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ABSTRACT Uropathogenic Escherichia coli (UPEC), the primary etiologic agent of
urinary tract infections (UTIs), encounters a restrictive population bottleneck within
the female mammalian bladder. Its genetic diversity is restricted during establish-
ment of cystitis because successful UPEC must invade superficial bladder epithelial
cells prior to forming clonal intracellular bacterial communities (IBCs). In this study,
we aimed to understand UPEC population dynamics during ascending pyelonephri-
tis, namely, formation of kidney bacterial communities (KBCs) in the renal tubular
lumen and nucleation of renal abscesses. We inoculated the bladders of both male
and female C3H/HeN mice, a background which features vesicoureteral reflux; we
have previously shown that in this model, males develop severe, high-titer pyelo-
nephritis and renal abscesses much more frequently than females. Mice were
infected with 40 isogenic, PCR-tagged (“barcoded”) UPEC strains, and tags remaining
in bladder and kidneys were ascertained at intervals following infection. In contrast
to females, males maintained a majority of strains within both the bladder and kid-
neys throughout the course of infection, indicating only a modest host-imposed bot-
tleneck on overall population diversity during successful renal infection. Moreover,
the diverse population in the infected male kidneys obscured any restrictive bottle-
neck in the male bladder. Finally, using RNA in situ hybridization following mixed
infections with isogenic UPEC bearing distinct markers, we found that despite their
extracellular location (in the urinary space), KBCs are clonal in origin. This finding
indicates that even with bulk reflux of infected bladder urine into the renal pelvis,
successful ascension of UPEC to establish the tubular niche is an uncommon event.
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Within the unique environments of the mammalian host, expansion of a few bac-
teria into a large multicellular community is a complex process in which the bac-

teria must adapt to local conditions and survive mechanical, immunologic, and other
stresses. These host forces may impose narrow bottlenecks in which the founding pop-
ulation undergoes a dramatic reduction in genetic diversity as it circumvents some
facet of the host environment. Conversely, in the absence of such a bottleneck, the
infecting population retains more genetic diversity, potentially allowing for more bio-
logical and phenotypic diversity (e.g., virulence and community behaviors) during
infection.

Uropathogenic Escherichia coli (UPEC), the primary etiologic agent of urinary tract
infections (UTIs), encounters such a restrictive population bottleneck as it establishes
clonal, biofilm-like intracellular bacterial communities (IBCs) within the superficial epi-
thelial cells (facet cells) of the bladder (1–6). During this pathogenic process, UPEC first
binds these facet cells, and a subset of bacteria are then internalized. Within an
infected facet cell, a single founder bacterium must avoid expulsion by the cell (7–9)
and subsequently replicate in the cytoplasm, ultimately giving rise to a clonal IBC (1–3,
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10). Indeed, a UPEC inoculum of 107 CFU during experimental cystitis in C3H/HeN and
C57BL/6 female mice results in the formation of, on average, ;40 to 100 IBCs (1,
10–14). Bacteria within the IBCs are protected from host defenses and antibiotic treat-
ment, while those remaining in the bladder lumen are susceptible to neutrophil attack
and to elimination via micturition (15–18). Bacteria within IBCs later reemerge to infect
naive cells, initiating subsequent rounds of IBC formation (15, 19, 20). Thus, the infect-
ing population becomes dominated by founder clones that successfully completed the
IBC cycle (1, 10, 19).

Bacteria in the bladder lumen may also ascend the ureters to establish infection in
the kidneys (pyelonephritis). Colonization of the kidney represents another event in
which a population bottleneck might occur. While cystitis is clinically quite common
(annual incidence of community-acquired cystitis is 3 to 13% in females and 0.5 to 3%
in males), only ;1% of cystitis cases progress to pyelonephritis, which carries risks for
hospitalization, sepsis, and renal abscess formation (21). In fact, 10 to 30% of pyelo-
nephritis cases result in hospital admission, conferring $2 billion to $4 billion in medi-
cal costs in the United States annually (21). A common risk factor (primarily in child-
hood) for developing pyelonephritis is vesicoureteral reflux (VUR), identified in 30 to
45% of young children who present with febrile UTI (22–25). Pyelonephritis in children
increases risk for renal scarring and associated lifelong morbidities such as hyperten-
sion and end-stage renal disease (24, 26, 27), making it important to understand the
pathophysiology and dynamics of upper tract UTI.

