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ABSTRACT The female genital tract microbiota is part of a complex ecosystem influ-
enced by several physiological, genetic, and behavioral factors. It is uniquely linked to
a woman’s mucosal immunity and plays a critical role in the regulation of genital
inflammation. A vaginal microbiota characterized by a high abundance of lactobacilli
and low overall bacterial diversity is associated with lower inflammation. On the other
hand, a more diverse microbiota is linked to high mucosal inflammation levels, a com-
promised genital epithelial barrier, and an increased risk of sexually transmitted infec-
tions and other conditions. Several bacterial taxa such as Gardnerella spp., Prevotella
spp., Sneathia spp., and Atopobium spp. are well known to have adverse effects; how-
ever, the definitive cause of this microbial dysbiosis is yet to be fully elucidated. The
aim of this review is to discuss the multiple ways in which the microbiota influences
the overall genital inflammatory milieu and to explore the causes and consequences of
this inflammatory response. While there is abundant evidence linking a diverse genital
microbiota to elevated inflammation, understanding the risk factors and mechanisms
through which it affects genital health is essential. A robust appreciation of these fac-
tors is important for identifying effective prevention and treatment strategies.
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The human microbiota is an integral part of our immune system and plays an impor-
tant role in the first line of defense in the female genital tract (FGT). Human immunity

has evolved to live in symbiosis with beneficial bacteria to such an extent that our
immune system recognizes commensal antigens in the body as self instead of foreign (1).
Every woman has a unique genital microbiota, which can be broadly classified based on
dominant bacterial taxa. These categories, generated using hierarchical clustering or near-
est centroid classification of microbiota data, are defined as community state types (CSTs)
or cervicotypes (2–4). While the distributions of dominant genital CSTs differ between
studies, common clusters include a Lactobacillus iners-dominant CST, a Lactobacillus crisp-
atus-dominant CST, and more diverse groupings, typically associated with the presence
of bacterial vaginosis (BV), a clinical syndrome presenting with vaginal discharge
and increased vaginal pH, characterized by a marked decrease in the abundance of
Lactobacillus spp. and an overall increase in genital microbial diversity (5).

CHARACTERIZING THE FEMALE GENITAL TRACT MICROBIOTA

The vaginal microbiota is thought to play a crucial role in reproductive health,
including the potential to protect against HIV and sexually transmitted infections
(STIs), abnormal birth outcomes, and other pathogens (5–7). Its composition is
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dependent on several factors, including age, hormonal changes, and genital glyco-
gen content (8), which, in the presence of the enzyme pullulanase or other amy-
lases, can be used as an energy source for Lactobacillus spp., allowing increased col-
onization and the establishment of low-diversity CSTs (9–11). Typically, the
cervicovaginal microbiota is characterized by a dominance of Lactobacillus species
(12), a trait unique to humans (13), particularly L. crispatus, Lactobacillus jensenii,
Lactobacillus gasseri, and L. iners (12, 14).

Although widely accepted, whether a low-diversity, Lactobacillus-dominated micro-
biota defines genital microbial health has been questioned in recent years. For exam-
ple, a high relative abundance of Bifidobacterium breve can replace the production of
lactic acid by lactobacilli (15). Furthermore, what is considered reproductively “optimal”
has been associated with race in numerous analyses; however, race is a proxy for lived
experiences that promote differences in biological and behavioral characteristics,
including racism, and differences in microbiota should be attributed to these experien-
ces rather than race itself. In a cohort of women living in North America, Lactobacillus
species dominance was more common among white and Asian women, while Hispanic
and black women had a more diverse microbiota, with a higher prevalence of com-
munities not dominated by lactobacilli. This was seen in other studies where asymp-
tomatic African American women were colonized with high proportions of L. iners,
Gardnerella vaginalis, Sneathia spp., Prevotella spp., Atopobium spp., Mycoplasma homi-
nis, Aerococcus spp., BV-associated bacterium 1 (BVAB1)/“Candidatus Lachnocurva vagi-
nae” (16), BVAB2, and several other typically BV-associated anaerobes compared to
white women, who were most likely colonized by L. crispatus, L. jensenii, L. gasseri, and
Staphylococcus spp. (17). In studies of black women living in South Africa, the majority
of women had a genital microbiota not defined by lactobacilli (2, 4, 18). Nonetheless, a
low-diversity Lactobacillus-dominated vaginal environment (Fig. 1) is often associated
with low inflammation, classically defined as having low levels of proinflammatory cyto-
kines such as interleukin-1 (IL-1), IL-8, IL-16, tumor necrosis factor alpha(TNF-a), inter-
feron gamma (IFN-g), and monocyte chemoattractant protein 1 (MCP-1)/C-C motif che-
mokine ligand 2 (CCL2), among others, and high levels of anti-inflammatory/regulatory
cytokines such as IL-1 receptor antagonist (IL-1RA) and IL-10 (19, 20). On the other hand,
a higher-diversity microbiota is accompanied by higher inflammatory cytokine concen-
trations (2, 4, 21). The ratio of the BV-associated bacteria G. vaginalis and Atopobium vagi-
nae to Lactobacillus spp. was associated with significantly elevated levels of IL-1a, IL-8,
and IL-12(p70) and lower levels of IFN-g-inducible protein 10 (IP-10) (22).

Generally, genital inflammation is crucial for mounting an effective host immune
response against bacterial pathogens and other STIs. This cytokine response is generated
as part of protective immunity. For example, the initial spike in IL-1b concentrations in
the presence of pathogens, followed by IL-8, is thought to play a role in activating the
vaginal innate and adaptive immune response against BV-associated bacteria (23). At
the mucosa, Toll-like receptors (TLRs) are able to bind and recognize a broad range of
bacterial pathogen-associated molecular patterns (PAMPs), including lipopolysaccharide
(LPS), peptidoglycans, flagellin, and bacterial DNA, triggering a signaling cascade that
typically leads to the clearance of bacterial infections (24, 25). However, sustained cyto-
kine production can be detrimental to the FGT, associated with damage to the epithelial
barrier and higher T-cell infiltration to the genital mucosa (26). Chronic inflammation
caused by vulvovaginitis can lead to serious long-term obstetric and gynecological com-
plications, including tubal infertility and pelvic inflammatory diseases (27). Persistent
inflammation can also increase a woman’s susceptibility to HIV (19).

