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ABSTRACT Today, more than a billion people—one-sixth of the world’s population—
are suffering from neglected tropical diseases. Human African trypanosomiasis, Chagas
disease, and leishmaniasis are neglected tropical diseases caused by protozoan parasites
belonging to the genera Trypanosoma and Leishmania. About half a million people liv-
ing in tropical and subtropical regions of the world are at risk of contracting one of
these three infections. Kinetoplastids have complex life cycles with different morpholo-
gies and unique physiological requirements at each life cycle stage. This review covers
the latest findings on metabolic pathways impacting disease pathogenesis of kinetoplas-
tids within the mammalian host. Nutrient availability is a key factor shaping in vivo para-
site metabolism; thus, kinetoplastids display significant metabolic flexibility. Proteomic
and transcriptomic profiles show that intracellular trypanosomatids are able to switch to
an energy-efficient metabolism within the mammalian host system. Host metabolic
changes can also favor parasite persistence, and contribute to symptom development,
in a location-specific fashion. Ultimately, targeted and untargeted metabolomics studies
have been a valuable approach to elucidate the specific biochemical pathways affected
by infection within the host, leading to translational drug development and diagnostic
insights.
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The neglected tropical diseases (NTDs) are a group of infections that are common
among the world’s poorest populations, affecting more than one billion people

worldwide (1). NTDs remain major public health issues in parts of Asia, Africa, and
South America, but they also affect populations in North America and Europe, due to
population migration, climate change, or previously undetected endemicity (2). Due to
lack of awareness and financial incentive for drug development, NTDs have remained
largely underresearched. The trifecta of nutrition, health, and disease is complex,
especially when factoring in parasites and their own metabolic needs. In addi-
tion, NTD-causing parasites have complex life cycles and modes of transmission
(3). Understanding this plasticity on a metabolic level will deepen our under-
standing of parasitic diseases.

Metabolic pathways degrade macromolecules to produce energy (catabolic meta-
bolic reactions), generate the building blocks of the cell (lipids, nucleotides, amino
acids, and sugars; anabolic metabolic reactions), excrete waste products, and synthe-
size the small molecules involved in cell and system function and cell-cell communica-
tion, thus driving organismal phenotype (4, 5). Within a host system, parasites adapt
their metabolism depending on their surroundings and nutrient needs. Parasites repli-
cate and continue their life cycle, capitalizing on energy obtained from the host. Thus,
parasites benefit from host cell metabolism, with (in some cases) reduced reliance on
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their own metabolic pathways. Parasites achieve this by influencing host cell gene
expression and thus host metabolic pathways (6). Therefore, studying host-parasite
interactions also means understanding the implications on the overall host metabolism
(3), particularly with regard to energy-generating metabolic pathways. The major path-
ways for energy generation are the degradation of fatty acids, amino acids, and poly-
saccharide-derived monosaccharides, with the preferred monosaccharide usually glu-
cose, when available. Glucose is degraded via glycolysis, leading to the production of
pyruvate. Pyruvate can have multiple fates depending on oxygen availability. When ox-
ygen is plentiful, it is converted to acetyl coenzyme A (acetyl-CoA), which proceeds
through the citric acid cycle for full oxidation to CO2. The citric acid cycle is also called
the tricarboxylic acid (TCA) cycle or the Krebs cycle. Glycolysis and the TCA cycle
directly produce ATP and GTP. In addition, they produce reducing equivalents (FADH2

and NADH). These are regenerated to FAD and NAD1 through oxidative phosphoryla-
tion (mitochondrial respiration), which is also an ATP-producing process. Fatty acid ca-
tabolism (b-oxidation) and polysaccharide catabolism intersect at the level of acetyl-
CoA. Amino acids are degraded to pyruvate, acetyl-CoA, or TCA cycle intermediates
(Fig. 1) (5).

This review aims to compile literature on the metabolism of mammalian infection
and discuss its impact on disease pathogenesis for the three different human kineto-
plastid infections: Chagas disease (CD), human African trypanosomiasis (HAT), and vari-
ous forms of leishmaniasis, caused by Trypanosoma cruzi, Trypanosoma brucei, and
Leishmania, respectively. Studying the metabolic aspects of disease pathogenesis can
uncover new mechanisms of infection and aid in developing drugs against these
diseases.

LEISHMANIASES

Leishmaniases are caused by over 20 different species of Leishmania, which are
transmitted by infected female phlebotomine sandflies. Leishmaniasis affects
people in more than 100 countries in tropical and subtropical regions worldwide
(7), with 12 to 15 million people infected (8). Leishmaniases have been called a
disease complex rather than a single disease; their clinical manifestations are
diverse but occur in three main categories—cutaneous, mucocutaneous, and visceral.
Cutaneous leishmaniasis (CL) and visceral leishmaniasis (VL) are the most common forms
of the disease. CL manifests as ulcerative skin lesions, while symptoms of VL include fever,
weight loss, and enlargement of the liver and spleen (7). VL can become fatal; risk of
severe disease is heightened by coinfection with other pathogens such as HIV (9).
Mucocutaneous leishmaniasis is a severely disfiguring form affecting the mucosal regions
of the nose, mouth, and pharynx (10). Leishmania organisms have a two-stage life cycle in
which they alternate between the extracellular promastigote stage in the sandfly vector
and the intracellular amastigote stage in mammalian host macrophage phagolysosomes
(7).

Pentavalent antimonial drug compounds remain a mainstay of leishmaniasis treat-
ment (11). These drugs are highly toxic, and parasites are increasingly resistant to anti-
mony in several regions of the world. Alternatives such as paromomycin and miltefo-
sine come with the drawbacks of toxicity and increased drug resistance. Paromomycin
in combination with sodium stibogluconate improves treatment success, but sodium
stibogluconate also comes with the risk of cardiotoxicity (12). Amphotericin B in lipo-
somal formulations is better tolerated than conventional amphotericin B formula-
tions but can still cause adverse effects and requires parenteral administration (11).
Miltefosine, though oral, is teratogenic and cannot be given to pregnant women.
Treatment failure can be attributed to the host immune system and nutritional status
of the host, parasite mechanisms of survival or drug resistance within the host, and
extrinsic factors like access to medical treatment (13).

