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ABSTRACT Mpycobacterium avium subsp. paratuberculosis (MAP) is the causative
agent of Johne's disease in ruminants, which has important health consequences for
dairy cattle. The Regional Dairy Quality Management Alliance (RDQMA) project is a
multistate research program involving MAP isolates taken from three intensively
studied commercial dairy farms in the northeastern United States, which emphasized
longitudinal data collection of both MAP isolates and animal health in three regional
dairy herds for a period of about 7years. This paper reports the results of a pan-
GWAS analysis involving 318 MAP isolates and dairy cow Johne's disease pheno-
types, taken from these three farms. Based on our highly curated accessory gene
count, the pan-GWAS analysis identified several MAP genes associated with bovine
Johne's disease phenotypes scored from these three farms, with some of the genes
having functions suggestive of possible cause/effect relationships with these pheno-
types. This paper reports a pangenomic comparative analysis between MAP and
Mycobacterium tuberculosis, assessing functional Gene Ontology category enrich-
ments between these taxa. Finally, we also provide a population genomic perspec-
tive on the effectiveness of herd isolation, involving closed dairy farms, in preventing
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period of several years (1, 2), and has important economic and health consequences for
dairy and beef cattle, sheep, goats, and farmed deer throughout the world (3-5). Its great-
est economic impact is in dairy cattle, with decreased milk production, weight loss, and
premature culling costing the U.S. dairy industry approximately $250 million annually (6).
MAP-containing milk may be of particular concern because the bacterium has been sug-
gested as a cause of Crohn's disease in humans (7).

The Regional Dairy Quality Management Alliance (RDQMA) project is a multistate
research program in collaboration with the USDA Agricultural Research Service (ARS),
Cornell University, Pennsylvania State University, University of Pennsylvania, and
University of Vermont. As part of this project, several epidemiological studies involving
MAP isolates taken from three intensively studied commercial dairy farms in the north-
eastern United States have been conducted: farm A in New York State, farm B in
Pennsylvania, and farm C in Vermont (8, 9). The project emphasized longitudinal data
collection of both MAP isolates and animal health in these three dairy herds for a pe-
riod of about 7 years. MLSSR (multilocus short-sequence-repeat) genotyping of a sam-
ple of isolates taken from these farms has been undertaken (8, 9) in an attempt to
address various epidemiological questions.

The first genome sequence for MAP, strain K-10, was characterized in 2005 by Li et
al. (10). There were 27 annotated genome sequences of MAP isolates from bovine pub-
licly available on NCBI at the time of writing, with another 23 taken from several other
host species. Comparative genomics studies have been conducted involving MAP from
cattle compared to MAP from a number of different hosts, including sheep (11), camel
(12), bison (13), human (14, 15), and other domestic and wild animals (16). In addition
to these comparative genomic studies, phylogeographic analyses have also been con-
ducted using whole-genome sequencing (WGS) data from Canadian isolates (17) and
more globally (18). No pangenomic (the entire gene repertoire of a species including
the core plus the accessory genome) study of MAP and/or pangenomic comparison to
any other Mycobacterium species have been undertaken, and no comparative or popu-
lation genomic study of MAP strains taken from these RDQMA farms have been
undertaken.

Population genetics of MAP has been investigated at various geographic levels,
involving an assortment of genetic techniques (17, 19-21). One of the more recent
studies involved WGS data at an interprovincial and intraprovincial level in Canada
(17). This study rejected the hypothesis of interprovincial panmixis but not so for intra-
provincial data. Despite rejecting the strict hypothesis of panmixis, they did, however,
find that most major clades were found in all provinces, suggesting a good deal of ge-
notype mixing. The proposed explanation for this is that cattle movement is a major
driver of MAP transmission at the herd level, further supported by the distinct lack of
clustering within the more microgeographic area of southern Alberta. One of the main
difficulties in evaluating the role of cattle movement in spreading MAP is the availabil-
ity of detailed records on this subject. Sohal et al. (21), in a study of MAP in Quebec
dairy herds using PCR, targeted interspersed repetitive units/variable-number tandem
repeats (MIRU-VNTR) and found evidence for interherd genetic exchange, suggesting
the explanation lies with a variety of possibilities, ranging from environmental means
of transmission to interherd cattle movement.

Closing farms, indeed quarantining farms, is a strategy that is used to contain the
spread of Johne’s disease (22) and is widely regarded as one of the most effective
means of controlling the disease (23), with the tacit assumption that closing the farms
would prevent interfarm spread of the bacteria. However, bacterial genetic evidence
that would support that tacit assumption is lacking. The reason such a question is rele-
vant is that although MAP is widely regarded as an obligate parasite and the vast ma-
jority of pathogen transmission is assumed to occur from animal-to-animal contact,
studies have indicated that it can survive in environmental feces anywhere from 16
(24) to 55 weeks (25). Another study has shown experimentally that MAP can survive
within freshwater amoebae and that strains can be found on farms within amoebae
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isolated from the cattle environment (26), suggesting infected amoebae are a reservoir
and vector for the transmission of MAP. There is ample evidence for MAP in surface
water sources (27-29). Environmental aerosols have even been suggested as a possible
exposure source, since viable MAP has been recovered from air samples collected over
rivers that drain livestock pastures (30). MAP can survive chlorine disinfection treat-
ment used for treating municipal water sources (31) and has been detected in drinking
water systems (32-35). Thus, although the tacit assumption is that herd isolation is an
effective means to prevent the spread of the disease, there are reasons for doubt on
this as well, and we are not aware of a case where this might have been even partially
addressed with the level of precision that WGS data could provide and not on a micro-
geographic scale. Ideally, a thorough test of this question would involve closed and
not closed farms at progressively greater distances, but having any perspective at all
on this in terms of nearby farms would be of value.

