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Abstract

Background: Due to their multilineage potential and high proliferation rate, mesenchymal stem cells (MSC)
indicate a sufficient alternative in regenerative medicine. In comparison to the commonly used 2-dimensional
culturing method, culturing cells as spheroids stimulates the cell-cell communication and mimics the in vivo milieu
more accurately, resulting in an enhanced regenerative potential. To investigate the osteoregenerative potential of
MSC spheroids in comparison to MSC suspensions, cell-loaded fibrin gels were implanted into murine critical-sized
femoral bone defects.

Methods: After harvesting MSCs from 4 healthy human donors and preculturing and immobilizing them in fibrin
gel, cells were implanted into 2 mm murine femoral defects and stabilized with an external fixator. Therefore, 26 14-
to 15-week-old nu/nu NOD/SCID nude mice were randomized into 2 groups (MSC spheroids, MSC suspensions)
and observed for 6 weeks. Subsequently, micro-computed tomography scans were performed to analyze
regenerated bone volume and bone mineral density. Additionally, histological analysis, evaluating the number of
osteoblasts, osteoclasts and vessels at the defect side, were performed.

Statistical analyzation was performed by using the Student’s t-test and, the Mann-Whitney test. The level of
significance was set at p = 0.05.

Results: uCT-analysis revealed a significantly higher bone mineral density of the MSC spheroid group compared to
the MSC suspension group. However, regenerated bone volume of the defect side was comparable between both
groups. Furthermore, no significant differences in histological analysis between both groups could be shown.

Conclusion: Our in vivo results reveal that the osteo-regenerative potential of MSC spheroids is similar to MSC
suspensions.
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Article summary
Article focus

e This study investigated the osteo-regenerative po-
tential of MSC spheroids in comparison to MSC
suspensions in a critical-sized defect.

Key messages

e The regenerated bone mineral density of the MSC
spheroid group is higher than the MSC suspension
group.

e The regenerated bone volume of the MSC spheroid
group was similar to the MSC suspension group.

e Histological degree of defect healing, as well as bone
cell markers, showed no significant difference
between the 2 groups.

e Fibrin gel-embedded MSCs, independent of their
condition in the gel, are not able to heal a critical-
sized defect.

Strengths and limitations of this study

e MSCs from 4 individual donors, which were gender-
balanced (2 male, 2 female), were used. No donor-
dependent effect could be observed as shown in sup-
plementary data.

e A well-established surgical method was used, provid-
ing standardized results.

e By using the fibrin gel as an implant, a standardized
carrier for cells was provided.

e The number of cells per spheroid might have led to
tightened packaging and less available nutrition in
the spheroid core.

e No biomechanical testing was performed of
dissected femora since defects were not bridged.