This review focuses on the intrinsic relationship between a cisgender woman’s geni-
tal microbiota and its surrounding inflammatory milieu.

BACTERIAL VAGINOSIS

BV is by far the most common and well-researched genital condition and affects 20
to 70% of women (28–31). Despite antibiotic treatment, BV recurs in up to 50% of
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women within a year (32). The exact causes are multifactorial but result in increased col-
onization of the lower genital tract by pathogenic bacteria such as G. vaginalis, Prevotella
spp., A. vaginae, Leptotrichia spp., Sneathia spp., Mobiluncus spp., and Megasphaera spp.,
among others, and lower abundances of Lactobacillus spp. (4, 33–35) (Table 1). There is
limited information about specific bacteria that trigger incident BV, but it has been sug-
gested that G. vaginalis, Prevotella bivia, A. vaginae, and Megasphaera type I play an im-
portant role in initiating BV episodes (36–38). BV can be diagnosed using Amsel criteria

FIG 1 Common causes and consequences of a diverse, inflammatory genital microbiota. The shift to a more diverse genital microbiota is characterized by
a marked decline in the abundance of Lactobacillus spp. and lower concentrations of glycogen and antimicrobial peptides, including lactic acid. This is
accompanied by high levels of proinflammatory cytokines and chemokines and epithelial barrier damage. Several factors can potentially influence this
transition to a higher inflammatory state, including sexual/reproductive practices, the use of antibiotics or probiotics, the vaginal virome, genetics, and
lifestyle-related factors such as the woman’s diet, stress, or smoking. This in turn leads to an increase in the risk of subsequent STI acquisition, vulvovaginal
candidiasis infection, or preterm birth in some women.
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or Nugent scoring. Based on Amsel criteria, BV is defined as having three of the following
four criteria: thin, white, yellow discharge; clue cells on wet-mount microscopy; pH.4.5;
and fishy odor when adding a 10% potassium hydroxide solution to the wet mount (39).
Nugent scoring, generally considered the gold standard for diagnosing BV, is a Gram
stain scoring system that gives a score of 0 to 10 based on bacterial morphotype. A
Nugent score of 7 to 10 indicates the presence of BV, while an intermediate genital
microbiota is given a Nugent score of 4 to 6 (40). Women with highly diverse vaginal
CSTs had an 18-fold-higher likelihood of being Nugent-defined BV positive (4). This mi-
crobial imbalance is often asymptomatic in women, with about 75% of women with
Nugent-defined BV not experiencing any symptoms (41).

It is now well established that a BV-associated vaginal microbiota is linked to
increased concentrations of several genital cytokines [proinflammatory markers such
as IL-1a, IL-1b and TNF-a, TNF-b , IL-10, IL-8, IL-12(p70), IL-4, and FMS-related tyrosine
kinase 3 ligand (FLT-3L)], while others are downregulated (chemokines such as IP-10/
CXCL10, growth-regulated oncogene [GRO], macrophage-derived chemokine [MDC]/
CCL22 and macrophage inflammatory protein 1a [MIP-1a]/CCL3, IL-7, and granulo-
cyte-macrophage colony-stimulating factor [GM-CSF]) (2, 42) (Table 1). Genital inflam-
mation is associated with high alpha (within-sample) bacterial diversity and low L.
crispatus abundance (43). In a cohort of young South African women, higher abundan-
ces of Prevotella spp., Dialister spp., Parvimonas micra, and Sneathia sanguinegens and
lower abundances of L. crispatus and Lactobacillus johnsonii-L. gasseri were predictive

TABLE 1Microbial and immunological changes associated with bacterial vaginosis

Microbiological or immunological change(s) (reference[s])
Increased microbial diversity
Transition to a Nugent score of 7–10; increased abundance of small Gram-variable rods or
Gram-negative rods and curved Gram-variable rods (40, 211)
Diverse with low Lactobacillus abundance, typically characterized by decreased prevalence of
CST I (L. crispatus dominant), CST II (L. gasseri), CST III (L. iners), and CST V (L. jensenii) and
increased prevalence of CST IV (higher relative abundances of BVAB1, G. vaginalis,
A. vaginae, and Prevotella spp., etc.) (2, 4, 212)

Soluble biomarkers
Increased vaginal pH (4, 213)
Lower L- and D-lactic acid concn (74)
Lower AMP (including a-defensins, HBD-2, and SLPI) concn (59)
Higher 12-hydroxyeicosatetraenoic acid (58) and SCFA (60, 61) levels

Polymicrobial biofilm formation by inflammatory bacteria such as G. vaginalis, A. vaginae, P. bivia,
and/or F. nucleatum (113, 114, 119)

Changes in genital inflammation profile
Overall increase in cytokines and chemokines, with the exception of IP-10, MIG, GRO, CCL22,
MIP-1a, and GM-CSF (2, 4, 42, 44)
Increased levels of MMPs (45–47)

Immune cells and humoral immunity
Phenotypic changes in APCs (2)
Maturation and activation of monocyte-derived DCs (CD40, CD83, and HLADR) (49)
Increased no. and activation of mucosal CD41 T cells (CD69 and CCR5) (26, 57)
IgA response to G. vaginalis cytolysin (53)

Metaproteomic changes
Decrease in epithelial barrier integrity, cytoskeletal alterations, and cell membrane biological
processes; reduced cell wall organization and peptidoglycan biosynthesis (26, 112, 214)