Approaching treatment failure by better understanding molecular-level changes
occurring with infection could lead to more effective drug development (see below
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and “Avenues for Intervention”). In the early stages of Leishmania infection, catabolism
of host-derived amino sugars (N-acetylglucosamine and glucosamine) is an essential
source of carbon for the intracellular stage of Leishmania (14). Although a lack of hex-
ose uptake cannot be compensated by amino acid catabolism in vivo (15), gluconeogenesis
is also essential for parasite intramacrophage replication and in vivo virulence (16).
Metabolomic analysis of isolated lysosomes has revealed enrichment of nucleosides, lower
levels of specific amino acids (with others showing comparable concentrations), and equiva-
lent levels of glucose and other sugars compared to whole cells (17). However, nutrient avail-
ability may be more limited within the Leishmania-housing phagolysosome, given that amas-
tigotes engage in a stringent metabolic response, designed for sparing nutrient use. The
parasites accomplish this by decreasing usage of glucose and amino acids while increasing
catabolism efficiency, with minor increases in fatty acid b-oxidation and reduced

FIG 1 Overall metabolic pathway integration and targets for intervention. Only metabolic pathways and inhibitors discussed in this review are shown.
Adaptations unique to specific kinetoplastids and differences between mammalian and parasite metabolism are not displayed. Cofactors, additional
reactants, conversion of oxaloacetate to pyruvate and pyruvate to oxaloacetate, energy cost, and urea and CO2 production are also not drawn. Targeting of
parasite versus host metabolic pathways are not differentiated, because this is often hard to distinguish when nonselective inhibitors are used. Metabolites
are boxed.
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biosynthesis of structural components such as proteins and lipids (18). This stringent
response may account for the low growth rate observed for amastigotes in vivo (19).

In addition to this stringent metabolic state, Leishmania implements several addi-
tional mechanisms to compensate for this nutrient shortage, including increased nu-
trient transporter expression and modulation of host metabolism to favor parasite
growth. Such mechanisms are essential given Leishmania auxotrophies, which include
purines, a critical requirement for exogenous arginine, leucine, lysine, phenylalanine,
tryptophan, and valine, with exogenous aspartate, glutamate, glutamine, and ser-
ine required to support growth and histidine, isoleucine, methionine, and threonine
required to support protein synthesis (20–22). Leishmania must also scavenge bio-
pterin, folic acid, riboflavin, and lipoic acid (20). Indeed, an atypical Leishmania
donovani strain that causes cutaneous lesions instead of VL showed an increase in
transporters, possibly representing an adaptation to the nutrient-limiting environ-
ment of the skin (23). In the macrophage-residing Leishmania, an arginine shortage
in the phagolysosome environment is compensated by upregulating an arginine
transporter. This upregulation highlights not only the importance of arginine to
Leishmania survival but also that Leishmania monitors levels of arginine in the envi-
ronment and induces an arginine-deprivation response (24, 25).

Host metabolic hijacking by the parasite has been demonstrated through metabolic
alterations in infected macrophages. Macrophage glucose uptake and respiration can
be controlled by Leishmania: L. infantum and L. major increase macrophage glycolysis
early after infection (26–28). This requires live parasites (28). In contrast, L. major organ-
isms downregulate the expression of their own glycolytic genes during the same pe-
riod (27). At later time points in vitro, L. infantum, L. donovani, and L. mexicana promote
macrophage oxidative phosphorylation via induction of 59 AMP-activated protein
kinase (AMPK) (26, 29); this has been postulated as a strategy to increase glucose
availability for the parasite (30). However, a separate study using mouse bone mar-
row-derived macrophages infected with L. major showed no change in oxidative
phosphorylation at 24 h postinfection (28). Analysis of monocyte-derived cells iso-
lated from cutaneous leishmaniasis lesions revealed a decrease in cellular respira-
tion, driven by local nitric oxide levels (31). These parasite-induced metabolic alter-
ations may help reshape the immune response to favor reduced inflammatory
cytokine production and thus parasite persistence (31).

L. amazonensismacrophage infection in vitro increases alanine, proline, arginine, va-
line, isoleucine or leucine, ornithine, hypoxanthine, glutamic acid, and histidine, as well
as phosphocholine (32). In macrophages infected with L. donovani, glutamine con-
sumption and host glutamine metabolism were increased (33). This concurs with find-
ings of decreased glutamine in experimental CL lesions (34). Infected macrophages
also upregulate arginine and proline metabolism while downregulating steroid and
fatty acid biosynthesis (27), though this contrasts with observations of increased cho-
lesterol uptake, total fatty acids, and lipid droplet formation in other studies (28, 35).
Overall, given the parasite energetic needs and amino acid and purine auxotrophies
(20, 21), these adaptations likely favor parasite proliferation. In addition, Leishmania
affects host lipid metabolism, including increasing lysophosphocholine (LPC), total
phospholipids, triacylglycerol, diacylglycerol, and monoacylglycerol, as well as specific
phosphocholines, phosphoethanolamines, hydroxyoctadecadienoic acid metabolites,
and hydroxyeicosatetraenoic acid metabolites, in vitro (35–38) and in vivo (34). The role
of these adaptations in pathogenesis is still unknown but warrants investigation. Given
that miltefosine was initially developed to target host phospholipid metabolism for
cancer treatment (39), it may restore these infection-induced host phospholipid altera-
tions in addition to directly killing Leishmania, although this needs to be demon-
strated experimentally.