Introduction

Critical-sized bone defects can result from wound infec-
tions with extensive debridement, complicated fractures
with high bone loss, or tumour resections which are
challenging to treat. Implantation of autologous bone,
generally harvested from the patient’s iliac crest, is still
the gold standard because of its favourable osteoconduc-
tive, osteoinductive and cellular properties [1]. However,
autologous graft is accompanied by disadvantages in-
cluding potential tissue morbidity and limited bioavail-
ability [2, 3]. Alternatively, bone replacement materials
or cell-based therapies might be used due to their prom-
ising therapeutic outcomes. Mesenchymal stromal cells
(MSCs) are multipotent cells that are located in all or-
gans having connective tissue [4], including adult bone
marrow, umbilical cord blood, fetal liver and fat [5-7].
Their osteogenic potential is based on the high
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proliferation rate, low immunogenicity and their multili-
neage capacity [4, 8, 9]. Therefore, functional cells like
osteoblasts and chondrocytes can be released at the de-
fect side. Defect healing is improved by the secretome of
MSC:s, consisting of growth factors, cytokines and angio-
genic factors [10]. Cryopreserved cells can certainly be
used, since preservation and thawing do not influence
growth and osteogenic differentiation [11]. However,
disadvantages of MSCs have been revealed, such as the
difficulty of maintaining cell functions, the attachment
to host cells, as well as their low survival rate during
transplantation [12-14]. The unphysiological micro-
environment, originating from culturing cells with the
commonly used 2-dimensional culture technique, might
be an explanation for these disadvantages [15]. Attempts
have been made to imitate the complex, physiological
milieu of cells and tissues, leading to the development of
3-dimensional culture systems. In this regard, increased
overall functions could be observed when forming multi-
cellular aggregates, as cell-cell interactions are improved
[16—18]. MSC spheroids show enhanced osteoinductive
properties in vivo and in vitro due to their interaction
with an endogenous environment and extracellular
matrix and their retainment of osteogenic differentiation
[16, 19-21]. Furthermore, the unique culture geometry
also induces anti-inflammatory, anti-apoptotic and pro-
angiogenic effects [17, 18, 22-24]. Osteogenesis and
angiogenesis promoting properties are required in par-
ticular by pathological bone healing, for example when
avascularity and hypoxia occur in large bone defects
[25]. All in all, these improvements might be beneficial
to the treatment of critical-sized defects with their rela-
tively harsh microenvironment. There are several defini-
tions for a critical-sized bone defect. In general, for
segmental bones the length of a critical-sized defect is
about 1.5 times the diameter of the respective bone [26].
When establishing the murine femoral critical-sized
bone defect model, which is used in this study, we could
show that in the 2mm defect group only 3 out of 8
bones healed [27]. Therefore, we have chosen the 2 mm
defect. Furthermore, when the defect was filled with a
cell-free mineralized collagen scaffold, we could not ob-
serve sufficient bone growth in previous studies [28].

We hypothesized that MSC spheroids would show a
higher bone regenerative potential in a critical-sized
femoral bone defect model in mice compared to MSC
suspensions.

Material and methods

Study design

Firstly, to immobilize the cells within the defect they
were encapsulated in fibrin gels. Therefore, bone mar-
row aspirates were harvested from healthy human do-
nors undergoing total hip arthroplasty. After isolation of
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the MSCs, cryopreservation and thawing, MSCs were
cultured and pre-differentiated in osteogenic medium.
Cells were divided in 2 groups (MSC spheroids, MSC
suspensions) and generated implants underwent a quali-
tative live-dead staining test. To verify the survival rate
of cells in vivo is a major challenge. To show that spher-
oidal and suspension cells immobilized within the fibrin
gel were alive at the time of implantation, we performed
live/dead staining. MSC spheroids were encapsulated
into the fibrin gels after 9 days of culture; MSC suspen-
sions were encapsulated after 10 days (Fig. 1).

Secondly, 26 nu/nu NOD/SCID nude mice were ran-
domized into 2 groups (MSC spheroids, MSC suspen-
sions). A critical-sized defect of 2 mm was created on
the right femur of all animals and stabilized with an ex-
ternal fixator. The fibrin gel was implanted into the de-
fect according to group allotment. After an observation
period of 6 weeks, animals were euthanized and high-
resolution micro-computed tomography (uCT) as well
as histological analysis were performed on all explanted
right femora.

Preparation of MSCs

MSCs were isolated after informed consent (ethics ap-
proval number: EK91032012) from human bone marrow
aspirates of 4 healthy donors (2 male: 70 and 71 years
old, 2 female: 71 and 79 years old) undergoing total hip
arthroplasty by density gradient centrifugation (Ficoll-
Paque Plus, GE Healthcare, 1.077 g/ml, Little Chalfont,
United Kingdom) and subsequent plastic adherence.
Due to logistic reasons and to make culture conditions
comparable, cyropreserved cells were used for implant
preparation. Therefore, MSCs of passage 2 were thawed
and cultured in basic medium (DMEM, 15% FCS, 1%
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penicillin/streptomycin) for 3 to 4days until they
reached confluency. Then, basic medium was changed
to osteogenic medium (DMEM, 10% FCS, 1% penicillin/
streptomycin, 100nM dexamethasone, 10mM beta-
glycerolphosphate, 50 mM ascorbic acid-2 phosphate)
for osteogenic pre-differentiation for 7 days. Exchange of
medium was performed twice a week.