Host genetics
Polymorphisms in inflammatory cytokines (e.g., IL-1b, IL-10, IL-5, IL-6, and TNF-a) and Toll-like
receptor (e.g., TLR-2, -4, and -7) genes (107–110)
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of high levels of inflammatory markers (4). Among sub-Saharan African women, higher
concentrations of human b-defensin 2 (HBD-2) were predictive of BV by Nugent
scores, and lower IL-1RA/IL-1b ratios were predictive of intermediate Nugent scores
(44). The presence of BV-associated bacteria or LPS was also associated with increased
host matrix metalloproteinases (MMPs) as part of a negative-feedback loop aimed at
dampening inflammation (45, 46). Cytokines can be cleaved by MMPs; in the case of IL-
8, cleavage of the C terminus by MMP8, upregulated during BV (47), led to a 10-fold-
higher potency (48), creating a stronger inflammatory response to bacterial infection.
BV-associated bacteria induced the production of IL-1a, IL-1b , and IL-8 when cocul-
tured with vaginal epithelial cells (2). In vitro and in germfree mice, vaginal introduc-
tion of P. bivia increased IL-6 and IL-8 production and recruited and/or activated
CD441 CD41 T cells to the genital mucosa compared to vaginal exposure to L. crispatus
(21), suggesting a causative role of these microbiota members in inflammation and cel-
lular activation.

Several of the cytokines upregulated with BV likely work in tandem to modulate mu-
cosal immunity (Table 1). Cervicovaginal lavage fluids from women with BV induced the
maturation and activation marker expression (CD40, CD83, and HLADR) of monocyte-
derived dendritic cells (DCs) and the production of IL-12, IL-23, and p40 by these DCs
(49). The maturation of DCs is brought about by the secretion of the growth factor GM-
CSF and IL-4, a hallmark T-helper 2 (Th2) cytokine, while TNF-a and the combination of
IL-1b and IFN-g can cause DCs to produce the inflammatory cytokine IL-12 and the regu-
latory cytokine IL-10 (50). DCs are important for activating naive T cells and for the devel-
opment of a Th immune response (51). This cytokine interplay could potentially play a
role in cellular activation and recruitment in the presence of BV. The inflammatory cyto-
kine IL-1b produced by activated macrophages leads to cellular proliferation, differentia-
tion, and apoptosis (52). Similarly, Cauci et al. found that genital IL-1 concentrations,
especially IL-1b , were almost 13-fold higher in women with BV and were essential in trig-
gering an immunoglobulin A response to a hemolysin produced by G. vaginalis (53).
Mitchell et al. showed that IL-1b concentrations were inversely associated with H2O2-
producing Lactobacillus spp. in women with BV (54). Dysbiosis is associated with
increased genital IL-1b concentrations and increased neutrophils or potentially other
leukocytes (15, 55). It has also been hypothesized that microbially induced inhibition of
TLR activation by certain pathogenic bacteria could lead to BV, including the downregu-
lation of host heat shock protein production, which induces a proinflammatory response
against pathogens (8, 56). Treatment of BV with metronidazole (an antibiotic that targets
anaerobic bacteria and some protozoans) led to reductions in IL-1b , IL-8, and RANTES
(regulated upon activation, normal T-cell expressed and secreted) as well as in the
expression of the activation markers CD69 and CCR5 in mucosal CD41 T cells (57).

In addition to influencing the secretion of cytokines, lactobacilli acidify the vagina
and produce other metabolites and antimicrobial molecules that protect against
pathogens. Genital metabolites can clearly delineate women with/without BV, with BV-
positive women having higher levels of 12-hydroxyeicosatetraenoic acid, an inflamma-
tory biomarker (58). Women with BV have significantly lower levels of antimicrobial
peptides (AMPs), including a-defensins (produced by neutrophils), HBD-2 (produced
by epithelial cells), and secretory leukocyte protease inhibitor (SLPI), in cervical mucus
(59). After treatment, these AMP levels were comparable to those of women without
BV, confirming that this was indeed due to BV. While Lactobacillus species are associ-
ated with low short-chain fatty acid (SCFA) levels, which can regulate host cytokine
production, SCFAs are found at higher concentrations in women with BV, leading to
the production of IL-8, IL-6, IL-1b , and TNF-a, some of them in a dose-dependent man-
ner (60, 61).

CONTRIBUTORS TO VAGINAL MICROBIOTA DIVERSITY AND INFLAMMATION

Several physiological and behavioral factors may increase the risk of vaginal micro-
bial dysbiosis and inflammation, including sexual intercourse, reproductive and
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contraceptive hormones, menstruation, use of antibiotics, vaginal insertion practices,
and lifestyle habits (Fig. 1).

Sexual intercourse and exposure to semen. Although the exact etiology of BV is
unclear, higher total numbers of and new sexual partners put women at a higher
risk of BV, regardless of partner gender. Condomless sex with a regular male part-
ner after treatment for BV was associated with the presence of a diverse, inflamma-
tory vaginal microbiota, with a higher prevalence of BV-associated bacteria, in par-
ticular Gardnerella, Atopobium, and Sneathia spp., and a decrease in Lactobacillus
spp. (62). Semen is known to contain a complex community of microbes, domi-
nated by Ralstonia spp., Lactobacillus spp., Corynebacterium spp., Staphylococcus
spp., Prevotella spp., Finegoldia spp., Ureaplasma spp., Clostridiales spp., and sev-
eral other bacterial taxa present during BV (63). The presence of spermatozoa in
vaginal samples was a strong predictor of incident BV (64). A study involving heter-
osexual couples found Gardnerella biofilms on desquamated semen epithelial cells,
suggesting that exposure to semen could be a cause of BV in women (65). Furthermore,
a partner’s penile microbiota composition at the meatal opening and coronal sulcus was
highly predictive of incident BV (sensitivity, specificity, and accuracy of $74.6%), with
Parvimonas, L. iners, L. crispatus, Dialister, S. sanguinegens, and G. vaginalis being among
the most predictive of incidence (66). In African women, reporting of recent unprotected
sex was associated with decreased L. crispatus, Lactobacillus vaginalis, and other
Lactobacillus species concentrations and increased G. vaginalis and L. iners concentra-
tions (67), which would potentially lead to higher levels of genital inflammation. Among
women who have sex with women (WSW), sexual contact with a partner with BV or with
new partners was associated with an increased risk of BV (68) or a shift toward a more
diverse vaginal CST dominated by G. vaginalis (69).