Strikingly, some of these metabolic alterations are distal to the site of leishmaniasis
lesions or even systemic. For example, serum triglyceride levels were significantly
higher in VL patients (40), and a study of Indian VL patients showed that an increase in
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splenic parasite load came with a decrease in serum cholesterol (41). While systemic
metabolic alterations are not unexpected in the case of VL, they have also been
reported in CL. Tissue metabolomic analysis showed that specific phosphocholines
were increased in the skin beyond the site of the lesion (34). Diffuse cutaneous leish-
maniasis was associated with increased plasma cadaverine compared to other CL
forms. Ornithine was also lower in plasma of mucocutaneous and localized cutaneous
leishmaniasis patients than in healthy controls (42).

Parasite metabolites can also affect immune responses; for example, lipids from L.
braziliensis amastigotes stimulate nitric oxide production (43). Increased LPC levels
worsen dendritic cell infection with L. major by decreasing inducible nitric oxide syn-
thase (iNOS) expression (44). Examples of other provirulence Leishmania metabolic
pathways include mannan metabolism, required for adaptation to variable carbohy-
drate availability (45), and ether glycerolipid production (46).

Overall, the adaptability of Leishmania within its host is a testament to the underly-
ing mechanisms an intracellular parasite uses to survive in different organs of the host.
Considerable effort has unveiled metabolic adaptations in vitro; exciting advances are
beginning to unravel whether these adaptations also occur in situ and in vivo. New
technologies such as single-cell metabolomics and sequencing may enable better
characterization of these changes at early or disease resolution time points when para-
site burden is low.

CHAGAS DISEASE

CD is caused by the protozoan parasite T. cruzi, transmitted by triatomine kissing
bugs. It is endemic to 21 Latin American countries, with 6 to 7 million infected individ-
uals worldwide (47). Due to population mobility, its incidence has been increasing in
the United States, Canada, and Europe (48). Infection occurs in two stages, acute and
chronic. During the acute stage, symptoms include fever, enlarged lymph nodes, and
abdominal or chest pain. After 8 to 12weeks, parasite levels become undetectable by
microscopy, and the infected individual enters the chronic stage. Individuals with
chronic T. cruzi infection who lack disease symptoms have the intermediate form of
CD. Symptomatic chronic CD is characterized by cardiac and/or gastrointestinal dys-
function, including cardiac apical aneurysms, megaesophagus, and megacolon (47).

Within the mammalian host, T. cruzi alternates between an intracellular amastigote
stage in host cell cytoplasm and an extracellular trypomastigote stage, across multiple
organs and tissues (47). In mouse chronic CD models, parasite persistence is predomi-
nantly in the large intestine, stomach, and gut mesenteric tissue, with transient coloni-
zation at multiple other sites (49). This pleiotropism may be facilitated by T. cruzi meta-
bolic flexibility, whereby amastigotes can use glucose, amino acids, and fatty acids as
their main carbon sources (50–53). Upon interaction with the extracellular matrix, try-
pomastigotes reduce glycolytic activity (54). This was also observed at the mRNA level
early following trypomastigote invasion of fibroblasts, with reemergence of glycolysis-
associated transcripts 24 h after invasion (52) and amastigote uptake of glucose from
host pools (50). Intracellular amastigotes also upregulate TCA cycle, oxidative phospho-
rylation, and b-oxidation-associated transcripts and amino acid permeases compared
to trypomastigotes (52). This is supported by increased fatty acid oxidation proteins in
amastigotes compared to trypomastigotes (51) and adaptations in T. cruzi growth rates
depending on exogenous nutrient availability (55), further supporting metabolic flexibility.

Deciphering the effect of infection on host metabolism can ultimately lead to a bet-
ter understanding of how intracellular T. cruzi organisms proliferate within the mam-
malian host. Genes related to mitochondrial function, such as oxidative phosphoryla-
tion pathway genes, were downregulated in chronic CD murine models (56). An
increased abundance of swollen mitochondria in infected cardiac tissue further indi-
cates that mitochondrial dysfunction may relate to disease severity in chagasic cardio-
myopathy (56). Indeed, a general increase in oxidative stress is associated with disease
progression in human CD and oxidative stress is linked to damaged mitochondrial
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function in chagasic patients (57, 58). Untargeted metabolomics studies of acute exper-
imental infection with T. cruzi strain Y parasites also demonstrated oxidative stress in
heart tissue and a decline in TCA cycle intermediates such as fumarate, further support-
ing decreased oxidative metabolism in cardiac tissue (59). This was also observed in
vitro in two separate studies of macrophage infection and in monocytes isolated from
CD patients, was enhanced by gamma interferon (IFN-g), and was associated with
increased production of nitric oxide and reactive oxygen species. These are antipara-
sitic but also contribute to tissue damage and impair CD81 T cell function (29, 60, 61).
This contrasts with in vitro reports of increased mitochondrial respiration in infected
fibroblasts (50), suggesting host cell-type-specific effects or differences between in
vitro and in vivo settings.

Increased glucose uptake and glycolysis were observed in infected cardiac tissue
(59), in vitro in macrophages (60) and fibroblasts and myoblasts (50), and in monocytes
isolated from CD patients (61). However, a separate study did not observe increased
glycolysis in infected macrophages at 18 h postinfection (29). This discrepancy may be
due to the infecting parasite strain, since two of these conflicting studies (29, 60) used
the same 18-h postinfection time point, and two studies used human cells (29, 61).
Activation of glycolysis promoted parasite clearance in activated macrophages,
whereas restriction of glucose availability or replacement of glucose with fructose pre-
vented reactive oxygen and nitrogen species production, with no effects on cytokine
production (60). This was only partially confirmed in monocytes isolated from CD
patients: similar to in vitro murine macrophage infection (60), inhibition of glycolysis
reduced nitric oxide production (61). However, glycolysis inhibition also reduced inter-
leukin 1b (IL-1b) secretion (61). Oxidant production was also dependent on the pen-
tose phosphate pathway (60). This observation contrasts with reports for fibroblasts, in
which inhibition of glycolysis blocked T. cruzi proliferation. The latter reliance on gly-
colysis was on both host and parasite levels (50, 55).