The mouse is a highly suitable model for the study of UTI; however, preclinical mod-
eling of UTIs has been performed almost exclusively with female mice, which in most
backgrounds resolve upper tract UTI without antibiotic treatment (28, 29). As a result,
our molecular understanding of UPEC pathogenesis arises mostly from studies of the
female bladder, while mechanisms of UPEC colonization of the kidneys remain a fertile
area of study. More recently, we and others have developed models by which male
mice can also undergo bladder inoculation (12, 30). Over a time course after equivalent
bladder inoculation, males harbor significantly higher bladder and kidney bacterial
loads than do females. Indeed, male C3H/HeN mice (a background with documented
VUR [31–34]) uniformly develop severe pyelonephritis and .90% exhibit renal
abscesses; these outcomes are observed in .70% of androgenized females (12, 35, 36)
but only rarely in naive females. As renal abscesses are being nucleated, tubules are
occupied by biofilm-like collections of UPEC, which we termed kidney bacterial com-
munities (KBCs) (35, 37). These intratubular (luminal) UPEC colonies are first visible
microscopically 5 days postinfection (dpi); thereafter, UPEC multiply rapidly and attract
a robust neutrophil response, yielding fully formed KBCs within early abscesses by
7 dpi (35).

In this study, we employed this murine model and a set of “barcoded” UPEC isolates
to interrogate the population dynamics of renal tubular colonization by UPEC. We
found that in contrast to the female bladder, which imposes a marked bottleneck
related to the requirement for intracellular invasion by UPEC, UTI in male mice features
much less stringent restriction of genetic diversity among the infecting population, as
measured in both the kidneys and bladder. Despite this overall diversity, we found that
individual KBCs were clonal, as revealed by in situ hybridization (ISH) after mixed infec-
tion with distinctly tagged UPEC strains. These data indicate that while ascension to
the kidney does not constrain the bacterial population as a whole, pyelonephritis is ini-
tiated by individual bacteria that successfully colonize a group of contiguous nephron
segments.

RESULTS
Temporal course of male C3H/HeN kidney bacterial loads. Prior studies have pro-

vided snapshots of sex differences in UTI outcomes (12, 35). Further, previous work
examining population bottleneck events in experimental UTI was limited to female
mice (1). Longitudinal studies of bacterial population events in both male and female
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mice were therefore warranted to better illuminate the dynamics of upper tract UTI.
First, we temporally detailed the development of severe pyelonephritis in male C3H/
HeN mice, infecting them with UPEC strain UTI89 and measuring organ bacterial loads
at different time points postinfection. Bladder bacterial loads were high immediately
following inoculation (5min postinfection [mpi]; geometric mean 7.5� 106 CFU/blad-
der) and remained consistent throughout 14 days postinfection (dpi) (Fig. 1A). In con-
trast, initial kidney titers were substantially lower than bladder titers, with a geometric
mean of 3.9� 104 CFU/kidney pair 5 mpi (Fig. 1B). Kidney titers significantly increased
3 dpi and then decreased modestly (but significantly) to ;106 CFU/kidney pair 7 and
14 dpi (Fig. 1B). On the basis of this pattern, we reasoned that if a bottleneck were
present during kidney infection in this model, it was occurring between 3 and 7 dpi (in
contrast to the female mouse bladder, in which a marked bottleneck is observed 24
hpi [1]).