Menstrual cycle. The vaginal microbiota can fluctuate rapidly throughout the men-
strual cycle, with menses accompanied by decreased concentrations of L. jensenii and
L. crispatus and increased concentrations of L. iners and G. vaginalis irrespective of the
initial Nugent-defined BV status (36, 70, 71). Irregular menstrual cycles could render
the vaginal microbiota more unstable and lead to a higher incidence of BV (70).
Srinivasan et al. proposed that low estrogen levels during menses result in a decreased
glycogen content in the vaginal epithelium, which in turn restricts the growth of
Lactobacillus spp. that depend on glycogen as a critical nutrient. In contrast, the
increase in G. vaginalis seen with menstruation could be due to menstrual blood pro-
viding an iron source supporting its growth (36).

Hormones and contraception. Endogenous hormones can influence the vaginal
microbiota, for example, at puberty, when hormonal changes influence shifts in the
microbiota from one dominated by anaerobic bacteria to a more Lactobacillus species-
dominated one (72). Estrogen increases vaginal epithelial thickness and glycogen avail-
ability (11). In turn, this state allows colonization by Lactobacillus spp. dependent on the
metabolism of glycogen, which is converted to maltose, maltotriose, and a-dextrines,
with lactic acid (a metabolite known to have antimicrobial and anti-inflammatory proper-
ties [73, 74]) being the by-product of this metabolic pathway (11, 75). This was seen in a
cohort of young women where a higher-diversity, low-Lactobacillus inflammatory micro-
biota was associated with lower estrogen levels (4). This higher rate of colonization by
lactobacilli has been associated with a lower prevalence of BV and lower cytokine levels.
However, Gardnerella species is also capable of using products of glycogen metabolism
by secreting its own a-glucosidase, thus potentially generating more nutrients for its col-
onization (76). Conversely, postmenopausal women experience a reduction in estrogen
levels, leading to reduced colonization by Lactobacillus spp. and increased microbial di-
versity, although it does not necessarily lead to a higher prevalence of BV (77–79).

Observational data suggest that hormonal contraceptive use may affect the genital
microbiota and immunity, although studies are flawed due to bias introduced by differ-
ent condom use patterns in contracepting versus noncontracepting women or differ-
ent behaviors in women who self-select various contraception methods. Some studies
report a positive association between the use of various contraceptive methods and
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the prevalence of BV. Twelve months of intramuscular depot medroxyprogesterone ac-
etate (DMPA-IM) use resulted in a lower proportion of women having Lactobacillus-
dominant vaginal biomes (53% compared to 27% at baseline) (80). In women with BV,
using DMPA-IM appeared to exacerbate inflammation, with elevated IL-8, MCP-1, and
IP-10 concentrations (81). In randomized trials, Balle et al. found the combined contra-
ceptive vaginal ring to be highly inflammatory compared to combined oral contracep-
tive pills (COCP) or injectable norethisterone enanthate (Net-EN) (82), and Brown et al.
found that copper intrauterine device (copper-IUD) use led to increases in BV-asso-
ciated bacteria and several inflammatory cytokines and chemokines compared to
DMPA-IM or the levonorgestrel implant (B. P. Brown, R. F. Tanko, S. Z. Jaumdally, R.
Bunjun, S. Dabee, A.-U. Happel, M. Onono, G. Nair, T. Palanee-Phillips, C. W. Scoville,
K. Heller, D. D. Nyangahu, J. M. Baeten, S. E. Bosinger, A. Burgener, J.-A. S. Passmore,
R. Heffron, and H. B. Jaspan, submitted for publication). Similarly, African women
initiating copper-IUD experienced increases in Nugent scores and concentrations of
BV-associated organisms by quantitative PCR (qPCR) (83, 84). Since menstruation
has been linked to decreases in Lactobacillus numbers and increases in BV-associ-
ated organisms (36), it is possible that these effects are indirectly associated with
amenorrhea and menorrhagia often experienced by women using DMPA-IM and
copper-IUD, respectively.

In contrast to the studies described above, several studies have indicated that some
hormonal contraceptives have a “protective” effect against BV (82, 85–89). Among
black Kenyan women, consistent DMPA-IM use was accompanied by a significant
decrease in G. vaginalis numbers and an overall decrease in bacterial loads, together
with no change in Lactobacillus species numbers (90). In the randomized Evidence for
Contraceptive Option and HIV Outcomes (ECHO) trial, DMPA-IM initiation was associ-
ated with an increase in Lactobacillus species relative abundance (Brown et al., submit-
ted). A systematic review and meta-analysis of the effects of hormonal contraceptives
showed that women using COCP or DMPA experienced BV less frequently (effect sizes
of 0.68 for prevalent BV and 0.82 for incident BV), with similar results seen with estro-
gen-containing contraceptives in a randomized trial relative to no contraception (89,
91). Estradiol-progestin COCP users were more likely to be colonized by Lactobacillus
spp. than women using condoms only but not DMPA-IM users in an observational
study (92). Among South African young women randomized to various hormonal con-
traceptives, COCP initiation resulted in an increased relative abundance of L. iners (82).
These findings could be due to a higher level of glycogen accumulation triggered by
estrogen. Interestingly, in a recent study in women using COCP, transitioning from a
normal to an intermediate microbiota (Nugent score of 4 to 6) was preceded by a gen-
eral immunosuppressive profile with decreased IL-1b , MIP-3a, IL-6, vascular endothe-
lial growth factor (VEGF), and BD-2 concentrations (44).