Differences between these studies suggest a host cell-type-specific relationship
between host glycolysis and T. cruzi proliferation. This may be related to the presence
of other alternative nutrients or higher reliance on alternative pathways for energy me-
tabolism. Indeed, cells that were defective in mitochondrial fatty acid oxidation were
also less competent to support the growth of T. cruzi amastigotes (62). The amino acids
tryptophan, isoleucine, leucine, and valine were increased in infected heart tissue,
while purine nucleotides were depleted by infection in heart tissue (59). T. cruzi, like
Leishmania, is auxotrophic for tryptophan, leucine, isoleucine, valine, and purines (21).
Parasites also require exogenous glutamine for growth (55). Kynurenine, glycerophospho-
choline, and long-chain fatty acids were also increased with infection in heart tissue (59). T.
cruzi can scavenge and incorporate host lipids (63).

However, T. cruzi shows specific tropism even within target organs. In the heart, par-
asite load was highest at the heart base, which may indicate a preference for a specific
cardiac metabolic environment (64). Untargeted metabolomics revealed distinct chem-
ical signatures between the apex and base of the heart. Host nucleosides were ele-
vated at the apex of the heart, specifically, AMP, which regulates AMPK (64). AMPK inhi-
bition in vitro promotes intracellular parasite growth (62). In chronic T. cruzi strain
Sylvio X10/4 infection, significant overall metabolic perturbations in the heart were
observed only in the apical region, providing one explanatory mechanism for the local-
ized apical damage observed in human CD. Infection had position-specific impact on
specific metabolite families such as acylcarnitines (65). Host metabolism was also
affected by T. cruzi infection in the gastrointestinal (GI) tract in an experimental mouse
model, in a spatially resolved fashion. For example, total and long-chain acylcarnitines
were significantly elevated in the small intestine in acute CD. Kynurenine was elevated
by infection in the stomach and large intestine in the acute stage. The largest meta-
bolic perturbations were observed in the chronic stage in the esophagus and large
intestine, sites of gastrointestinal CD, suggesting a metabolic cause of disease tropism
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in this context (66). Thus, T. cruzi is able to infect and cause host metabolic alterations
in a variety of tissue locations.

Overall, T. cruzi depends on nutrient scavenging and on metabolism adaptations
for in vivo proliferation. Infection also induces adaptive and maladaptive host meta-
bolic adaptations. Thus, there is considerable scope to build on this knowledge to de-
velop new CD treatments (see “Avenues for Intervention” below).

HUMAN AFRICAN TRYPANOSOMIASIS

HAT occurs in sub-Saharan Africa and is transmitted through a tsetse fly vector. The
two clinical forms of HAT are the slow-progressing form caused by Trypanosoma brucei
gambiense in central and western Africa and the fast-progressing form caused by T.
brucei rhodesiense in parts of eastern and southern Africa (67, 68). Approximately 70
million people live in regions where they are at risk of contracting HAT (69). Unlike T.
cruzi and Leishmania, T. brucei is extracellular at all stages (67). Initial symptoms are
nonspecific and include fever, headaches, and joint pain (hemolymphatic stage).
Eventually, the parasite crosses the blood-brain barrier, leading to psychiatric and be-
havioral disturbances, ataxia, seizures, coma, and ultimately death (70).

Bloodstream form T. brucei lives in glucose-rich environments and thus depends on
glucose for its ATP production (71) and anabolic processes (65, 72). Indeed, RNA inter-
ference (RNAi) data showed a greater reliance of bloodstream form T. brucei on glycoly-
sis, whereas procyclics (insect stage) were more dependent on fatty acid metabolism
(73) and proline catabolism, though glucose remains the preferred energy source (74).
The observed change in glycolysis products in urine and plasma during experimental
T. brucei brucei mouse infection (75) could reflect parasite glycolysis or host adaptation
to energy needs caused by infection. If reflecting host metabolism, this may lead to
competition between host and parasite for glucose. Bloodstream forms of T. brucei do
not significantly rely on a full TCA cycle (72). Beyond glucose, anabolic processes in
bloodstream T. brucei use glutamine to produce glutamate, 2-oxoglutarate, and some
succinate. Extracellular cysteine is used by the parasite to produce glutathione, trypa-
nothione, and coenzyme A (76). Extracellular acetate feeds into parasite fatty acid bio-
synthesis (77).

However, there is also metabolic flexibility in T. brucei. Bloodstream forms are
able to not only survive but also proliferate in a medium containing glycerol
instead of glucose (71), with glycerol serving as a source for gluconeogenesis in
vitro (71, 78). Abundant glycerol could be the reason why parasites associate with
adipose tissue, though this has yet to be directly demonstrated. Indirect evidence is
provided by elevation of glycolytic/gluconeogenic enzymes in adipose tissue resi-
dent parasites (79). A better understanding of glycerol metabolism could open new
avenues for developing better drug targets (71). Additional adaptations to adipose
tissue tropism compared to bloodstream tropism include increased expression of
enzymes involved in the TCA cycle, purine salvage, the pentose phosphate path-
way, and sterol and lipid metabolism, including b-oxidation. Parasites isolated
from adipose tissue were confirmed ex vivo to be capable of metabolizing fatty
acids (79). Additional underexplored temporal metabolic flexibility may also
occur, with in vitro studies showing strong circadian regulation of metabolic
genes in cultured bloodstream T. brucei forms (80).