Establishment of ascending pyelonephritis in male C3H/HeN mice does not
impose a narrow population bottleneck. In mice and in humans with properly func-
tioning vesicoureteral junctions, retrograde flow of urine to the kidneys is precluded,
thereby likely restricting the diversity of bacteria that can reach the kidney. In the ab-
sence of this anatomic protection (i.e., in C3H/HeN mice and humans with VUR [24,
38]), further bottlenecks might be imposed during colonization of the collecting sys-
tem and nephron. To investigate this, we infected male C3H/HeN mice with a set of 40
isogenic, PCR-barcoded isolates of UTI89 (1). Additionally, to confirm that the differ-
ence between our male data and published female data was not attributable to the
mini-surgical inoculation method, we infected a smaller cohort of female C3H/HeN
mice using the same technique and studied outcomes at selected time points.

Total organ bacterial loads in males and females were equivalent immediately
(5min) following inoculation (Fig. 2). Of note, organ bacterial loads in males infected
with the UTI89-derived strain set (Fig. 2A and B) matched our earlier data with the root
strain (Fig. 1), persisting at ;106 CFU at later time points. Meanwhile, organ titers fell
in females 7 and 14 dpi (Fig. 2C and D), consistent with prior data (12, 28).

Using multiplex PCR, we assayed the proportion of isolates remaining at each time
point, separately interrogating three niches (bladder, left kidney, and right kidney) to
determine correlations among the tags detected in these locations. In both females
and males, at 5 mpi all tags were detected in the bladder (Fig. 3A and C) and most
were detected in the kidneys (Fig. 3B and D). These data indicate that initial ascension
to the kidney (e.g., a sex difference in VUR) does not explain the sex differences we
have observed in pyelonephritis severity (12, 35).

FIG 1 Male C3H/HeN mice develop high-titer cystitis and pyelonephritis. Male C3H/HeN mice were
infected with UTI89, and organs were harvested at the indicated intervals. (A) Bladder bacterial loads
remained constant across the time points studied. (B) Kidney bacterial loads were statistically highest
3 dpi and then decreased modestly to a stable level at subsequent time points. Horizontal bars
indicate geometric means, and the dotted line indicates limit of detection. Data were aggregated
from three independent experiments and 4 to 14 mice per group. *, P, 0.05; ***, P, 0.001.
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In female mice 1 dpi, the bladder IBC cascade occurs (1, 2, 12, 15) and a significant
bladder bottleneck can be discerned; according to published data, 25% of tags
remained in the bladder and 60% in the kidneys 1 dpi (1). Despite the fact that this IBC
cascade also occurs in the male bladder (12, 15), we observed that in infected male
C3H/HeN mice, a majority of isolates (bladder, 94%; kidneys, 97% and 94%) were
detected 1 dpi (Fig. 3A and B). At 7 dpi in male C3H mice, we observed a slight narrow-
ing of diversity, with 70%, 74%, and 72% of tags remaining in the bladder and the left
and right kidneys, respectively; these proportions were unchanged 14 dpi (Fig. 3A and
B). This course aligns temporally with the modest reduction in total kidney bacterial
load observed between 3 and 7 dpi (Fig. 1).

In contrast, at 7 dpi in females, a sharp bottleneck was observed in the bladder
(48% of tags) and kidneys (23% and 20%, respectively) (all P, 0.01 versus males [Fig.
3C and D]). By 14 dpi this bottleneck was even more pronounced (bladder, 36% of
tags, P=0.05 versus males; kidneys, 11% and 12%, P, 0.01 versus males [Fig. 3C and
D]). These data are consistent with those previously reported for females infected via
catheter (1). Of note, no significant differences were seen in CFU or tag proportion
between left and right kidneys (within one sex) at any time point.