An important aspect of the RDQMA project is the concomitance of MAP strain isola-
tion, longitudinal MAP infection data, and a precisely documented dairy herd over a
period of at least 7 years. The phenotypic data gathered on the RDQMA cows and their
health status over these 7 years is considerable and includes such variables as milk pro-
duction, clinical disease status, MAP enzyme-linked immunosorbent assay (ELISA) opti-
cal density (OD) level, fecal shedding, and postmortem feces or tissue infection status.
Genes from MAP isolates sampled from these dairy cows could be correlated with
these phenotypes and/or their relative severity and, therefore, might represent genes
worth exploring for more causal explanations associated with the disease. Genome-
wide association studies (GWAS), over the course of the last decade, have resulted in
important advances in the understanding of complex traits and have identified hun-
dreds of relevant genetic variants in humans (36, 37). GWAS analysis in bacteria was
suggested over a decade ago (38), with discussions over the course of the last few
years (39-41) resulting most recently with the development of several methods (42,
43). The purpose of GWAS is to identify statistically significant associations that indi-
cate the presence of a causal relationship between genotype and phenotype, which, in
microbes, because of their smaller genome sizes and ability to manipulate some of
these genomes in the laboratory, may facilitate the confirmation of candidate loci.
Methods for bacteria have been developed that will accommodate single-nucleotide
polymorphisms (SNPs) (TreeWAS [43]) or the gene presence/absence characteristics
typical of the bacterial accessory genome (pan-GWAS [42]). These new GWAS methods
have been used to identify bacterial genetic associations to both subtle (e.g., antibiotic
resistance) and more complex phenotypes, such as host association or invasiveness
(43). Clearly, host immunity cannot be ignored when considering a comprehensive pic-
ture of the more complex phenotypes, but just as clearly, the genetic makeup of the
pathogen also cannot be ignored. To our knowledge, employing these bacterial-GWAS
approaches in an attempt to identify gene associations with disease phenotypes in
dairy cattle, or indeed any agricultural animal, has not been undertaken and represents
a useful first step to identifying pathogen-host causal relationships. Longitudinal bian-
nual MAP strain isolation from the RDQMA dairy cattle hosts, concomitant with close
documentation of these animals, including numerous and repeated phenotypic meas-
urements over a course of 7 years, provides a unique opportunity to apply bacterial
GWAS procedures in an attempt to associate MAP dairy cattle disease phenotypes with
MAP gene polymorphisms and gene content.

This paper has several interrelated purposes. First, we provide a population
genomic analysis of MAP isolates derived from three isolated, closed dairy farms for
the purpose of providing some indication of the effectiveness of herd isolation in pre-
venting MAP interfarm cross infection on a geographic scale of approximately one
hundred to several hundred kilometers. Second, we present a pangenomic analysis of
MAP along with a comparative pangenomic analysis to Mycobacterium tuberculosis
(Mtb), the only other species of Mycobacterium for which there are sufficient publicly
available annotated genome sequences to undertake any Mycobacterium interspecific
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functional characterization and comparison. Finally, we perform a bacterial GWAS anal-
ysis that evaluates genes correlated with various disease-related phenotypes of the
MAP-infected dairy cattle of the RDQMA project.

RESULTS

Genome statistics and population genomics. RealPhy produced an alignment
that was 4,707,296 bp in length, and Phi detected no evidence of recombination
(P=0.21); from this, 1,418 SNPs were extracted, including 955 transitions (281C—T;
T—C145; A—G145; 384G—A) and 464 transversions (C—A57; A—C61; G—T72;
T—G42; G—C102; C—G95; A—T18; T—A17; Ts/Tv=2.06). The resulting phylogenetic
tree, based on these SNP data combined with the BAPS and HierBAPS analyses, pro-
vided strong evidence for genetically divergent clusters and nested population genetic
structure (Fig. 1). The population structure analysis delineated the 318 isolates into
three major populations, shaded green (P1), blue (P2), and red (P3) in Fig. 1. These
three populations were substructured into three (P1-1, P1-2, and P1-3), three (P2-1,
P2-2, and P2-3), and two (P3-1 and P3-2) subpopulations, respectively.

The vast majority of the Vermont isolates were included in a clade with the shortest
branch lengths and comprised a single BAPS group (P1; highlighted in green in Fig. 1).
Three nested or subpopulation groups arising from the HierBAPs analysis were evident
within this P1 group, including one clade/subpopulation that was comprised exclu-
sively of Vermont isolates and included 91% of all Vermont isolates in our analysis. The
other two subpopulations within this P1 group included the majority of the New York
isolates (89%), one of which was comprised of exclusively New York isolates (P1 to P3)
and the other nearly so. Other clades in the tree had much longer branch lengths. Two
of these clades comprised the BAPS-blue P2 group and included the majority of the
Pennsylvania isolates, as well as several from each of New York and Vermont and with
three subpopulations within. The third BAPS group (P3) (Fig. 1, red) consisted of highly
divergent isolates and a mixture from all three states. Pennsylvania isolates on the
whole had the greatest diversity.