Given that T. brucei is extracellular (67), the impact on host metabolism will be
more indirect than during Leishmania or T. cruzi infection. Host lipids are highly
affected by HAT. A global untargeted metabolic profiling of plasma from rhodesiense
trypanosomiasis in Uganda showed significant differences in host lipid profiles with
infection. HAT patients had lower levels of phosphatidylcholines (PCs) with a high
number of saturated bonds compared to the control samples. The concentration of
PCs with two or fewer unsaturated bonds was increased with infection (81). Urine and
plasma chemical compositions of mice infected with T. brucei brucei, a Trypanosoma
brucei subspecies that causes nonhuman infection, showed enhanced lipid oxidation

Minireview Infection and Immunity

April 2021 Volume 89 Issue 4 e00644-20 iai.asm.org 7

https://iai.asm.org


with infection (75). The study also showed depleted levels of PC with infection but did
not assess degree of saturation (75). There was an increase in the choline concentration
in plasma samples, suggesting a breakdown of PCs in the presence of infection (75,
81). Since PCs are among the metabolites most affected by HAT infection in both
patient samples and in vivo mouse studies, future studies can aim to study the role of
PCs in the disease pathogenesis of HAT.

Changes in host amino acid metabolism also occur due to HAT. In the plasma sam-
ple study from rhodesiense trypanosomiasis in Uganda, higher concentrations of phe-
nylalanine and lower concentrations of other amino acids, like histidine and alanine,
occurred with infection (81). Central nervous system (CNS)-stage disease was associ-
ated with an increase in 5-hydroxytryptophan and kynurenine and decreased trypto-
phan in the CNS compared to the case for the hemolymphatic stage (82). A study in
voles infected with T. brucei gambiense also showed significant perturbations in phe-
nylalanine metabolism, with, however, a decrease in phenylalanine levels in the
chronic stage (45- to 49-day infection period) (83). Hypoaminoacidemia was also
observed in the plasma of voles infected with T. brucei gambiense for 21 days. The aro-
matic amino acids tryptophan and tyrosine were significantly reduced and may play a
role in the neuropsychiatric syndromes associated with HAT (84); these results concur
with human CNS studies (82). However, in contrast to the study in patients, the con-
centration of phenylalanine, also an aromatic amino acid, was unchanged with infec-
tion (84). This discrepancy between tyrosine and phenylalanine levels could be attrib-
uted to the rate of tyrosine breakdown being considerably greater than the dietary
intake of tyrosine as well as the rate at which phenylalanine can be converted to tyro-
sine (83). Discrepancies between studies could be attributed to the various metabolic
differences produced by the two different types of strains used for infection, to the du-
ration of infection, or to the mammalian system studied. T. brucei also produces the
amino acid metabolites indolepyruvate, hydroxyphenylpyruvate, and phenylpyruvate,
which inhibit production of the proinflammatory cytokine IL-1b , via downmodulation
of macrophage glycolytic metabolism. This has been postulated to attenuate HAT
symptoms and favor host survival long enough to ensure parasite transmission (85,
86). These metabolites also decreased inducible nitric oxide synthase expression and
IL-6 induction, likely favoring parasite persistence (86). Additional investigation of
immunometabolism in HAT is warranted.

Ultimately, T. brucei is able to proliferate and survive within the host system due to
its metabolic flexibility. Additionally, infection causes perturbation in overall host lipid
and amino acid metabolism.

AVENUES FOR DIAGNOSIS AND PATIENT MONITORING

There is a need for better ways to diagnose leishmaniasis, CD, and sleeping sick-
ness and monitor disease progression and treatment efficacy. Several metabolo-
mics studies have identified metabolites, primarily host derived, that can serve as
biomarkers to address these needs. For example, serum samples from an experi-
mental model of CD showed significant perturbations in host amino acid metabo-
lism with infection. The essential amino acids isoleucine, leucine, phenylalanine,
tryptophan, and valine were decreased with infection, as was glutamine.
Acylcarnitines were also affected by infection (87). Long-chain fatty acids were
decreased by infection in plasma, while p-cresol sulfate, allantoin, and kynurenine
were elevated (59). A machine learning model built on the cardiac metabolome
could predict acute experimental T. cruzi infection outcome (64); such an approach
can serve as a framework to identify disease severity-associated and prognostic cir-
culatory metabolite biomarkers.

The ability to differentiate between the two stages of HAT infection ultimately dic-
tates the course of treatment to be chosen. A metabolomic analysis of cerebrospinal
fluid (CSF) and plasma from patients in Angola revealed several biomarkers that were
different based on disease stage. Stage 2 HAT could be distinguished from stage 1 by
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an increase in neopterin and hydroxytryptophan levels, a slight increase in kynurenine,
and a decrease in tryptophan in the CSF samples. In plasma, an increase in aminodode-
canoic acid and decrease in ornithine are both indicators of stage 2 HAT (82). A second
study observed amino acid depletion in the CSF in HAT stage 2 (88). Indolepyruvate
produced by the bloodstream form of T. brucei could also be an important indicator of
parasite presence and disease state (85).

In the context of leishmaniasis, several studies described above reported differences
in selected serum or plasma metabolites compared to uninfected controls (40–42). The
serum metabolome can also predict CL treatment success, with elevated pretreatment
taurine, allantoin, N-acetylglutamine, and pyruvate predictive of successful pentavalent
antimonial treatment (89).

One cautionary note is that these biomarkers, while useful to monitor disease pro-
gression or treatment, may not directly reflect the specific changes occurring at the
sites of disease. For example, long-chain fatty acids showed the opposite direction of
change in the heart and the plasma during acute T. cruzi infection (59), highlighting
the importance of studying metabolism right at the site of disease progression to
understand pathogenesis. A further limitation is that these metabolic changes are pre-
dominantly host derived and often not specific to the kinetoplastid disease of concern.
Thus, they may be useful only in combination with other diagnostic methods and of
limited utility to determine the presence of an infection. Their strength instead may lie
in predicting disease severity (64) or treatment response (89) once infection status has
been established.