Shared distribution of bacterial clones among urinary tract niches is persistent
in males.We next sought to understand whether the same isolates were found within
all three niches or if each niche was occupied by a unique set of UPEC clones. Using
the multiplex PCR data from male C3H/HeN mice (Fig. 3A and B), we coded each strain
and tracked them within each of the studied niches. The proportions of tags common
to all three niches were 71%, 88%, 64%, and 58% of isolates at 5 mpi and 1, 7, and
14 dpi, respectively (Fig. 4). The initial rise in shared proportion, followed by a slight

FIG 2 Male C3H/HeN mice maintain higher organ bacterial loads after infection with UTI89-derived
barcoded strains than do female mice. C3H/HeN male and female mice were infected with a set of 40
PCR-tagged (“barcoded”) isogenic UPEC isolates. At the indicated time points, bacterial loads were
determined in homogenates of male bladder (A) and each kidney (B) as well as female bladder (C)
and each kidney (D). These results with the isogenic tagged strain set matched those with the root
strain UTI89 (from published data and Fig. 1). Data were aggregated from three independent
experiments with a total of 4 to 10 mice per condition.
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narrowing, reflects a mild diversity bottleneck predicted by the overall bacterial loads
in the male kidney (Fig. 1) and recapitulates trends in the total number of tags across
these time points (Fig. 3A and B).

Meanwhile, a majority of isolates (78%) in female C3H/HeN mice occupied all three
niches 5 mpi (Fig. 5A), again indicating that initial ascension to the kidney does not
impose a sex-discrepant population bottleneck (see also Fig. 3B and D). However, by 7
and 14 dpi in females, the proportion of isolates common to all three niches had fallen
sharply (Fig. 5B and C), in agreement with Fig. 3B and D and earlier work in females (1).

KBCs arise from clonal expansion of founder bacteria within individual
tubules. Formation of IBCs in females imposes a bottleneck on bladder population di-
versity because only a small minority of bacteria successfully complete the IBC cascade;
each IBC in this model is formed from a single founder bacterium that has invaded a
facet cell (1). While morphological similarities exist between IBCs in the bladder and
kidney bacterial communities (KBCs) in the kidney, clonality in the IBCs is thought to
arise from prerequisite intracellular invasion (1, 2, 15, 39). This is in contrast to the case
with KBCs, which form in the extracellular space (tubular lumen) (35). Therefore, we
hypothesized that KBCs would be the product of multiple bacterial clones reaching the
tubular lumen. To interrogate the clonal composition of KBCs, we infected C3H/HeN
males with a 1:1 mixture of UTI89 HK::Kanr and UTI89 HK::Chlr (Fig. 6). We determined
the composition of the KBCs 2 weeks postinfection (wpi) by RNA in situ hybridization
(ISH), detecting expression of Kanr or Chlr. Of note, this method was chosen after im-
munofluorescence microscopy with antibodies against typical protein targets was

FIG 3 Compared with females, male mice maintain a wide diversity of isolates in the bladder and
kidneys. C3H/HeN male or female mice were infected with 40 PCR-tagged (barcoded) isogenic UPEC
isolates. Bacterial genomic DNA was extracted from bacterial outgrowths of organ homogenates. Tags
remaining in the male bladder (A) and kidneys (B), or female bladder (C) and kidneys (D), were
detected by multiplex PCR. Data were aggregated from three independent experiments with a total
of 4 to 10 mice per condition. *, P, 0.05; **, P, 0.01.
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found to be inadequately specific for these experiments. Surprisingly, visualized KBCs
were always composed of either UTI89 HK::Kanr or UTI89 HK::Chlr but never both (Fig.
6D to F); indeed, of 87 KBCs visualized across 9 mice infected in four independent
experiments, 100% were monochromatic. Within an individual kidney section, groups of
KBCs formed from a single bacterial strain were located in spatially distinct areas of abscess
(Fig. 6D). This finding indicates that at least in this preclinical model of ascending pyelo-
nephritis, the KBC arises from growth and expansion of a founder bacterium that has
ascended the nephron to establish a given intratubular focus of infection.

FIG 4 Niche distribution of UPEC in infected male C3H/HeN mice. Using the multiplex PCR data
gathered from bladders and kidneys, we quantified the sharing of tags across niches at 5 mpi (A;
n=4), 1 dpi (B; n= 5), 7 dpi (C; n= 9), and 14 dpi (D; n= 10). Venn diagrams represent the average
proportions of tags detected in the indicated niches. Niche colors: yellow, bladder; hot pink, left
kidney; blue, right kidney. Overlap colors: orange, bladder and left kidney; green, bladder and right
kidney; purple, left and right kidneys; rose, all three niches. Labels indicate measured proportions in
each niche, while colored regions approximate these proportions (smallest regions enlarged for visual
clarity). Data were aggregated from three independent experiments, with a total of 4 to 10 mice per
condition.