Pangenomics: core and accessory genomes. The core, accessory, and pangenome
sizes were estimated from the 318 assembled MAP genomes. The homologous gene
clustering of Panaroo detected 4,421 core gene clusters and 97 dispensable gene clus-
ters, representing about 2.1% of a typical, complete, closed MAP genome. Roary, with
paralog splitting mode off, identified 4,346 core gene clusters and 316 dispensable
gene clusters, about 7% of a typical genome size and over three times higher than
Panaroo. Roary with paralog splitting mode on (default setting) identified 4,306 core
gene clusters and 541 dispensable gene clusters, about 12% of complete genome and
over five times higher than the Panaroo finding. To explore the higher Roary dispensa-
ble genome estimation, we built a BLAST database that contained nucleotide sequen-
ces for all 318 genomes and a complete reference genome (strain MAP4; see Table S1
in the supplemental material). Searches against this database using putative dispensa-
ble genes as query sequences frequently revealed them to be core genes. Often, the
query sequence had experienced truncation at the end of a sequence contig and/or
frameshift.

The core genome consisted of 551 hypotheticals, about 12.5%, and the 97 genes
representing the MAP accessory genome consisted of 20 genes annotated as hypo-
theticals; the vast majority of all hypotheticals were conserved hypotheticals (appa-
rent orthologs across other species of Mycobacterium). Annotated genes in the acces-
sory genome with known or suspected roles in Mycobacterium species pathogenesis
and/or host adaptation included (among others) phenolphthiocerol synthesis polyke-
tide synthase type 1 Pks15/1 (involved in fatty acid biosynthesis), KasB (involved in
fatty acid biosynthesis), PPE family proteins (possible host endothelial-cell invasion
and/or intracellular survival), PE family immunomodulator PE5 (evasion of host
immune system), resuscitation-promoting factor RpfA (stimulates resuscitation of
dormant cells), MCE family protein (mammalian cell entry protein), and MMPL family
transporter (exports large, hydrophobic substrates essential for the cell envelope).
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FIG 1 Maximum likelihood phylogeny showing relationships among isolates. Three major populations are
shaded green (P1), blue (P2), and red (P3). Substructuring within each population is shown with black vertical

bars.

Several of these genes were present as multiple copies; a complete list of accessory

genes appears in Table S2.

Genome-wide GO comparisons between MAP and Mtb. Earlier comparative
genomic studies involving MAP have compared a single or very few genomes of the
species to Mtb and to other Mycobacterium species. To our knowledge, a genome-
wide Gene Ontology (GO) comparison has not been conducted, between MAP and any
other species, using many multiple-genome sequences. The advantage of conducting
such a comparison is that it can bring to light molecular features that differ
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interspecifically, both because it allows proportional statistical comparisons and
because it includes an approximation of the gene repertoire of the accessory genome
of each taxon. Our GO comparisons between MAP and Mtb revealed a total of 101
Biological Process terms that were enriched in MAP relative to Mtb, 28 Cellular
Component terms, and 71 Molecular Function terms (Fig. 2a and b). GO categories that
were underrepresented in MAP compared to Mtb included 106 Biological Process, 9
Cellular Component, and 116 Molecular Function (Fig. 2c and d). For MAP enrichments,
terms related to ion homeostasis and iron transport, as well as numerous terms involv-
ing oxidoreductase and peroxiredoxin activity (Fig. 2a and b), were among those of
prominence. MAP underrepresentations reflected the metabolic diversity of Mtb,
including some GO terms with zero genes represented for MAP (further details are pro-
vided in Discussion). A complete listing of the GO results appears in Table S3 in the
supplemental material.

Pan-GWAS. The results of our Panaroo curated set of accessory genes, and the fol-
lowing on Scoary analysis, identified several genes significantly associated with the
presence or absence of measured traits (Table 1; for a complete list of measured traits,
see Table 2; see Table S4 for a complete set of Scoary results and Table S5 for addi-
tional details and descriptions of the measured phenotypes). A few of these genes
were significantly associated with more than one trait. The TreeWas analysis did not
identify any SNPs significantly associated with measured bovine phenotypes.

DISCUSSION

Population genomics. A good deal of information now exists on population
genetic variation in various bacterial pathogens, but the vast majority of this is on a
much broader geographic scale than what we report here for MAP. It has been sug-
gested that the pathogens that would pose the greatest challenge for disease manage-
ment were those with the greatest evolutionary potential, with, for example, high
mutation rates, large effective population sizes, and a high level of gene flow (44).
However, there is growing concern that pathogens with a more clonal (or partially clo-
nal) mode of reproduction can cause important outbreaks, particularly in agro-ecosys-
tems (45-47). Many agro-ecosystems are characterized by the general uniformity of
the host, the overall environment, and the associated agricultural practices.