AVENUES FOR INTERVENTION

Drug development commonly targets the pathogen but can also address patho-
gen or immune response-induced collateral damage (protolerance mechanism
[90]). Though pan-kinetoplastid treatment strategies would be desirable to
decrease drug development costs, given the differences in target organs, parasite
localization, and timeline of disease progression, treatments of these different dis-
eases will likely require very different pharmacokinetic properties and have differ-
ent acceptable adverse-effect profiles. Thus, individual optimization of these treat-
ment avenues will likely be necessary for each kinetoplastid disease.

The current HAT treatment, eflornithine, inhibits parasite polyamine metabolism
(91). Likewise, miltefosine, in clinical use for leishmaniasis, targets parasite lipid metab-
olism (92) and allopurinol, used exclusively in veterinary leishmaniasis, inhibits purine
salvage (93). Azole family compounds, which failed in clinical trials for CD, targeted
parasite ergosterol metabolism (94, 95). By identifying additional metabolic pathways
affected by infection, the next generation of drug development can target pathways
essential to parasite survival or disease pathogenesis. As described below, there are
multiple preclinical drug development studies targeting metabolism in kinetoplastid
infection.

For example, T. cruzi, T. brucei, and Leishmania are sensitive to fatty acid biosyn-
thesis inhibitors (19, 96, 97), and inhibitors of glycolysis and respiration kill all three
kinetoplastids (98, 99). These need not be nonspecific: compound GNF7686 selec-
tively targets T. cruzi mitochondrial respiration with more than a 100-fold selectivity
window compared to host cells (100). Some inhibitors of T. brucei hexokinase also
show low inhibition of host hexokinase (101). Kinetoplastid segregation of initial
steps of glycolysis to glycosome organelles (unlike for mammals) also provides an
opportunity for the development of selective interventions. For example, interfering
with glycosomal enzyme localization impairs ATP production and cures HAT in
mouse models. These compounds also showed acceptable efficacy against intracel-
lular T. cruzi amastigotes in vitro, though in vivo activity was not tested (102).
Alternatively, research with T. brucei suggests that even nonspecific inhibitors (such
as those targeting glycolysis, with potential off-target effects on host glycolysis)
may be sufficiently safe as long as the inhibitors have a greater impact on flux in the
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parasite than in the host (103). Some of these treatments also target host metabo-
lism or the intersection between host and parasite metabolism. For example,
chronic-stage CD treatment with resveratrol activates the AMPK pathway, reduces
cardiac oxidative stress and parasite load, and improves cardiac function (104).
Polyamine production requires metabolism of arginine to ornithine by arginase
enzymes. In parallel, arginine is a substrate for host nitric oxide synthase, which pro-
duces antiparasitic nitric oxide. The host and parasite both express arginases, with L.
major arginase expression and L. infantum lipids promoting host arginase activity.
Arginase inhibition slows cutaneous leishmaniasis lesion progression in BALB/c mice
by restricting availability of polyamines without affecting nitric oxide or cytokine
production (38, 105, 106), though knocking out arginase in C57BL/6 mice had no
impact on cutaneous leishmaniasis lesion size or parasite load (107). In contrast, in-
hibition of arginase increased nitric oxide production and T. brucei killing in vitro
(108). Arginase may also contribute to CD progression (109), and arginine supple-
mentation reduces T. cruzi load and improves disease severity in vitro and in vivo by
increasing nitric oxide production (110).

Indeed, given the key role of metabolism in shaping immune responses (111), sev-
eral studies have investigated the impact of metabolism modulators on immune
responses with the goal of developing new treatments for kinetoplastid infection. For
example, 3-hydroxykynurenine is a tryptophan metabolite produced by macrophages
and dendritic cells, among others, with immunomodulatory properties. Mice infected
with T. cruzi and treated with 3-hydroxykynurenine in the acute disease stage showed
reduction in chronic-stage electrocardiogram alterations, inflammation and fibrosis in
the heart, and reduced parasite load (112). In contrast, inhibiting the enzyme produc-
ing these metabolites, indoleamine 2,3 dioxygenase (IDO), significantly reduced cuta-
neous leishmaniasis lesion size and parasite load (113). Glutaminase inhibition
impaired antiparasitic immune responses during L. donovani infection, with reduced
IFN-g and increased IL-10 production, supporting the development of strategies that
promote glutamine metabolism as new treatments for visceral leishmaniasis (33).
Knocking out AMPK in myeloid cells improved L. infantum clearance by promoting
increased proinflammatory nitric oxide synthase expression and reduced arginase
expression (M1 macrophage phenotype) (26). Reducing cholesterol levels via simva-
statin treatment improved cutaneous leishmaniasis lesion size via enhanced macro-
phage antioxidant production (114).

Metabolic modulation can also induce disease tolerance: improved disease severity
with no changes in parasite burden. For example, acylcarnitine metabolism was per-
turbed during acute and chronic CD, and carnitine supplementation improved acute-
stage survival in vivo, including cardiac function, but without affecting parasite load
(66). Metformin, an AMPK modulator that also has AMPK-independent effects (115),
improved cardiac function in experimental CD, with no significant effects on parasite
load (104).

Drug development can also build on metabolic models, to predict pathways that
are essential to the parasite and thus can serve as good targets for antiparasitics. For
example, a proteomic network analysis showed reactions involved in carbohydrate me-
tabolism and amino acid metabolism as essential to T. cruzi (116). A genome-scale met-
abolic T. cruzi model predicted lethality for drugs targeting pairs of enzymes in the cit-
ric acid cycle and gluconeogenesis/glycolysis pathways, in the citric acid cycle and
glutamate metabolism, or in glutamate metabolism and oxidative phosphorylation
(117). A similar approach in Leishmania predicted threonine biosynthesis as a novel tar-
get (118). Genes involved in Leishmania purine metabolism, methionine metabolism,
steroid metabolism, vitamin B6 metabolism, oxidative phosphorylation, and the pen-
tose phosphate pathway were also predicted to be lethal using a computational, con-
straint-based L. donovani metabolic model (119). Kinetic modeling in T. brucei predicts
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and glucose transport as drug
targets in this parasite (103). Translation of these in silico findings was demonstrated in
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T. cruzi, where machine learning based on T. cruzimetabolism and prior drug screening
hits successfully predicted compounds that then demonstrated in vitro and in vivo anti-
parasitic activity (120).