Mesenchymal stem cell spheroid formation

The pre-differentiated cells were detached from the cul-
ture flasks using 0.5% trypsin/ ethylenediaminetetraace-
tic acid (EDTA), counted and resuspended in osteogenic
medium to obtain a single cell suspension with a con-
centration of 0.25 10°/ml. 200 pl of this cell suspension
(=5 10* cells) were added per well to a 96-well suspen-
sion plate (Sigma-Aldrich, St. Louis, USA) and centri-
fuged for 5min at 200 g at room temperature to form
one spheroid. Cells were then incubated at 37 °C and 5%
CO, for 2 days.

Preparation of the implants

Cylindrical implants (@: 2 mm, length: 2 mm) were pro-
duced using fibrin gel (TISSEEL, Baxter, Frankfurt,
Germany) containing 45 mg/ml of fibrinogen and 250
IU/ml of thrombin. To prepare spheroid-loaded im-
plants, 15 pl of the fibrinogen solution were pipetted into
0.5 ml tubes. Spheroids in the 96-well plate were washed
once with PBS and then 1 spheroid (containing 5 10*
cells) was carefully transferred using a pipette tip into
the 0.5 ml tube. After adding 15 pl of the thrombin solu-
tion, fibrin gels were allowed to polymerize for 30 min at
37 °C. Gels were carefully stirred using a 10 pl pipette tip
and incubated for another 30 min.
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Fig. 1 Study design. MSCs were isolated from human bone marrow aspirates from healthy donors, divided into 2 groups: (1) MSC spheroids and
(2) MSC suspensions and osteogenically pre-differentiated for 7 days. For spheroid formation, the detached MSC suspension was resuspended in
osteogenic medium and transferred into 96-well suspension plates, followed by an incubation of 2 days. MSC suspensions were osteogenically
differentiated in culture flasks for another 3 days. Then, 5 10" cells - either as suspension or as spheroid - were immobilized within fibrin gels
and implanted into a 2 mm segmental bone defect in the right femora of 26 nu/nu NOD/SCID nude mice that was stabilized by an external
fixator. Animals were observed for 6 weeks. Afterwards, uCT and histological analyses were performed
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To prepare suspension-loaded implants, pre-
differentiated cells were detached from the culture flasks
using 0.5% trypsin/EDTA, counted and resuspended in
fibrinogen to a concentration of 3.33 10°/ml. 15yl of
this cell suspension were mixed with 15 puL thrombin so-
lution and allowed to polymerize as mentioned above.

After polymerization, solid fibrin gels were transferred
into 2 ml tubes and immediately used for implantation.
The number of spheroid- and suspension-loaded im-
plants prepared from MSCs of the 4 individual donors
that were implanted into the animals is shown in
Table 1.

Cell viability within implants

Two additional implants per donor and group were pre-
pared in the above-mentioned way and used - right after
producing the implants - to check viability of cells before
implantation by live/dead and MTT staining. For MTT
staining that detects metabolic activity of cells, the im-
plants were incubated with 0.5 mg/ml 3-(4,5-dimethyl-
thiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT,
Sigma Aldrich, St. Louis, USA) in basic medium for up
to 4h at 37 °C. After washing with PBS, implants were
fixed with 4% neutral buffered formaldehyde and imaged
using a stereo microscope Leica M125 C (Leica Micro-
systems AG, Heerbrugg, Switzerland).

Live and dead cells within the implants were visualized
using the Live/Dead Viability/Cytotoxicity Kit (Thermo-
Fisher Scientific, Waltham, USA). Therefore, implants
were washed once with PBS and subsequently incubated
with 2.4 uM calcein AM (live cells) and 2.4 pM ethidium
homodimer-1 (dead cells) in PBS. After light-protected
incubation for 30 min at 37°C, implants were washed
once with PBS and cell viability was examined
immediately using a Keyence BIOREVO BZ-9000 micro-
scope (Keyence, Neu-Isenburg, Germany) with ex/em:
495/515 nm for calcein and 495/635nm for ethidium
homodimer-1.