Our results provide evidence for geographic population genetic structure in MAP
on a microgeographic scale: three farms from adjacent states in the northeastern
United States. Sampling of the cows for this study commenced in February, March, and
November 2004 on the New York, Pennsylvania, and Vermont farms, respectively, and
continued for about 7 years. During the study, the farms remained closed and did not
purchase animals. The Pennsylvania farm was constituted from several herds 5 to
8years prior to the start of the study. The Vermont farm was at this same location for
42 years prior to the onset of the study. For a short while it included a number of cows
(about 20) from a neighboring dairy due to a barn fire at this neighboring dairy. This
happened approximately 2 years into the RDQMA study. The New York farm was a
closed farm for years before the start of the study, remained a closed farm throughout
the study, and was in this same location for about 150 years. It is unclear where or how
the original infections on each of these farms occurred. For the Pennsylvania farm, the
most parsimonious conclusion would be that it arose from isolates associated with the
diverse founder population of this farm. The long branch lengths typical of this popula-
tion provide support to multiple lines of infection, likely arising from different lineages
infecting different cows associated with the original founding of the farm. Mutation
rates of MAP are estimated to be anywhere between 0.125 substitutions per genome
per year to <0.3 substitutions per genome per year (48); assuming the median
between these two estimates, with the minimal SNP differences associated with iso-
lates in the Vermont clade, this would support a recent infection some time within a
span of 10years, perhaps arising from infection at the time of the neighbor’s barn fire.
In addition, the Vermont clade provides some suggestion that there were two waves
of infection, one very recent and the other closer to the 10-year interval. For New York,
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there also appears to be two waves of infection (P1-1 and P1-3; Fig. 1), and, based on
SNP differences, both of these groups would be somewhat older than the Vermont
infection, approximately 15years. The pronounced MAP Pennsylvania diversity sug-
gests multiple sources of infection arising from the multiple herds drawn upon for its
original composition.

Despite MAP being widely regarded as an obligate parasite, there is ample evidence
the pathogen can live and survive in water and soil environments, with one study find-
ing that MAP remained culturable in lake water microcosms for 632 days and persisted
to 841 days, with sediment cores adjacent to river reservoirs showing evidence of MAP
consistent with deposition over 50years (27). Much of this study of MAP presence in
waterways is associated with examinations of the potential linkage of MAP with
Crohn’s disease (27, 49, 50). Despite MAP prevalence and hardiness in environmental
samples, it is widely considered that the majority of bovine MAP infections arise from
animal-animal contact. At the same time, the extremely high prevalence of MAP infec-
tion rates of dairy herds in the United States, estimated at somewhere between 68 and
90% (estimates for 2007 [51]), concomitant with the environmental presence and per-
sistence of the pathogen, suggest interfarm environmental infection cannot be

April 2021 Volume 87 Issue 8 e02570-20

aem.asm.org 7


https://aem.asm.org

Richards et al.

TABLE 1 Genes correlated with different RDQMA cow phenotypes

Applied and Environmental Microbiology

Phenotype/characteristic? Positive state

Alternative state

Source Type 1 polyketide_synthase MAP_RS09140 C-hypothetical®

Environment 0 0

Lactindex 0 0

SeroStatus 0 PPE32; MAP_RS07720

ODcat 0 0

STpos 0 MCE family protein; MAP_RS09405; type 1
polyketide synthase MAP_RS09140

AnteFC Nonribosomal peptide synthase (NRPS); GTP-binding translation elongation factor TypA;

MAP_RS07215

FFS<3 mmps3; MAP_RS09845; type 1
polyketide_synthase MAP_RS09140

FecalShedGroup 0

Prog 0

MAP_RS13345

SDR family NAD(P)-dependent oxidoreductase;

MAP_RS06960

PPE32; MAP_RS07720; dimodular nonribosomal

0

peptide synthase (dhbF); MAP_RS07215

aSee Table 2 for definitions of parameters.
bC-hypothetical refers to conserved hypothetical (conserved across lineages other than MAP).

discarded. Thus, although the quarantine or closing of infected farms is a logical and,
indeed, critical step to prevent interfarm infection, its overall effectiveness has to be
regarded with a degree of uncertainty. A corollary issue is what might be the safe dis-
tance of one farm from another infected farm, given environmental transmission possi-
bilities, such as interconnecting waterways. In our case, the distance from the
Vermont-New York farms is about 130 km, and there are various interconnecting water-
ways; the distance between the Pennsylvania and New York farms is 657 km. Our
results support a clear population genetic distinction of MAP isolates between New
York and Vermont. This distinction included a total of 74 isolates in our set arising from
environmental samples, and none of these showed any evidence of interfarm
exchange. Ideally, one would prefer to have farms closer to both New York and
Vermont to evaluate this thoroughly, but this cursory picture of herd closures, sepa-
rated by about 130km, suggests that at least over the 10-year span of this sample

TABLE 2 Dairy cow phenotypes or characteristics measured from the RDQMA farms and included in our GWAS analyses

Phenotype/characteristic Positive state (1) Alternative state (0) N
Source Cow was homebred Cow was purchased 304
Environment Isolate was sampled from cow’s Isolate was sampled directly from 314
environment cow, including fecal and tissue
samples
Lactindex Milk yield of cow decreased over Milk yield of cow stayed constant or 56
lifetime compared to herd mates improved over lifetime compared
to herd mates
SeroStatus Cow had at least one positive ELISA Cow had no positive ELISA 229
ODcat ~Highest 10% OD values in ELISA of ~0-90th percentile of OD values in 229
cow serum ELISA of cow serum
STpos Cow was MAP culture positive in Cow was only MAP culture positive in 160
tissue (with or without additional feces
positive feces or serum samples)
AnteFC Cow had at least one MAP-positive Only samples taken from the cow’s 229
fecal culture during lifetime (ante carcass after culling/slaughter
mortem) (post mortem) were MAP culture
positive
FFS<3 Cow had first positive MAP fecal Cow had first positive MAP fecal 229
sample before the age of 3yr sample at age of 3yr or older
FecalShedGroup Had at least one sample with >50 Negative samples or moderate fecal 314
CFU/tube (no tissue), high fecal to shedder (<50 CFU/tube)
super shedder
Prog Progressors show an increase in CFU Nonprogressors show no increase in 131

number over time (fecal or tissue)

CFU number (fecal or tissue)

aN refers to the number of measurements made for the corresponding phenotype and for which a MAP isolate was also sequenced.