FIG 5 Niche distribution of UPEC in infected female C3H/HeN mice. Using the multiplex PCR data gathered from bladders and kidneys, we
quantified the sharing of tags across niches at 5 mpi (A; n= 4), 7 dpi (B; n= 5), and 14 dpi (C; n= 4). Venn diagrams represent the average
proportions of tags detected in the various niches. Niche colors: yellow, bladder; hot pink, left kidney; blue, right kidney. Overlap colors:
orange, bladder and left kidney; green, bladder and right kidney; purple, left and right kidneys; rose, all three niches. Labels indicate
measured proportions in each niche, while colored regions approximate these proportions (smallest regions enlarged for visual clarity). Data
reflect one experiment with 4 or 5 mice per group.
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DISCUSSION

We conclude that the more robust kidney infection observed in males reflects a
greater number of successful founder bacteria (i.e., tagged strains) establishing renal
colonization in the male host, despite initial inoculation that is equivalent between
sexes. The kidney thus represents a niche, distinct from the bladder tissue, where suc-
cessful clones can establish themselves and replicate. These kidney-occupying UPEC
clones, then, continuously descend from the kidney and contribute to ongoing patho-
genesis in the bladder (and, if VUR is present, can likely exchange clones with the con-
tralateral kidney). Moreover, as the kidney maintains a wider diversity of isolates, it is
possible for a larger array of phenotypes to be maintained during infection. As a result,
UPEC expressing prototypic kidney virulence factors, upon descent into the bladder,
might enable additional host-pathogen interactions within the bladder. Finally, as
KBCs are clonal, each colonized nephron could act as a unique niche, with bacteria
maintaining distinct phenotypes that affect the course or outcome of infection differ-
ently than bacteria originating from other reservoirs.

The harboring of a more genetically diverse infection in the kidneys in males
—“upstream” of the bladder—thereby overcomes the population bottleneck that
would otherwise be evident during initial colonization of the bladder. Meanwhile, the
modest narrowing of genetic diversity in the male kidney between 3 and 7 dpi likely
reflects a transition from bulk retrograde flow (into the renal pelvis with VUR) to molec-
ular interactions that drive colonization of the nephron (35), potentially coupled with
the arrival of phagocytes. In other words, arrival in the kidney in the setting of VUR
does not impose a strict bottleneck on the bacterial population, while ascension into
the nephron is a comparatively uncommon event accomplished by individual bacteria
that express the requisite traits (e.g., for motility or attachment). This model predicts
that KBCs are clonal in nature—a conclusion supported by our RNA ISH data. Again,

FIG 6 KBCs arise from clonal expansion of individual bacteria. (A) Experimental scheme for inoculation of C3H/HeN male mice with
UTI89 HK::Kanr, UTI89 HK::Chlr, or an equal mixture of both, followed by KBC examination 2 wpi via RNA ISH and confocal
microscopy. (B and C) As controls, mice infected only with UTI89 HK::Kanr displayed staining only with the Kanr probe (B; green) and
mice infected only with Chlr displayed staining only with the Chlr probe (C; red), after both probes were applied to slides. (D)
Digitally tiled scans of entire slides after mixed infection revealed Kanr and Chlr KBCs within spatially separate areas of abscess in the
same kidney; a representative image is shown. Colored arrowheads indicate respectively stained KBCs, and dashed lines demarcate
adjacent areas of abscess; scale bar, 200mm. (E and F) Higher-magnification images of representative KBCs after mixed infection, with
staining for either Kanr (E) or Chlr (F); no mixed KBCs were seen. Images were selected from 87 analyzed KBCs, collected from 4
independent experiments each with 2 to 9 mice per group; scale bars, 10mm. Blue stain is for 49,6-diamidino-2-phenylindole (DAPI)
in panels B to F.
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while IBCs in the bladder are clonal due to the process of UPEC internalization into
facet cells, we have not observed an intracellular stage associated with KBC formation
in our model (1, 35).