Metabolic modulators do not have to be used alone; instead, they could be com-
bined with existing drugs to facilitate dose reduction, improve safety profiles, or
address tissue damage not currently restored by antiparasitics. For example, com-
bining glutamine with miltefosine for the treatment of VL showed improved reduc-
tion in parasite load in the spleen (33). Supplementing meglumine antimoniate
with allantoin improved Leishmania clearance in vitro (89). Given that carnitine sup-
plementation improved cardiac function, but without affecting parasite load in
acute CD (66), a path forward for clinical implementation will likely require combi-
nation with existing antiparasitics. Eflornithine is usually used in combination with
nifurtimox for sleeping sickness (121).

Host-parasite metabolomics can also be used to determine drug mechanism of
action and whether new drugs proceed via pathways similar to those of previously
characterized agents. For example, this approach revealed that the experimental com-
pounds S205, S448, and S1000 have a mechanism of action in CD distinct from that of
benznidazole and nifurtimox (122). A similar approach was applied to Leishmania
(123). This approach can also identify candidate mechanisms of action, for example, by
demonstrating that sertraline, a candidate for drug repurposing for leishmaniasis, indu-
ces multitarget metabolic dysfunction in the parasite (124). Similar studies used metab-
olomics to demonstrate that AN5568 acts on S-adenosyl-L-methionine metabolism in T.
brucei and causes redox dysfunction (125) and that miltefosine affects Leishmania
sphingolipid and sterol metabolism (126). However, one of the barriers that still
remains is the high level of metabolite commonalities occurring within the host and
parasite and being able to differentiate between these common metabolites for the
treated condition (122).

Metabolomics can also help in understanding drug treatment failure or success. For example,
metabolomics of miltefosine-resistant Leishmania demonstrated resistance-associated changes in
phosphatidylcholines (92). Susceptibility to an antiparasitic depends upon the metabolic environ-
ment of the parasites and thus the sites of in vivo infection. An in vitro study showed that in the
presence of glutamine, T. cruzi amastigotes were more susceptible to the effect of ketoconazole
(127). Interestingly, glutamine levels are lower in the large intestine than other gastrointestinal
sites (66), which matches sites of reduced parasite clearance during posaconazole treatment
(128). Thus, controlling the host metabolic environment may be a possible intervention to
increase susceptibility to existing drugs. T. cruzi can enter a dormant drug-resistant state (129),
although the associated metabolic changes are still unknown. Studying these will require highly
sensitive techniques, such as single-cell transcriptomics or metabolomics. Treatment failure can
also result from differential tissue damage, leading to altered drug distribution. This has been
understudied in the context of infection. Indeed, pharmacokinetic studies are usually performed
in uninfected animals (for an example, see reference 130). However, differential metabolism and
tissue distribution of the animal anesthetic ketamine were observed in an untargeted metabolo-
mics study of T. cruzi-infected hearts (131) and VL lowered liver and spleen amphotericin B levels
(132).

Beyond drug treatment, nutrition also impacts disease severity. Host malnutrition is
linked to increased death rate in T. cruzi-infected mice (133). In the acute stage of CD, a
high-fat diet reduced parasitemia, parasite load in the heart, and ultimately mortality
(134). In contrast, a murine model of the chronic stage of CD showed that a high-fat
diet increased oxidative mitochondrial stress, contributing ultimately to cardiac dys-
function and cardiomyopathy (135). An atherogenic diet is also believed to offer some
protection against L. donovani infection (136).

CONCLUSIONS AND FUTURE DIRECTIONS

Intracellular pathogens depend on the host to fulfill their carbon as well as other
nutrient requirements, and extracellular parasites such as T. brucei nevertheless must
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scavenge host nutrients. To meet these needs, and in response to infection, kinetoplas-
tids cause several host metabolic alterations. Greater commonality was observed when
comparing metabolic adaptations in leishmaniasis and CD than for HAT, CD, and leish-
maniasis together. Both Leishmania and T. cruzi initially downregulate parasite glycoly-
sis upon infection (27, 54), whereas T. brucei relies on glycolysis during mammalian
bloodstream infection (73). Likewise, both Leishmania and T. cruzi upregulate parasite
b-oxidation during infection, though this increase is small in Leishmania (18, 52). T. bru-
cei from adipose tissue was also able to consume fatty acids (79). In terms of host met-
abolic alterations during infection, greater similarities were likewise observed when
comparing Leishmania and T. cruzi infections: for example, both downregulate host
glycolysis, at least at early time points (26–28). Other common trends include changes
in host oxidative phosphorylation and AMPK modulation as well as changes in phos-
phocholine and amino acid abundances. However, the direction of changes in these
metabolic pathways are often unique to each kinetoplastid infection. For example, in
vitro Leishmania infection was primarily associated with increased host oxidative phos-
phorylation (26, 29), while most studies of T. cruzi infection indicate decreased host oxi-
dative phosphorylation (29, 60, 61). AMPK activity helped Leishmania proliferation (26),
while it hindered the growth of T. cruzi (62, 104). An increase in phosphocholines was
observed in Leishmania and T. cruzi infection, while a depletion of overall phosphocho-
lines was observed for T. brucei, with just specific phosphocholines being increased
(27, 43, 61). The bloodstream form of T. brucei metabolizes amino acids (76). This
impact of infection on amino acid metabolism is common across kinetoplastids, but
with different directionality depending on the species: the aromatic amino acids tryp-
tophan and tyrosine decreased with T. brucei infection (84). In contrast, the levels of
several amino acids were increased by T. cruzi infection in cardiac tissue in mouse mod-
els (59) and by Leishmania infection in macrophages (32), though acute T. cruzi infec-
tion was associated with depleted tryptophan in the large intestine (66).