April 2021 Volume 87 Issue 8 e02570-20

aem.asm.org 8


https://aem.asm.org

MAP Pan-GWAS

collection, it was effective. This is in sharp contrast to a study involving dairy cattle in
three regions of southern Alberta (17), which showed no evidence of genotypic cluster-
ing involving farms sampled at distances of at least 500 km but with no reported his-
tory of closure.

Comparative genomics, pangenomics, and pan-GWAS. We present a genome-
wide GO comparison involving many multiple MAP isolates to another species of
Mycobacterium, in this case Mtb. Several enriched GO terms and groups of terms from
Biological Process and Molecular Function were evident that are related to the nature
of MAP host survival and pathogenesis. Of particular note, several terms were related
to ion homeostasis and iron transport, and numerous terms involved oxidoreductase
and peroxiredoxin activity (Fig. 2a and b). The MAP evolutionary emphasis toward oxi-
doreductase activity is likely a reflection of the range of oxic to microoxic environments
in which the pathogen can be found. Peroxiredoxins are a family of peroxidase
enzymes that play dominant roles in regulating peroxide, one of the toxins produced
as a by-product of using oxygen for respiration, and its enrichment here may reflect
the more varied ways in which oxygen is made use of in MAP. MAP is the one species
of pathogenic Mycobacterium that cannot produce mycobactin, a siderophore used by
other members of the genus Mycobacterium to shuttle free extracellular iron ions into
the cytoplasm of mycobacterial cells. To compensate for this, MAP has evolved other
means of iron acquisition (52), and this is reflected in some of these GO enrichments.
Enrichments in Cellular Component were dominated by terms referring to organelles,
possibly reflecting MAP-specific membrane vesicles (MVs) (53, 54). Many bacterial
pathogens produce and utilize MVs as a means of exporting various factors, such as
toxins, lipids, polysaccharides, peptidoglycans, lipoproteins, and quorum-sensing mole-
cules, across the bacterial cell envelope and into the host cells. MVs in Mtb have been
shown to be involved in iron acquisition (55), TLR2-dependent immune modulation
(56), and inhibition of T-cell activation (57). Mycobacterium avium produces MVs within
phagosomes that carry products involved in modulation of host immune defenses and
intracellular survival (54). MVs in MAP are not well studied, but these enrichments in
GO terms, such as intracellular membrane bounded organelle (GO:0043231) and trans-
membrane transporter complex (GO:1902495), indicate a MAP evolutionary emphasis
toward these structures and functions, suggesting they warrant further investigation.
Underrepresentations included many terms related to the specific host adaptation and
pathogenesis of Mtb compared to MAP (Fig. 2c and d). Of particular note were numer-
ous terms emphasizing the metabolic diversity of Mtb (e.g., urea, acetate, lipid, hexose,
glutamate, ammonium ion, glycerolipid, and glucosamine metabolism) as well as terms
related to the drug tolerance of Mtb (e.g., drug transmembrane transport, antibiotic ca-
tabolism, and beta-lactamase activity). Several underrepresented GO categories had
zero genes represented for MAP (e.g., urease activity and nickel cation binding); the
reverse was not apparent.

Mpycobacterium species are generally thought to have low or even nonexistent inci-
dence of homologous recombination; indeed, our evaluation of recombination in our
318 MAP genome sequences yielded no significant evidence for core gene recombina-
tion. Mycobacterium species are, in fact, thought to be highly clonal; however, recent
pangenomic analyses of Mtb provide evidence for an accessory genome comprising
from 14% (58) to at least 21% of a typical Mtb genome (59). The former estimate was
based on 36 complete genomes and involved the program PGAP (60). The latter was
based on a diverse set of 1,595 WGS genomes and employed CD-hit clustering (61) fol-
lowed by sensitivity analysis to demarcate the core and accessory genomes. Similarly,
recent pangenomic studies of Mycobacterium bovis, a species very closely related to
Mtb, report an accessory genome of around 20% of a typical genome size (62, 63). The
latter two assessments were determined with Sybil (64) and Get_Homologues v2.0
(65), respectively. All of these approaches do nothing to accommodate for problematic
issues associated with inflation of accessory count due to gene fragmentation at the
ends of contigs. Tonkin-Hill et al. (66), in their Panaroo paper, indicate that the majority
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of errors leading to inflated accessory counts are due to genes being fragmented dur-
ing assembly, although other factors, such as contamination, diverse gene families,
and misassemblies, accumulate over the population, and all of these issues end up
contributing to important consequences when analyzing the gene repertoire of a bac-
terial species. Tonkin-Hill et al. are not alone in pointing to annotation errors and frag-
mented assemblies as important sources of inflated gene numbers in draft genome
assemblies (67, 68); indeed, our initial manual evaluation of the gene fragmentation
issue involving our 318 MAP sequences largely concurred with the Panaroo assessment
in significantly reducing the gene repertoire of the accessory genome, although the
specifics differed somewhat (102 genes versus 97). Although we are confident in this
assessment, it should be noted that this repertoire of genes should not be regarded as
representative of the species as a whole. Our goal was to determine the most accurate
assessment of accessory gene content that we could, since our purpose was to associ-
ate the presence/absence of genes with phenotypes. The restricted geographic range,
the infection history, and strong population structure of our isolates would act to limit
diversity and in turn limit the size of the accessory genome. We would expect the MAP
species accessory genome to be somewhat larger than what we report for these 318
isolates. With the advent of pan-GWAS analysis tools and population genomic analyses
of many sequences, from different hosts or environments, associating gene presence/
absence on an accurate basis with the traits of interest is important and powerful, but
only if it is done with considerable accuracy. We encourage a more curated approach
to these assessments in the future.