Animals

For the in vivo study, 26 male, 14—15 weeks old nu/nu
NOD/SCID nude mice (35.8+3.2g) were randomized
into 2 groups. The mice were bred at the Centre for
Regenerative Therapies (CRTD), Technische Universitit
Dresden, fed with standard diet (food and water ad libi-
tum) and kept at a 12-h light and dark cycle. All animal
experiments were performed in accordance to the

Table 1 Number of implants prepared from the 4 individual
MSC donors

MSC implants donor 1 donor2 donor3 donor 4
spheroid-loaded implants 3 3 3 3
suspension-loaded implants 3 4 3 4
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National Institutes of Health Guidelines for the Use of
Experimental Animals and were approved by the Local
Animal Care and Ethics Committee of Dresden Univer-
sity Hospital (protocol no. 24-9168.11-1/2013-75). All
of the 26 animals survived the surgeries and the observa-
tion period.

Surgical procedure

Surgery was performed under 2% isoflurane anesthesia
as described previously [27]. Additionally, each animal
received 300 pl saline with 1.6 ug buprenorphine as s. c.
injection to minimalize pain. After placing the animal in
prone position, a 12 mm incision was made along the
lateral tight. To expose the femur, the incision was ex-
tended through the fascia lata, reaching from the great
trochanter to the knee joint. Subsequently to the femur
exposure and mobilization of muscles, an external fixa-
tor (MouseExFix simple XL, RISystem, Landquart,
Switzerland) was placed by drilling pins into the lateral
and medial cortex. The 2 mm defect was created with a
2mm saw guide (RISystem) and Gigli wires (0.22 mm,
RISystem). Thereafter, depending on the group allot-
ment, implants were placed into the defect. Femur and
surrounding tissue were relocated to their physiological
position and the skin was closed by Donati suturing
technique (Ethilon 4-0, Ethicon, Johnson & Johnson,
New Brunswick, NJ).

Preparations for high-resolution micro-computed
tomography and histology

After 6 weeks of observation animals were sacrificed by
exposure to CO, following cervical dislocation. Right and
left femora were dissected, cleaned from soft tissue and
placed into 15 ml tubes filled with 4% neutral buffered for-
maldehyde that was changed every 2 days. uCT scanning
of all femora was performed under these conditions. To
decalcify the bones, formaldehyde was replaced with
EDTA. After dehydration using an ascending ethanol
series, paraffin was used to embed the femora and samples
were sagittally cut into slices of 2 pm.

High-resolution micro-computed tomography - pCT
analysis

All femora were scanned with a SCANCO vivaCT 40
(Scanco Medical AG, Wangen-Briittisellen, Switzerland).
According to the manufacturer’s instructions, the follow-
ing calibration steps were performed: 5 rods of different
hydroxyapatite densities were scanned once per week.
To additionally check the alignment of the device, 3 alu-
minium wires were scanned once per month.

The following pCT settings were used to scan the mice
femora: X-ray intensity = 145 A, X-ray tube =55 kVp,
voxel size =21um, integration time=200ms, projec-
tions = 1000.
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Analysis was performed by using the software of the
SCANCO vivaCT 40. Therefore, a standardized 3D-
region of interest with cylindrical shape (@: 2.5 mm,
length: 3.5 mm) was determined with setting the centre
between the inner 2 pins of the external fixator. Bone
tissue density was defined as >200 mg hydroxyapatite/
cm?® and bone volume was measured in mm?®,

Histological examination

All histological sections were evaluated using a Keyence
BIOREVO BZ-9000 microscope (Keyence, Neu-
Isenburg, Germany).

Firstly, the grade of defect healing according to Huo
et al. was classified by 3 different, blinded observers [29].
Therefore, tissue sections were stained with haematoxy-
lin and eosin (H&E, Merck, Darmstadt, Germany) and 3
representative sections per femur were assessed.

Secondly, vascularization and bone cell markers of the
defect area were analysed. The area of interest was stan-
dardised by detecting the area between the inner pin
holes with a 2x objective and separating it in 12 squares
with the software of the microscope (BZ-II Viewer, Key-
ence, Neu-Isenburg, Germany).

To evaluate vascularization, alpha-smooth muscle
actin staining (rabbit anti-smooth muscle actin, 1:750,
Cat.# M0851, Agilent Dako, Santa Clara, USA) was used.
Vessels in the defect area showing a lumen were
counted, vessels in the surrounding muscle and soft tis-
sue were omitted.