Vaginal insertion practices. Certain vaginal insertion practices, particularly vaginal
douching, have been linked to a higher prevalence of BV (93, 94). Vaginal douching af-
ter menses increased the BV risk 5-fold, and women who had douched in the past
week before sampling were twice as likely to have BV (95). In a study of women engag-
ing in transactional sex, using a cloth to clean inside the vagina was associated with a
hazard ratio (HR) of 1.58 for BV (86). In a meta-analysis, cleaning with soap intravagi-
nally led to the development of BV or intermediate vaginal flora in women who had a
normal vaginal microbiota at baseline (96).

Lifestyle-related factors: diet, stress, and smoking. A woman’s diet appears to
influence not only her gut microbiota but also her genital microbiota. Dietary fat intake
has been associated with a heightened BV risk, while diets rich in or supplemented with
folate, vitamin A, and calcium may be protective (97). Among pregnant adolescents, low
vitamin D levels were associated with a higher prevalence of BV and higher vaginal TNF-
a concentrations (98). “Naturally nutrient-rich” and glycemic load dietary scores were
predictive of BV progression and persistence, which could be due to hyperglycemia-
related oxidative stress, leading to impaired immune function, or via colonization from
the rectum (99). In South African adolescents, body mass index positively correlated with
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an inflammation-associated vaginal microbiota (4), whereas Lokken et al. instead found a
20% lower risk of incident BV in obese than in normal-weight women (100).

Psychosocial stress can also lead to a higher prevalence and incidence of BV (101).
Cortisol release during chronic stress can modulate estrogen production, leading to
the inhibition of vaginal glycogen deposition and shifts to low-Lactobacillus states
(102). Smoking has independently been associated with an increased risk of BV (103,
104), which the authors suggest could possibly occur through the exclusion of
Lactobacillus spp. other than L. iners due to their lower stability in the FGT, facilitating
the transition to BV. Smoking has been associated with low Lactobacillus abundance
in the FGT, and smoking cessation led to a shift from a Lactobacillus-deficient CST to
a Lactobacillus-dominated one (104).

Host genetics. Although the effect of host genetics on gut microbiota composition
has been well described (105, 106), evidence of a possible relationship between host
genetics and the vaginal microbiota is scarcer (Table 1). Those factors that have been
identified either modulate the risk of BV or modulate the inflammatory response to
vaginal microbes (107–111). In a study of polymorphisms in inflammatory cytokines
and TLR genes in pregnant women, Goepfert et al. found that women with BV were
less likely to have polymorphisms at IL-1b exon 5 13954, IL-10 21082, and TLR4 399
loci, irrespective of race. In the same study, among black women, a polymorphism at
the IL-6 2174 locus was associated with an increased risk of BV (107). Among HIV-neg-
ative women, the single nucleotide polymorphisms (SNPs) TLR7 rs5743737 and TLR7
rs1634323 were associated with a decreased BV risk, and TLR7 rs179012 was associated
with an increased risk, while TLR2 rs3804099 was associated with a lower BV risk in
women living with HIV (108). Polymorphisms in the TLR4 gene (896A.G polymor-
phism) led to a more subdued inflammatory response to LPS from G. vaginalis and
other anaerobic Gram-negative rods among pregnant women (reduced production of
IL-1 and IL-1RA), potentially allowing greater colonization of the vagina by these bacte-
ria (109). A high relative abundance of Prevotella spp. was associated with increased
vaginal cytokine levels and the activation of TLR and NF-κB pathways: Si et al. found a
strong association between the polymorphism rs2069812 in the IL-5 gene and genital
Prevotella melaninogenica abundance (110). A polymorphism in the TNF-a gene (TNFA-
208G.A) led to higher vaginal fluid TNF-a concentrations in women with BV (111).
These studies highlight the potential importance of host genetics and gene polymor-
phisms in modulating both the vaginal microbiota and the immune response to BV-
associated bacteria in women.

INFLAMMATORY EFFECTS OF SPECIFIC BV-ASSOCIATED BACTERIA

There is a multitude of bacteria found in BV, yet studies in different populations have
found various bacteria to be most inflammatory, likely due to their frequent cooccur-
rence. For example, even in the absence of symptomatic BV, Anahtar et al. found that
higher relative abundances of Fusobacterium, Aerococcus, Sneathia, Gemella, Mobiluncus,
and Prevotella were associated with the highest levels of inflammation in young South
African women in the FRESH cohort, while Lennard et al. found higher relative abundan-
ces of BVAB1, S. sanguinegens, A. vaginae, BVAB2, G. vaginalis, Prevotella amnii, and
Megasphaera, among others, in women with high inflammation levels as part of the
WISH cohort (2, 4). Based on community functional inference (determined using phylo-
genetic information derived from 16S marker gene sequences, and a database of refer-
ence genomes, to predict functional potential), BVAB1 was found to be the strongest
contributor to BV persistence and inflammation (4). Using metaproteomic techniques,
Alisoltani et al. found that the molecular functions of bacterial cell wall, peptidoglycan,
and cell membrane biological processes and cellular components were more predictive of
genital inflammation than the presence of specific “nonoptimal” bacteria. Overall, however,
higher levels of microbial proteins associated with G. vaginalis, Prevotella spp., Megasphaera
spp., Sneathia amnii, and A. vaginae and lower levels of proteins of Lactobacillus origin were
most strongly associated with high inflammation levels (112).
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One of the characteristics of persistent BV is the formation of polymicrobial biofilms,
thought to be initiated by G. vaginalis or A. vaginae (113, 114). These biofilms can pro-
vide bacteria with protection against antibiotics and antimicrobial compounds pro-
duced by Lactobacillus spp. (115, 116). In turn, BV-associated organisms, particularly G.
vaginalis, secrete toxins such as vaginolysin and sialidase, which have cytolytic activity
and induce host epithelial cells to produce cytokines such as IL-8 (117), thus creating a
chronically highly inflamed milieu. It is also thought that colonization with G. vaginalis
may initiate the transition of the vaginal microbiota to a more dysbiotic state because
of its biofilm-forming ability, which allows symbiotic BV-associated bacteria like P. bivia,
A. vaginae, or Fusobacterium nucleatum to adhere and colonize (118, 119).