The resulting MAP accessory genome of our 318 isolates was relatively small, but
we did find a number of loci that were significantly associated with phenotypes. We
also feel it is worth noting that because of the correction for common ancestry that
Scoary incorporates, the bar of significance for associating a gene with a trait is set
high. The analysis incorporates information on the phylogenetic structure of the sam-
ple in making the associations and, in the process, shifts emphasis to evolutionary tran-
sitions as the unit of importance rather than members of a clade. Such convergent evo-
lution of genes with traits has long been regarded as one of our best estimates of
adaptation and gene-function relationships in comparative biology (69), but like most
good estimations in science, it is, by nature, conservative.

Several annotated loci were significantly correlated with traits. One of these,
mmps3, was correlated with cows having their first positive fecal sample at less than 3
years old (FFS<<3). mmps3 is a transport accessory protein, and other proteins in this
family are known to be critical to Mtb virulence, specifically, mmps4, mmps5, and their
interaction with mmpL4, through their transport of siderophores (70). Type 1 polyke-
tide synthase was correlated with the positive state for FFS <3 as well as the alterna-
tive state of STpos (cow was only MAP culture positive in feces, i.e., not tissue). Type 1
polyketide synthases are multidomain enzymes that produce polyketides, which are
secondary metabolites, many of which have antimicrobial or immunosuppressive prop-
erties. Another multicopy gene, MCE family protein (mammalian cell entry protein),
was also correlated with the alternative state of STpos. MCE genes are organized into
MCE operons of 6 to 10 open reading frames (ORFs), and MAP is unusual among the
mycobacteria in possessing 8 such operons; Mtb has 4 (see MCE review in reference
71). Two of the MCE operons in MAP are duplicated, mce5 and mce7. The specific MCE
locus in this case was RS09430 and is in one of the copies of MCE operon 7, locus
mce7F (71); this operon is absent from Mtb. The functions for all of these MCE genes
and all of these operons remains uncertain, but several have been implicated as impor-
tant in invasion and survival within macrophages (71), while others function as a type
of ABC-transporter system involved in import of fatty acids and the export of lipid viru-
lence factors (71). Most of this functional work has been completed on Mtb. It is some-
what counterintuitive that a mammalian cell entry protein should be correlated, in our
case, with a phenotype indicating the absence of tissue entry, but unfortunately not
enough is known about the various functions of the genes in this complex family to
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formulate much of an explanation in that regard, particularly when this MCE operon is
not found in Mtb. Nonetheless, the fact that an MCE family protein is correlated, either
positively or negatively, with tissue entry suggests something worth experimentally
investigating for this particular member (RS09430). MCE family genes were among the
most common accessory genes in our set of isolates, totaling 9, further suggesting that
their presence or absence could be playing a role in phenotypes not measured in our
analysis.

Other proteins of note correlated with cow phenotypes included DhbF_7 and
PPE32. DhbF (dimodular nonribosomal peptide synthetase) was correlated with the al-
ternative state of FecalShedGroup (negative or moderate fecal shedder); it is an exam-
ple of a modular nonribosomal peptide synthetase (NRPS), which synthesize nonribo-
somal peptides, independent of mRNA. NRPS can be nonmodular or modular (72).
DhbF proteins are modular, but our MAP genomes also harbored other NRPS anno-
tated as nonmodular. Each NRPS can synthesize only one type of peptide, but these
are involved in a wide range of functions, including toxins, siderophores, antibiotics,
and pigments (72). Our MAP sequences harbored 10 copies of DhbF; 7 of them were
core and they were highly divergent. dhbF_7 codes for a peptide that is the longest of
these, at 4,038 amino acids in length, and it was a high-copy accessory gene (present
in 95% of the isolates) in our analysis. It is not clear what peptide this NRPS is responsi-
ble for synthesizing, but a large proportion of the cows with MAP that produced this
protein were low fecal shedders.

PPE32 is a member of the large PPE family of proteins present in Mycobacterium
spp. In our analysis, one of the traits it was associated with was FecalShedGroup, and,
like DhbF, it was associated with the negative or moderate fecal shedder state. Some
PPE proteins of Mtb have been shown to elicit a Th1 cell response in humans and pro-
tect the host from pulmonary infection (73). Perhaps a similar phenomenon is at play
here, with bovine Th1 cells recognizing these particular antigens, keeping the infection
largely under control and the host thereby not attaining the supershedder phenotype.
A similar line of logic may apply to the association of PPE32 with the absence of a posi-
tive SeroStatus measurement, or, in other words, an absence of a positive ELISA, which
measures humoral immune response. The current perspective on MAP infection is that
the bacteria can induce both the cellular (Th1) and the humoral (Th2) immune
response, but early during infection the cellular (Th1) response dominates, which leads
to inhibition of the humoral (Th2) response and effective control of MAP replication,
resulting in limited bacterial shedding (74). A negative ELISA would reflect a stage of
infection that was under Th1 control, and this could have been stimulated by this par-
ticular PPE32. Pathogenic mycobacteria have a type VIl secretion system, ESX-5, which
is a pathway for export of PE and PPE proteins. This particular PPE locus (MAP_1515) is
located in one of the ESX-5 operons that also includes mycosin-5 and triacylglycerol
lipase. It is a high-copy-number accessory gene, but cows in our analysis without this
particular PPE32 locus were positive for FecalShedGroup (supershedders) and serosta-
tus (positive ELISA), suggesting they have skipped Th1 response or at least had an ear-
lier shift to Th2 immune control. Alignments and phylogenetic analyses of all PPE
sequences taken from our MAP genomes indicate that this particular PPE is the most
variable of all, with the vast majority of this variability occurring in the C-terminal end
of the protein sequence. This PPE is a member of the PPE-SVP subfamily (sublineage IV
[75]), and comparisons with other subspecies of Mycobacterium avium suggest that the
MAP ancestral state was a peptide of 376 residues typical of these other subspecies
and that subsequent deletions in this region resulted in various sequences of truncated
length. The majority (although not all) of sequences associated with the alternative
states for FecalShedGroup and serostatus were of the complete length.