A further limitation is the diversity of systems in which these metabolic changes have
been evaluated, hampering cross-study comparisons. Although T. cruzi colonizes a broad
range of tissues in vivo (137), few in vitro studies consider multiple cell types in parallel,
and separate in vitro studies have shown conflicting impacts on cellular glycolysis and oxi-
dative phosphorylation (26, 50, 60). Few studies use multiple Leishmania species or
Leishmania, T. cruzi, or T. brucei strains in parallel. Likewise, while differences in parasite me-
tabolism between vector stages and mammalian stages are unsurprising, there are also
large differences between in vitro and in vivo pathogen metabolism. For example, dou-
bling time for lesional L. mexicana is over three times slower than when infecting macro-
phages in vitro, reflected in 5-times-slower fatty acid turnover in the lesion (19). Likewise,
in vitro settings lack the complex signals derived from multiple intercellular interactions
that develop in vivo. For example, unlike observations in vitro (26), in vivo L. major infection
was associated with decreased host cell respiration, induced by local immune response-
derived nitric oxide (31). Thus, in vitro findings should only be extrapolated with caution
and should always be validated in vivo. Reliance on animal models is unavoidable to ena-
ble the invasive tissue collection necessary to assess host and parasite metabolism at sites
of disease and to tightly control infection duration, diet, comorbidities, medication usage,
etc. Nevertheless, the relevance of each animal model to the disease being represented
should always be considered. Concordance between multiple animal models (especially
across species, but also across infection durations and diets) strengthens translatability of
findings to humans. Nevertheless, sufficient overlap is expected. Indeed, rats and humans
share all but eight metabolic enzymes, and only a minority of metabolic subsystems
include species-specific reactions (138).

Demonstrating which of these metabolic changes are associated with pathology, which
are instead protective and help the host compensate for the stress of infection, and which
are merely “passenger” metabolic changes is still in its infancy. Thus, studies of infection
metabolism benefit from being coupled with interventional investigations from a funda-
mental as well as a drug development perspective. This is particularly true for
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phospholipid alterations, whose biological significance has been understudied compared
to changes in central energy metabolism (except with regard to miltefosine treatment in
leishmaniasis). It will also be important to begin differentiating between “keystone” meta-
bolic adaptations and the possibility that infection instead induces a multiplicity of small-
scale metabolic alterations that cumulatively affect infection outcome. The latter may be
missed by data analysis techniques that rely exclusively on univariate fold change analyses.
Furthermore, fold change in metabolomics data is not always a direct representation of
the exact fold change in the underlying metabolome, even though directionality of
change is usually conserved (139). Similarly, fold change at the transcriptome level is not
necessarily the same as fold change at the functional level (140).

Another common trend is parasite metabolic flexibility. Leishmania organisms adapt
their metabolism to nutrient-restrictive conditions in vivo (18), while T. cruzi organisms
are able to reduce the dependence on glycolysis upon exposure to the extracellular
matrix (54). Metabolic flexibility in T. brucei allowed the parasites to proliferate in the
presence of glycerol rather than glucose in vitro (71). However, many of these studies
have been performed in vitro or have not considered metabolic adaptations to differ-
ent tissue sites and cellular environments. In addition, there is considerable variability
between individual parasite cells (129), although this has not yet been studied at the
metabolic level. Future studies should aim to use single-cell approaches like single-cell
Raman or single-cell metabolomics, which could provide more insight on the meta-
bolic fingerprint of a single cell (141, 142).

Many studies of the metabolism of infection have only relied on a single or a few time
points, and usually a single parasite strain. As costs decrease for omics (especially for liquid
chromatography-mass spectrometry-based metabolomics), more time-resolved investiga-
tions should be pursued, enabling the determination of disease trajectories on a metabolic
level. These advances will enable assessment of metabolic resilience and metabolic disease
tolerance, aspects that we are now discovering play key roles in infection outcomes in
kinetoplastid diseases and beyond (66). Likewise, usage of multiple parasite strains (and
host strains or species in the case of experimental disease models) is essential to enable
generalizations on the impact of infection on metabolism and to facilitate translatability to
patients. Strain-specific impacts are to be expected, but strain-independent effects should
be prioritized for drug and biomarker development, given that the infecting parasite strain
is usually unknown in a clinical setting.

The majority of host-kinetoplastid metabolism studies have considered only mamma-
lian and parasite metabolism. However, from a physiological standpoint the human micro-
biome has often been considered an organ by itself (143). In the GI tract of an in vivo CD
model, different tissue types had various metabolic and microbiome alterations with infec-
tion (66). In CL, skin dysbiosis is not restricted to the site of the skin lesions and a global
change in the skin microbiota is observed (144), although microbiome metabolic profiling
in this context has not been investigated. Therefore, there is still considerable scope to
define how microbiota metabolism affects kinetoplastid disease progression.

Although targeting metabolism is complex, multiple successes demonstrate that this is
possible (see “Avenues for Intervention” above). Several of these successes have been with
pleiotropic multitarget agents (e.g., carnitine [66], metformin [104], and resveratrol [104] in
CD). One intriguing possibility is that these interventions were successful perhaps exactly
because of this multiplicity of effects, enabling restoration of the multiple infection-
induced metabolic changes. Such a possibility warrants further investigation as we seek to
build on these insights into metabolism of infection to defeat kinetoplastid diseases. There
is also still significant scope for exploring immunometabolism modulators to treat these
diseases.

Overall, there have been major advances in our understanding of metabolism dur-
ing kinetoplastid infection. Further advances will be facilitated by new data analysis
methods and new technologies, including increased spatial analysis in situ in infected
tissues and single-cell analyses. These insights will lead to new ways to monitor and
treat these infections.
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