function

Table 3 Comparison of the real data with respect to those

predicted by the inverse ANN model

Date Real data Predicted data MAPE %

01/11/2020 91,895 91,536 0.39

02/11/2020 92,100 91,898 0.22

03/11/2020 92,593 92,258 0.36

04/11/2020 93,228 92,616 0.66

05/11/2020 93,772 92,971 0.85

06/11/2020 94,323 93,325 1.06

07/11/2020 94,808 93,676 1.19

08/11/2020 95,027 94,025 1.05

09/11/2020 95,225 94,372 0.90

10/11/2020 95,842 94,717 1.17

11/11/2020 96,430 95,060 1.42

12/11/2020 97,056 95,401 1.71

13/11/2020 97,624 95,739 1.93

14/11/2020 98,259 96,076 2.22

15/11/2020 98,542 96,410 2.16

cFig. 6 Comparison between cumulative deaths and those

estimated by the Gompertz model applying the optimization

algorithms: a Nelder–Mead simplex, b nonlinear regression and

c curve fitting
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In this work, Eq. (16) is described as a proof to

demonstrate the coupling of the three parameters

obtained by the least-squares method to the Gompertz

model (Eq. 8). Therefore, Eq. (16) can simulate the

cumulative number of deaths (L) as a function of the

number of the day (t).

L tð Þ ¼ 98008:0988e�e�0:01830109 t�117:8062ð Þ ð16Þ

4.2.2 Prediction of the cumulative number of deaths

with Gompertz model

In the same way as in the ANN model, to carry out a

better prediction applying the Gompertz model, recent

data were used (month of October). To estimate the

parameters of the Gompertz model, the Nelder–Mead

simplex algorithm was applied based on its efficiency

(previously demonstrated). Unlike the inverse ANN

model, the Gompertz model only extrapolates based

on the application of Eq. (8) and applying the

parameters presented in Table 5.

Table 6 compares the number of real cumulative

deaths and those predicted by the Gompertz model

from November 1st to 15th. In the same way as in the

inverse ANN model, the proposed Gompertz model

has the objective of predicting and controlling the

number of deaths. The maximum error when compar-

ing the real and predicted data was 5.48% per day,

which is moderately satisfactory for making decisions.

4.3 Comparison between both models

According to the results obtained on the modeling of

cumulative deaths from COVID-19 in México through

artificial neural networks and the Gompertz model,

some similarities stand out between both models, such

as the mathematical and computational development

is considered moderate compared to other models that

apply a series of complex mathematical equations.

However, these models are capable of modeling

nonlinear behaviors with significant fit. The data

estimated by the both models present differences with

the real data in the first days of the studied period,

obtaining negative values in artificial neural networks

and high values in the Gompertz model with respect to

the real data.

In addition to the similarities, in the development of

both models, some differences stand out such as the

Gompertz model is capable of modeling nonlinear

behavior through three parameters, unlike the ANN

Table 5 Estimated parameters for the Gompertz model con-

sidering the real data from March 19th to October 31st

Parameters Values

a 107,416.3453

b 0.01651162

c 124.045496

Table 6 Comparison of the real data with respect to those

predicted by the Gompertz model

Date Real data Predicted data MAPE %

01/11/2020 91,895 89,748 2.34

02/11/2020 92,100 90,013 2.27

03/11/2020 92,593 90,274 2.50

04/11/2020 93,228 90,531 2.89

05/11/2020 93,772 90,785 3.19

06/11/2020 94,323 91,036 3.48

07/11/2020 94,808 91,283 3.72

08/11/2020 95,027 91,526 3.68

09/11/2020 95,225 91,766 3.63

10/11/2020 95,842 92,003 4.01

11/11/2020 96,430 92,237 4.35

12/11/2020 97,056 92,467 4.73

13/11/2020 97,624 92,695 5.05

14/11/2020 98,259 92,919 5.43

15/11/2020 98,542 93,140 5.48

Table 4 Application of three optimization algorithms to fit the parameters for the Gompertz model

Optimization algorithm Function R2 MAPE (%) Computing time (s)

Nelder–Mead simplex fminsearch 0.9998 0.65 0.26

Nonlinear regression nlinfit 0.9998 0.65 0.42

Curve fitting lsqcurvefit 0.9998 0.65 1.51
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model, which requires ten coefficients to carry this

function. However, the ANN model has better corre-

lation and precision compared to the Gompertz model.

The optimization algorithms applied in the Gompertz

model allow estimating the parameters in a consider-

ably fast time (t\ 1.6 s). On the other hand, the ANN

model requires a longer calculation time (t\ 269 s),

due to the fitting of coefficients during the learning

process.