A. vaginae is found in up to 55% of BV-positive women, as opposed to only 8% in
Nugent-defined BV-negative women (120, 121), and higher concentrations are more
likely to be found in women experiencing persistent BV (122). A. vaginae strongly
induces the production of IL-6, IL-8, and HBD-4 in vitro via TLR2-to-NF-κB signaling,
although the specific TLR2 agonist involved is yet to be defined (123). In a three-
dimensional (3D) vaginal epithelial cell model, A. vaginae caused the production of
molecules such as MIP-3a, HBD-2, IL-1b , IL-6, IL-8, and TNF-a, which have been
shown to be associated with damage of epithelial barrier function (124).

Prevotella spp. can be found at low concentrations in the genital tract even in the
absence of BV (125). However, a higher abundance of P. bivia is strongly associated
with increased genital cytokine levels and inversely associated with Lactobacillus spe-
cies abundance (2, 110). In in vitro cultures of vaginal epithelial cells, Prevotella induced
high concentrations of IL-1a, IL-1b , IL-8, IL-6, MIP-2a, MIP-3a, MIP-2b , and RANTES
compared to L. crispatus (2, 21, 124, 126). In a cohort of adult women from KwaZulu-
Natal, South Africa, women with a higher relative abundance of P. bivia were 19 times
more likely to have high genital tract inflammation levels and an increased risk for later
HIV seroconversion. Here, LPS biosynthesis abundance was highly associated with
inflammation (127). While other BV-associated bacteria also produce LPS (such as G.
vaginalis) with differing inflammatory capabilities (128), P. bivia appears to contribute
the highest LPS concentrations in vaginal secretions (129). In turn, LPS leads to the acti-
vation of the NF-κB pathway by binding to TLR4 and CD14 on genital epithelial cells,
monocytes, and macrophages (24). Phenotypic and transcriptional analyses of antigen-
presenting cells (APCs) from women with Prevotella-dominant vaginal communities
showed an enrichment of genes related to NF-κB, TLR, nucleotide-binding oligomeriza-
tion domain (NOD)-like receptor, and TNF-a signaling pathways (2).

Prevotella timonensis and Megasphaera elsdenii are associated with BV and, in vitro,
induce a strong DC-mediated genital inflammatory response, including IL-1b , IL-6, IL-8,
IL-12, and TNF-a, unlike L. crispatus, which induced neither Th differentiation nor a DC-
mediated response (130). In a study of Kenyan women, the BV-associated bacteria Dialister
micraerophilus, Eggerthella species type 1, M. hominis, Parvimonas species type 2, Gemella
asaccharolytica, Sneathia spp., and Megasphaera spp., linked to an increased risk of HIV
infection in this cohort, were associated with the upregulation of TNF-a and IL-1b (131).

Pathogenic bacteria can directly modulate inflammatory markers. As mentioned
above, although BV is generally considered inflammatory, some chemokines, including
IP-10, appear to be actively decreased in women with BV (132, 133). The mechanisms
or bacteria mediating this effect are unclear. P. bivia can have a suppressive effect on
IP-10 production by epithelial cells in vitro (134). Clinical strains of Finegoldia magna, a
BV-associated pathobiont (135), express a serine proteinase, which degrades the che-
mokine monokine-induced gamma interferon (MIG) and suppresses its antimicrobial
effect (136).

LACTOBACILLUS SPECIES ARE ASSOCIATEDWITH LOW-INFLAMMATION STATES

Lactobacillus species contribute to host defenses by producing antimicrobial com-
pounds such as lactic acid and bacteriocins. Lactic acid (both L- and D-isoforms), a key
Lactobacillus species metabolite produced during anaerobic glucose metabolism, had
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a direct anti-inflammatory effect in a 3D human vaginal epithelial tissue model, where
it triggered the production of the anti-inflammatory cytokine IL-1RA; suppressed the
production of IL-6, IL-8, TNF-a, RANTES, and MIP-3a after stimulation by TLR2, -3, and
-4 agonists; and inhibited the production of IL-6 and IL-8 upon exposure to seminal
plasma (74). Lactobacilli can also physically protect the FGT in a nonspecific way by
forming colonies on epithelial cells or by causing coaggregation between bacterial
species and preventing the movement of pathogenic bacterial species (137). L. crispa-
tus and L. iners are the two major Lactobacillus species colonizing the genital micro-
biota in women, although L. gasseri and L. jensenii are present at lower concentrations
(138).

L. crispatus is known for its anti-inflammatory effect, and lower abundances of this
species tend to be associated with higher inflammatory cytokine levels (124, 139).
Compared to gut strains, genital L. crispatus have evolved to be more adapted to their
local milieu, with a higher abundance of genes related to acid tolerance, redox reac-
tions, pullulanase, and carbohydrate-binding molecules (140). In a vaginal epithelial
cell culture system, L. crispatus as well as L. jensenii had a dampening effect on inflam-
mation after TLR stimulation (139). L. crispatus and L. jensenii proteins in vaginal fluid
were found to inhibit Escherichia coli growth (141, 142). L. crispatus, which is consid-
ered more beneficial, is more dependent on glycogen than L. iners (11, 143). Thus, cir-
cumstances where glycogen levels are low could potentially select for less optimal lac-
tobacillus species, leading to lower lactic acid levels and higher pH.