Conclusions. Our population genomics analysis of closed farms on a highly re-
gional scale provided evidence for strong population subdivision and, in turn, genetic
evidence in support of the strategy of quarantining or closing farms as an effective
tool to stop interfarm spread of MAP, despite the existence of numerous other possible
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avenues of environmental transmission. Our pan-GWAS study involving MAP and
Johne's disease phenotypes identified a few loci worthy of further experimental con-
sideration. Several of these genes appear to be linked to phenotypes suggestive of
potentially important host immune responses. A better understanding of the interac-
tion between MAP and the host immune system is germane to the longstanding and
continuing efforts to develop an effective Johne’s vaccine. Our pan-GWAS identifica-
tion of genes correlated with Johne's phenotypes identifies specific loci for detailed
follow-up causality experimentation involving both host immunity and MAP pathoge-
nesis. Our study has highlighted the potential of pan-GWAS analysis in attempting
gene-trait associations, even with complex phenotypes such as those measured here.
Because of our microgeographic focus involving these largely closed farms, our study
considered only a very small proportion of MAP genomic diversity, yet, even for this
largely clonal organism, we identified a small but not insignificant accessory genome.
This, in turn, suggests that a much broader survey of MAP genomic diversity would
identify a larger accessory genome, and one that could differ in composition between
areas. Such gene content variation between regions ultimately could be important in
identifying and treating differences in the disease.

MATERIALS AND METHODS

Culturing, DNA extraction, and sequencing. The original isolation and culture of MAP strains from
the dairy cattle of these three RDQMA farms (Petersburgh, New York; Martinsburgh, Pennsylvania; and
Florence, Vermont) are described elsewhere (76). For this study, strains were subcultured from glycerol
stocks arising from these original isolations, in 4 ml 7H9 medium (7H9 broth, 10% Hardy Diagnostic
Middlebrook oleic acid-albumin-dextrose-catalase, 0.05% Tween 80, 2 mg/liter Allied Monitor mycobac-
tin J, 0.01% cycloheximide; BD Difco), and grown standing in closed-cap 14-ml cell culture tubes at 37°C
for 8 to 12 weeks. Cultures were checked for contamination by plating an aliquot on BD chocolate agar
and incubating overnight at 37°C. From the original collection of isolates derived from the RDQMA
farms, a total of 337 isolates were successfully cultured and sequenced.

The Epicentre Masterpure Gram-positive DNA purification kit was used to extract genomic DNA,
with some minor modifications to the kit protocol. Approximately 3 ml of culture resuspended in 150 ul
TE buffer was heated at 80°C for 20 min. The samples were then treated with double the recommended
volume of Ready-Lyse lysozyme (2 wl) for 2 h at 37°C and incubated in a rotating incubator with protein-
ase K lysis solution for 20 min at 65°C. Protein precipitation, RNase digest, and isopropanyl precipitation
were performed as described in the kit protocol. DNA was resuspended in low-EDTA TE and prepared
for sequencing using the Nextera XT Library Prep kit. Multiplexed libraries of 48 strains each were
sequenced on the lllumina HiSeq 2500 with 2 x 100-bp Rapid Run paired-end reads. The resulting MAP
sequences were first examined for possible evidence of multiple infections by identifying mixed SNPs.
This was accomplished using the vSNP pipeline, https://github.com/USDA-VS/vSNP, which has been
implemented for SNP calling and phylogenetics in recent studies of Mycobacterium spp. (77). Briefly, the
lllumina sequence reads for each isolate were mapped to the reference genome MAP K-10 using the
Burrows Wheeler Aligner (BWA [78]) and Genome Analysis Toolkit (GATK) (79-81) according to GATK
best practices. Integrated Genomics Viewer was used to visually validate SNPs; MAP sequences with
mixed nucleotide calls at any position were removed from further analysis, and this amounted to 6.0%
of our original set of isolates, leaving us with 318, distributed between the three farms as the following:
New York, 116; Pennsylvania, 32; Vermont, 170.