In prediction, the inverse ANN model has a better

precision when compared with the real data. However,

the inverse ANN model requires more procedures to

predict than the Gompertz model. Figures 7 and 8

show a projection of the cumulative number of deaths

Fig. 7 Application of the inverse ANN model to predict cumulative number of deaths by COVID-19 from November 1st to December

31st

Fig. 8 Application of the Gompertz model to predict cumulative number of deaths by COVID-19 from November 1st to December 31st
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by the end of the year 2020 by the inverse ANN and

Gompertz models, respectively. The inverse ANN

model predicts a total cumulative death of 109,724 and

the Gompertz model a total of 100,482 by the end of

2020.

The approximation of the value predicted by the

both models, as in other prediction models, depends on

multiple factors, such as population mobility, compli-

ance with sanitary security measures (use of face

masks), change in methodology for capturing data by

the corresponding authorities, among others. Consid-

ering the total cumulative deaths (91,753) reported

until October 31st [30], the number predicted by both

models compared to the real data is worrying.

Therefore, infection prevention and control measures

should be strengthened, since these last months of the

year in México other infections caused by the

influenza and dengue intensify.

5 Conclusions

In this paper, the dynamics of deaths from COVID-19

in Mexico were modeled and predicted by comparing

an artificial neural network and a Gompertz model

applying different optimization algorithms.

The cumulative deaths from COVID-19 in México

were modeled during the period from March 19th to

September 30th. The results of both models show a

good fit with the real data when obtaining an

R2[ 0.999. For the ANN model, three optimization

algorithms were applied, using hyperbolic tangent

sigmoid transfer function. Based on computational

time, the Levenberg–Marquardt algorithm was found

to converge in the shortest possible time, but the BFGS

quasi-Newton algorithm fits the real data better. The

batch gradient descent algorithm resulted with the

least fit, as well as requiring more computation time

and neurons in the hidden layer. Therefore, this

algorithm is not recommended for modeling nonlinear

data such as cumulative deaths from COVID-19. For

the Gompertz model, three optimization algorithms

were applied to minimize nonlinear sum of squares.

The Nelder–Mead simplex algorithm demonstrated to

converge in the shortest possible time, followed by

nonlinear regression and finally the curve fitting.

Based on this factor, the Nelder–Mead simplex

algorithm is recommended to search for parameters

using the least squares method.

In the prediction, the same period of the modeling

was applied including the data reported in the month of

October in order to have the most recent projection.

The inverse ANN model turned out to have a better

prediction compared to the Gompertz model. How-

ever, to propose the prediction of the inverse ANN

model, it is necessary to develop an objective function

and couple an algorithm to obtain the resolution.

Comparing both models, it is summarized that they

satisfactorily achieve the function of simulating the

nonlinear behavior, obtaining various fits according to

the applied optimization algorithm. However, it is

important to mention that the Gompertz model

simulates the dynamics of deaths from COVID-19

using three parameters compared to the ANN model

that uses ten coefficients. Based on the mathematical

origin of each model, it is highlighted that the

Gompertz model performs a projection through the

reparameterization of a differential equation designed

to estimate the cumulative growth of a specific

behavior, unlike the inverse ANN model, which

predicts from the acquired learning of the real data.

Finally, it was demonstrated that the inverse ANN

and Gompertz model coupled with an efficient opti-

mization algorithm predict the cumulative number of

deaths with an acceptable precision in a period of

15 days. In a practical physical sense, both models

could be programmed and applied to determine,

through the prediction of cases or deaths from

COVID-19, the possible change in color of the

epidemiological traffic light that is reported in Mexico

(every 15 days), supporting the health sector in

delimiting the presence of the population in socioe-

conomic activities in the country.
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(2020, Septiembre 30). Recuperado desde: https://www.

123

4668 R. A. Conde-Gutiérrez et al.

https://www.gob.mx/salud/documentos/coronavirus-covid-19-comunicado-tecnico-diario-238449


gob.mx/salud/documentos/coronavirus-covid-19-

comunicado-tecnico-diario-238449.

2. Center for systems science and engineering at Johns Hop-

kins university, COVID-19 dashboard, 2020, https://

gisanddata.maps.arcgis.com/apps/opsdashboard/index.

html#/bda7594740fd40299423467b48e9ecf6.

3. Suárez, V., Quezada, M.S., Ruiz, S.O., De Jesús, E.R.:
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al 30 de abril de 2020. Rev. Clin. Esp. 220(8), 463–471

(2020)

4. Parra-Bracamonte, G.M., Lopez-Villalobos, N., Parra-Bra-

camonte, F.E.: Clinical characteristics and risk factors for

mortality of patients with COVID-19 in a large data set from

Mexico. Ann. Epidemiol. 52, 93-98.e2 (2020)

5. Hernández-Galdamez, D.R., González-Block, M.A., Romo-
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