While L. crispatus is rarely found in women with BV (144), L. iners can be present in
the vaginas of women with and without BV (145, 146). L. iners has the smallest genome
size of the vaginal lactobacilli (1.3-Mbp single chromosome) and has evolved to be
highly specialized to the genital mucosa, with the majority of its genes encoding core
metabolic proteins found among all lactobacilli (147). L. iners, the most commonly
found bacterial species in the female genital tract (148), has been proposed as a “tran-
sitional” species that increases the likelihood of a shift to a more diverse microbiota
than an L. crispatus-dominated microbiota (149). L. iners persists irrespective of BV sta-
tus, suggesting that it is uniquely adapted to dynamic changes in the FGT (145). One
possible reason is that L. iners possesses the gene for inerolysin, a pore-forming toxin
that increases its adhesion capability and allows it to consistently take up nutrients
from the host despite fluctuations in the genital milieu (150, 151). In addition, L. iners
gene expression is increased up to 10% in women with BV, which included higher
expression of a cytolysin, eight proteins for the CRISPR antibacteriophage defense sys-
tem, mucin, and glycerol transport and metabolic enzymes (152). L. iners, found most
often in African women with low-diversity microbiota and often associated with low
inflammation (4), can also have an immune-dampening or probiotic effect, shown to
be capable of disrupting G. vaginalis biofilms and reducing the risk of developing BV
(153).

Studies investigating the direct interaction between Lactobacillus spp. and BV-asso-
ciated bacteria have mostly been in oversimplified in vitro systems lacking immune
cells and mucus. In a CaSki epithelial cell culture model, a range of vaginal L. crispatus,
L. jensenii, L. mucosae, and L. gasseri strains dampened the inflammatory response to G.
vaginalis in a coculture model (154). However, lactobacilli isolated from women with a
more diverse vaginal microbiota tended to independently induce higher concentra-
tions of IL-6, IL-8, IL-1a, IL-1b , MIP-1a, and MIP-1b from CaSki cells than those from
women with a Lactobacillus-dominant microbiota, and inflammation induction was
inversely associated with their ability to adhere to epithelial cells (155). In coculture
experiments, lactobacillus strains (particularly L. crispatus strains) inhibited the growth
of Prevotella species, while only a few strains inhibited G. vaginalis growth. In addition,
all the lactobacillus strains increased the production of IL-1RA and IL-10 by vaginal epi-
thelial cell lines, which modulated the production of proinflammatory cytokines,
including MIP-1a, MIP-1b , and IP-10, previously associated with a heightened risk of
HIV acquisition (19, 156).
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ANTIBIOTICS AND PROBIOTICS TO OPTIMIZE THE VAGINAL ECOSYSTEM

BV is currently treated with antibiotics that target anaerobic organisms (157–159).
In U.S. and Kenyan cohorts, metronidazole has a profound short-term effect on the
genital microbiota and BV prevalence, where bacteria such as G. vaginalis or other BV-
associated bacteria become depleted within hours, to be replaced by less-antibiotic-
sensitive lactobacilli such as L. iners posttreatment (160, 161). Clearance of BV was asso-
ciated with significant decreases in concentrations of the proinflammatory cytokines
IL-1a and IL-1b , although several chemokines were upregulated (including IP-10, MIG,
MIP-3a, MCP-1, and MIP-1a), which could indicate that while treatment leads to a dras-
tic reduction in BV-associated bacteria, it does not completely eradicate them (161).
Unfortunately, these effects seem to be short-lived, with more than half of the women
successfully treated presenting with recurrent BV at 12weeks posttreatment and expe-
riencing an increased prevalence of CST IV (G. vaginalis dominant) (A. Mtshali, S.
Ngcapu, S. E. James, F. Osman, N. J. Garrett, C. Balle, J. Giandhari, K. Mngomezulu, G.
Mzobe, T. de Oliveira, A. M. Rompalo, A. Mindel, S. S. Abdool Karim, J. A. S. Passmore, Q.
Abdool Karim, H. B. Jaspan, and L. J. P. Liebenberg, submitted for publication).

Although findings are conflicting, studies have investigated the use of probiotic or
biotherapeutic lactobacilli administered in conjunction with antibiotics to lower BV re-
currence rates (162–165). A recent groundbreaking randomized controlled trial found
that L. crispatus CTV-05, administered through vaginal application for 11weeks follow-
ing BV treatment with metronidazole gel, reduced the risk of BV recurrence by 34%
(165). Certain lactobacilli, such as Lactobacillus reuteri RC-14 and L. rhamnosus GR-1, are
able to dislodge G. vaginalis and A. vaginae and disrupt their biofilms through the pro-
duction of bacteriocins or biosurfactant-like molecules and have been tested in clinical
trials (166–170). The direct administration of Lactobacillus metabolites or prebiotics has
also been explored: a study showed that the use of a combination of metronidazole
and a vaginal gel containing lactic acid and glycogen was more effective in
Lactobacillus colonization than metronidazole alone (171). In vitro studies have shown
that lactic acid had an anti-inflammatory effect on cells in culture, upregulating the
anti-inflammatory cytokine IL-1RA and inhibiting the production of IL-6, IL-8, TNF-a,
RANTES, and MIP-3a when stimulated with TLR agonists (74).

CONSEQUENCES OF A HIGHLY DIVERSE MICROBIOTA AND INFLAMMATION

Having a highly inflammatory, diverse genital microbiota has been associated with
an increased risk of genital infections, including several sexually transmitted infections
(STIs), among others (Fig. 1).

Sexually transmitted infections. Highly diverse microbiota and STIs have agonistic
relationships in women. Having BV (Nugent score of 7 to 10) or an intermediate vaginal
microbiota (Nugent score of 4 to 6) is associated with a higher rate of incident infec-
tions such as Trichomonas vaginalis, Chlamydia trachomatis, Neisseria gonorrhoeae, or
human papillomavirus (HPV), among others (7, 172–174), independent of sexual
behavior. BV leads to chronic inflammation, which is associated with increased suscep-
tibility to other genital infections, possibly via barrier disruption. Other possible mecha-
nisms include the production of specific metabolites that enhance the growth or infec-
tivity of pathogens (175). The fact that metronidazole treatment for BV leads to a
significant decrease in the subsequent acquisition of STIs is further evidence of the key
role of the genital microbiota in modulating STI risk (176, 177).