Population genomics and phylogenetics. The lllumina sequence reads, for all 318 samples judged
to be unique cultures, were quality controlled and assembled using the A5 pipeline (82). N, ranged
from 59,204 to 95,174, with an average of 78,878. Metadata and full assembly metrics for all isolates
are shown in Table S1 in the supplemental material. For all genome assemblies, open reading frames
were located and annotated using Prokka (83). For the Prokka annotation, a custom Mycobacterium data-
base was built using available genome data at ref_seq (NCBI). We further refined the annotation using
the updated complete MAP genome of strain K-10 (84) and BLASTn. An E value cutoff of 10—e5 was
employed, and only the top hit was retained. Prokka uses Prodigal (85) to locate open reading frames.
We pretrained the Prodigal model using a closed reference genome obtained from NCBI (see Table S1
for sequence details). To delineate the pangenome, amino acid sequences from all genomes were
delineated into clusters with putative shared homology using the recently developed pangenome pipe-
line Panaroo (66). The pipeline generates initial gene clusters using a greedy incremental clustering
approach that processes sequences based on length (as implemented in CD-HIT). Next, neighborhood
information is generated by constructing a graph of the pangenome where nodes are gene clusters and
edges connect genes adjacent on contigs. The graph and neighborhood information is then used to
identify and merge fragmented or mistranslated genes and identify genes missed by the gene-calling
algorithm. For comparison, we also used the established pipeline Roary (86). This pipeline first collapses
redundant gene sequences and then uses the Markov cluster (MCL) algorithm of Enright et al. (87) to
assign sequences to clusters with putative shared homology, with this shared homology being based on
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a BLASTp search between all pairs of protein sequences using a sequence identity threshold of 95%. We
ran the pipeline with the paralog splitting mode both on and off.

To generate a core genomic alignment, we mapped our assemblies to six complete MAP reference
genomes using the software REALPHY (88). The approach cuts contigs into 50-bp pieces, which are then
mapped to each reference separately. A final nonredundant alignment is produced by merging each
separate alignment. The approach reduces bias that could be introduced by using only a single refer-
ence. The reference genomes were obtained from NCBI (see Table S1 for details). The alignment was
assessed for recombination using the pairwise homoplasy index (PHI) as implemented in Phi (89). Phi is
a compatibility method that examines pairs of aligned nucleotide sites for homoplasy. SNPs were
extracted from the final alignment and used to build a core phylogeny using IQ-TREE (90). This approach
is applicable to SNP alignments, as it allows for ascertainment bias correction (ASC). The general time-re-
versible model with gamma and four rate categories was employed (GTR+G4).

Hierarchal population structure was delineated using a Bayesian clustering/assignment approach, as
implemented in the Bayesian Analysis of Population Structure (BAPS and hierBAPS) software (91). The
approach first determines the optimal number of genetically distinct clusters (populations) (K) such that
the genetic variation within clusters is minimized and the variation among them is maximized. Each iso-
late is then assigned to a population (structured hierarchically). More specifically, the posterior probabil-
ity distribution of model parameters from a mixture model derived using Bayesian predictive classifica-
tion theory are sampled using a Metropolis-Hastings implementation of Markov chain Monte Carlo
(MCMC) probability distribution sampling. Model parameters represent SNP frequencies and individual/
SNP population assignment probabilities. The core SNP alignment was used as the input.

Comparative genomics and bacterial pan-GWAS. To determine what gene functional categories
from MAP isolates were enriched compared to those of Mtb, we analyzed genome-wide amino acid
sequences from our study isolates to genomes from 300 randomly selected Mtb isolates from ref_seq at
NCBI (see Table S1 for genome sequence details). For our study isolates, we used genes for which called
ORFs and annotation were in agreement between Prokka and Panaroo. Gene Ontology (GO) terms were
assigned to genes from each genome using Interproscan (92) in default mode, and the output was used
to assess term enrichment using Fisher exact tests as implemented in the find_enrichment.py script in
GOATOOLS v0.5.9 (93). P values were adjusted to account for increased type | errors due to multiple-hy-
pothesis testing following the false discovery rate (FDR) procedure of Benjamini and Hochberg (94).
Tests were judged significant when the adjusted P value fell below the FDR threshold of 0.05.

Dairy cow phenotypes were evaluated and scored as part of earlier RDQMA studies of these three
farms (8). The phenotypes, and a brief explanation of each, are presented in Table 2; more detailed
descriptions are provided in Table S5.

To identify genes that were statistically associated with each phenotype, we used the software
Scoary (42), which identifies the presence/absence of genes from the accessory genome that are signifi-
cantly correlated with phenotypes. The method corrects for the possibility of false-positive gene-trait
correlations due to population structure and isolate evolutionary history by implementing the pairwise
comparisons algorithm (95, 96), which finds the maximum number of phylogenetic pairs of isolates that
contrast in the state of both genotype and phenotype; it does this by evaluating how each gene-trait
pair is distributed through the underlying phylogeny, which in our case was our core SNP phylogeny. By
identifying the maximal number of contrasting pairs in the context of this phylogeny, it counts the mini-
mum number of independent coemergence of a given gene-trait combination in the evolutionary his-
tory of the sample population. Enrichment of dispensable genes from isolates within each sampling
location (New York, Pennsylvania, and Vermont) was determined using Fisher exact tests within Scoary
(42). Gene presence/absence among isolates was determined using Panaroo.

In an attempt to identify SNPs that were statistically associated with phenotypes, we used the soft-
ware TreeWAS. Similar to Scoary, TreeWAS is a phylogenetic method that measures the statistical associ-
ations between phenotype and genotype at all bacterial loci while correcting for the confounding
effects of clonal population structure and homologous recombination (43). In addition to the binary
coded phenotype data, the core SNP alignment and phylogeny were used as the input for the program.

Data availability. Sequence read data associated with this project have been deposited at NCBI in
the Sequence Read Archive database under the following BioProject accession number: PRINA686527.

SUPPLEMENTAL MATERIAL
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SUPPLEMENTAL FILE 2, XLSX file, 14.3 MB.
SUPPLEMENTAL FILE 3, XLSX file, 0.1 MB.
SUPPLEMENTAL FILE 4, XLSX file, 0.01 MB.
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