KBCs, like IBCs, appear to be biofilm-like in nature (2, 35). However, with respect to
various definitions of a biofilm, we have not empirically demonstrated these character-
istics (e.g., production of a matrix or differential gene expression in different areas of
the bacterial community). Additional definition of KBC characteristics, beyond their clo-
nal nature, may help further illuminate the pathogenic mechanisms important within
the kidney.

This work extends our understanding of UPEC population dynamics during UTIs,
demonstrating that the susceptible kidney offers a distinct niche for success of bacte-
rial clones and can overcome the bottleneck in genetic diversity that is imposed during
establishment of cystitis. Future studies should aim to identify additional molecular
determinants of host-pathogen interaction that permit establishment and persistence
of upper tract UTI, and how these might relate to ongoing bladder colonization.
Specifically, the lack of sharp genetic restriction in the kidney may enable unbiased
approaches (e.g., with transposon libraries) to discover kidney-specific UPEC virulence
factors.

MATERIALS ANDMETHODS
Bacterial strains and growth. UPEC strain UTI89 was isolated from a patient with cystitis (10). UTI89

HK::Kanr and UTI89 HK::Chlr, as well as a set of 40 isogenic, “barcoded” strains of UTI89 with PCR-detecta-
ble tags, were previously published (1). This strain set was generated using the l Red recombinase sys-
tem (40). Individual strains were grown statically at 37°C for 18 h in Luria-Bertani (LB) broth and then
combined in equal mixture based on optical density at 600 nm (OD600). Bacteria were pelleted at
7,500� g at 4°C for 10min and then resuspended to an OD600 of 1.0 (;4� 108 CFU/ml) in sterile phos-
phate-buffered saline (PBS) for inoculation into mice. Type 1 pilus expression was confirmed in all inoc-
ula by agglutination of guinea pig erythrocytes (Colorado Serum Company).

Mouse infections. All animal protocols received prior approval from the Institutional Animal Care
and Use Committee at Washington University. Male C3H/HeN mice (Envigo) aged 8 to 9weeks were
infected as previously described (12). Briefly, mice were anesthetized with inhaled 3% isoflurane, and
the lower abdomen was shaved and sterilized with 2% chlorhexidine solution. A 3-mm midline