A recent systematic review linked vaginal microbiota with low Lactobacillus relative
abundance to higher C. trachomatis incidence (7). Although the mechanism is unclear,
commensal lactobacilli can inhibit the pathogenic effect of C. trachomatis, possibly via
the activation of the innate immune response (124). In vitro, L. crispatus and its culture
supernatant led to decreases in IL-6, IL-8, and TFN-a and an increase in IL-10 produc-
tion by C. trachomatis-infected HeLa and J774 cells (178), while lactic acid potentially
deactivated chlamydial elementary bodies, the infectious form of the pathogen, by
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inactivating their surface molecules, damaging their outer membrane, or disrupting
chlamydial metabolic activity by hydrogen ions (179).

Higher susceptibility to N. gonorrhoeae is evident in women with Lactobacillus-defi-
cient microbiota (180). In vitro and in a porcine vaginal mucosal model, several
Lactobacillus spp. were directly able to inhibit N. gonorrhoeae adherence to epithelial
cells, with clinical vaginal strains providing the most inhibition (181–184), while acidifi-
cation due to lactic acid, particularly by L. crispatus, was able to inhibit N. gonorrhoeae
growth in culture (185).

Women with BV were 3.5 times more likely to subsequently acquire M. genitalium
than women with a normal vaginal microbiota in a dose-dependent manner, where
the risk increased by 16% with each point increase in the Nugent score (186). The
mechanisms for this have not been well explored.

T. vaginalis and BV commonly cooccur, and data suggest that BV precedes T. vagi-
nalis infection (187, 188). This is possibly related to a low abundance of Lactobacillus
spp. and a higher vaginal pH associated with BV, which favors the growth of T. vagina-
lis organisms (187).

Women with Nugent-defined BV are at a higher risk of HIV acquisition (189).
Furthermore, in multiple African cohorts, HIV acquisition was associated with high-di-
versity microbiota and/or high relative abundances or absolute concentrations of spe-
cific microbes such as Prevotella, Sneathia, and other anaerobes (21, 190). Cellular
immune responses and inflammation triggered in response to BV could provide more
accessible target cells at the vaginal mucosa for HIV to infect, through their recruit-
ment, activation, or barrier disruption (57). Alternatively, it is possible that the lower
numbers of lactobacilli resulting from BV would lead to an increase in vaginal pH (191)
associated with lower lactic acid levels (particularly L-lactic acid), which could in turn
enable HIV infection (192, 193).

The absence of vaginal lactobacilli has also been associated with herpes simplex vi-
rus 2 (HSV-2) shedding (194, 195), while on the other hand, incident HSV-2 infections
are associated with a 30% increased odds of having a subsequent BV episode (196),
suggesting a reciprocal relationship between BV and HSV-2. The protective effect could
be due to the adhesion of lactobacilli to epithelial cells (197) or the production of L-lac-
tic acid, which has virucidal activity at low pH (164, 198).

Women with high-risk HPV are more likely to have a vaginal microbiota dominated
by bacteria other than Lactobacillus spp., especially L. gasseri, which has been impli-
cated in HPV clearance (199, 200). Having a high-diversity or an L. iners-dominated CST
puts women at a higher risk of HPV acquisition or persistence, suggesting that a low-
diversity, healthier CST could protect against HPV via the production of several antimi-
crobial factors, including lactic acid (7, 199).

Vulvovaginal candidiasis. Vulvovaginal candidiasis (VVC), usually caused by Candida
albicans, occurs more readily in a Lactobacillus-dominated microbiota, particularly
with L. iners (201). Lower abundances of Megasphaera spp. and Mageeibacillus indoli-
cus and higher abundances of Bifidobacterium bifidum, Aerococcus christensenii, L.
mucosae, L. crispatus/L. helveticus, Streptococcus equinus/S. infantarius/S. lutetiensis, P.
bivia, and Dialister propionicifaciens have been found in women with candidiasis
(202). However, other studies point to a positive association between microbial dys-
biosis and VVC instead. In a U.S. study, the C. albicans concentration was inversely
associated with the Lactobacillus abundance and positively associated with the IL-8
concentrations (203). All of these studies, however, were associative, and we are not
able to infer the directionality of the relationship between vaginal bacteria and can-
dida. In vitro, however, lactobacilli can inhibit C. albicans growth through competition
for adhesion sites and nutrients or the secretion of fungicidal compounds (204–206).
Both cells and supernatants from L. crispatus and L. gasseri strains reduced the adhe-
sion of Candida to HeLa cells, suggesting that Lactobacillus spp. produce compounds
with fungistatic and fungicidal activities (207). Lactobacillus biosurfactants, lipopepti-
des that reduce pathogen growth and adhesion, showed antimicrobial activity
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against C. albicans, including via disrupting preformed biofilms (208) or competitive
exclusion (209). Pretreating HeLa cells with L. crispatus induced the downregulation
of TLR2/4 expression; increased IL-8, HBD-2, and HBD-3 concentrations; and
decreased the adhesion and growth of C. albicans (205). The production of lactic acid
by probiotic Lactobacillus spp. was also associated with reduced fungal growth (210).

CONCLUSION

The female genital microbiota and the consequent genital immune milieu are
highly dynamic. While cytokines are an important part of the FGT immune system, the
multiple physiological and behavioral factors associated with a diverse microbiota can
lead to a cascade effect of overwhelming chronic inflammation, genital epithelial bar-
rier damage, and increased risk of other infections. Research around this topic has
increased significantly in recent years, and the role of certain key bacteria as well as
community dynamics in modulating genital health is now well established. However,
data describing the means through which particular taxa influence immunity in the
FGT, and the ways in which specific cytokines interact with the genital milieu, are lack-
ing. Understanding the mechanisms through which the host inflammatory response,
triggered by shifts in the microbiota, can influence FGT health is essential for preven-
tion and therapeutic strategies.
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