TABLE 1 Primers used in this study

Set Primer name Primer sequence
1 BP 1F GTACCGCGCTTAAACGTTCAG

BP 2F GTACCGCGCTTAAATAGCCTG
BP 3F GTACCGCGCTTAAAAGTCTCG

2 BP 4F GTACCGCGCTTAATAACGTGG
BP 5F GTACCGCGCTTAAACTGGTAG
BP 6F GTACCGCGCTTAAGCATGTTG

3 BP 7F GTACCGCGCTTAATGTAACCG
BP 8F GTACCGCGCTTAAAATCTCGG
BP 9F GTACCGCGCTTAATAGGCAAG

4 BP 10F GTACCGCGCTTAACAATCGTG
BP 11F GTACCGCGCTTAATCAAGACG
BP 12F GTACCGCGCTTAACTAGTAGG

5 BP 13F CTTGCGGCGTATTACGTTCAG
BP 14F CTTGCGGCGTATTATAGCCTG
BP 15F CTTGCGGCGTATTAAGTCTCG

6 BP 16F CTTGCGGCGTATTTAACGTGG
BP 17F CTTGCGGCGTATTACTGGTAG
BP 18F CTTGCGGCGTATTGCATGTTG

7 BP 19F CTTGCGGCGTATTTGTAACCG
BP 20F CTTGCGGCGTATTAATCTCGG
BP 21F CTTGCGGCGTATTTAGGCAAG

8 BP 22F CTTGCGGCGTATTCAATCGTG
BP 23F CTTGCGGCGTATTTCAAGACG
BP 24F CTTGCGGCGTATTCTAGTAGG
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abdominal incision was made through the skin and peritoneum, exposing the bladder. The bladder was
aseptically emptied before 50ml of inoculum (1� 107 to 2� 107 CFU in PBS) was injected into the blad-
der lumen via 30-gauge needle over 10 s. The bladder was allowed to expand for an additional 10 s
before the needle was removed. The peritoneum and skin incisions were closed with simple, interrupted
sutures. At the time of surgery, mice were given sustained-release buprenorphine (1mg/kg of body
weight subcutaneously) for analgesia. At the desired time points, mice were euthanized by CO2 asphyx-
iation. Bladders and kidney pairs were sterilely removed and homogenized in 1ml and 0.8ml of PBS,
respectively. Homogenates were serially diluted and plated on LB agar for CFU enumeration or fixed for
histology.

Detection of barcoded UTI89 strains. Methods of detecting the barcoded UTI89 strains have been
described previously (1). Briefly, 100 ml of each organ homogenate was spread onto LB agar and incu-
bated overnight at 37°C. To collect genomic DNA, 2ml of sterile water was added to bacterial lawns and
scraped using bent, sterile glass pipettes. Genomic DNA was extracted via the Wizard genomic DNA pu-
rification kit (Thermo Fisher); concentration was assayed by NanoDrop (Thermo Fisher), and samples
were diluted to 100 ng/ml.

Multiplex PCR was performed using 50 ng of genomic DNA, 1� Taq buffer (Invitrogen), 2.5mM
MgCl2, 0.2mM deoxynucleoside triphosphate (dNTP), 100 pmol each of primers BP-8C (CGTGCCGATC
AACGTCTCATTTTCG) and BP-8K (GCTTCAAAAGCGCTCTGAAGTTCCTATAC), 2.5 U of Taq DNA polymerase
(Invitrogen), and a set of 3 BP-xxF primers (Integrated DNA Technologies) at final concentrations of
;66.6 pmol/primer. Primer sets are shown in Table 1.

PCRs were cycled as follows: (i) initial denaturation of 94°C for 3min, (ii) 10 cycles of 94°C for 30 s,
62°C for 30 s with a 1°C decrease per cycle, and 72°C for 30 s, (iii) 30 cycles of 94°C for 15 s, 55°C for 15 s,
and 72°C for 30 s, and (iv) a final 7-min extension at 72°C. The reaction products were run on 2.5% Tris-
borate-EDTA (TBE) agarose gels. The presence or absence of a band representing each individual strain
in the multiplex PCR was determined by eye, by a scientist blinded to sample identity. Thirty-seven of
the 40 tags were routinely detected in the inoculum (sample gel shown in Fig. S1 in the supplemental
material) and were therefore used for all analyses. Ambiguous bands were adjudicated by analysis in an
independent multiplex PCR replicate.

Histology and RNA in situ hybridization. Infected bladders and kidneys were bisected and fixed in
10% neutral buffered formalin for 24 h. Fixed tissues were embedded in paraffin, sectioned, and proc-
essed for RNA in situ hybridization (ISH) using protocols and reagents from Advanced Cell Diagnostics
(ACD). Specifically, slides were probed with RNAscope probes B-KanR (ACD; catalog number 812371)
and B-E.coli-CAT-C2 (ACD; catalog number 879281-C2). Detection was then performed using the
RNAscope multiplex fluorescent reagent kit v2 (ACD document 323100-USM). Images were acquired on
an Olympus FV1200 confocal microscope or with a Zeiss Axio Scan.Z1 digital slide scanner (for digital til-
ing as indicated).

Statistical analysis. Statistical analysis was performed using Prism (GraphPad Software). Differences
were analyzed with the unpaired, two-tailed, nonparametric Mann-Whitney U test. P values of ,0.05
were deemed significant. Quantitative Venn diagrams were created using the Eulerr package in R
Studio, with circle dimensions adjusted slightly to enable visual display of all niches.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
SUPPLEMENTAL FILE 1, PDF file, 0.3 MB.
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