To evaluate bone cell markers, slides were stained with
bone alkaline phosphatase (BAP, anti-rabbit IgG perox-
idase, 1:100, Cat.# PAKO0142, LINARIS Biologische Pro-
dukte GmbH, Dossenheim, Germany) for osteoblasts
and tartrate resistant acid phosphatase (TSP, Sigma-
Aldrich, St. Louis, USA) for osteoclasts. Number of oste-
oclasts and osteoblasts were counted.

Statistics

Statistical analysis was done using GraphPad Prism 5.00
software (San Diego, CA, USA). All data are presented
as mean + standard deviation. For bone volume, bone
mineral density, number of osteoblasts and osteoclasts
and vascularization differences between the 2 groups
were tested using the 2-sided unpaired Student’s test
(normally distributed data) whereas its non-parametric
equivalent Mann-Whitney test was applied for the histo-
logical degree of defect healing. The level of significance
was set at p = 0.05.

Results

Cell viability within implants prior implantation

As observed by MTT and live-dead staining spheroid as
well as suspended cells showed good viability within the
fibrin gel implants (Fig. 2).
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uCT analysis

After a 6 weeks observation period, uCT analysis was
performed to investigate the volume of the newly regen-
erated bone as well as bone mineral density (Fig. 3).
Bone volume showed no intergroup difference in and
around the defect area (MSC spheroids vs. MSC suspen-
sions; 2.1+02mm> vs. 2.1 +02mm? p =0.9443).
However, treating the defect with spheroid-loaded im-
plants led to a significantly increased bone mineral dens-
ity at the defect side (917 +9 mgHA/cm®) as compared
to the suspension-loaded implants (882 + 14 mgHA/cm?,
p =0.043). A systematic bias could be excluded since the
difference between the bone mineral density of the un-
operated femora of both groups was not significant
(Additional File 1).

Histological analysis
Representative slides for each group and staining are
shown in Fig. 4.

Histological degree of defect healing

Due to the numerical scoring schema of Huo et al. for
histological analysis of fracture healing, a refined evalu-
ation of the actual bone tissue healing can be achieved.
Constant with the bone volume results of the pCT ana-
lysis, no difference in the degree of defect healing be-
tween the groups (MSC spheroids vs. MSC suspensions;
5.77 +1.04 vs. 5.95+1.12; p=0.1231) could be shown
(Fig. 5a). Additionally, no bridging of the defect area of
any dissected femora could be seen.

Histological analysis of bone cell markers and
vascularization

To investigate bone cell markers, the number of osteo-
blasts and osteoclasts were counted in the defect area
(Fig. 5b - d). Neither the number of osteoblasts (MSC
spheroids vs. MSC suspensions; 38.69 + 13.24 vs. 49.31 +
14.43 cells/field; p =0.0721), nor the number of osteo-
clasts (MSC spheroids vs. MSC suspensions; 8.54 + 3.73
vs. 10.46 +2.60 cells/field; p =0.2113) was significantly
influenced by the condition of the cells within the im-
plants. Furthermore, the vascularization seemed to be
independent from the kind of MSC condition (MSC
spheroids vs. MSC suspensions; 38.46 + 11.65 vs. 41.92 +
42.41 vessels/field; p = 0.7842).

Discussion

We hypothesized that MSC spheroids have a higher
bone regenerative potential than MSC suspensions when
applied in a critical-sized, murine femoral defect. There-
fore, 5 10* osteogenically pre-differentiated human
MSC:s of 4 individual donors were immobilized within fi-
brin gels, either as 1 cell spheroid or as cell suspension,
and implanted into 2 mm critical-sized femoral defects
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in mice. These immune deficient mice were especially
chosen due to the implantation of human MSCs and to
be in line with the study on which the critical-sized bone
defect model was established. Previous studies also
showed a regular bone growth and bone healing [27, 30].

Micro-CT analysis revealed a significantly higher bone
density of the MSC spheroids group compared to the
MSC suspensions group. MSC donor status did not cor-
relate with bone mineral density and bone volume (Add-
itional File 2). However, the regenerated bone volume at
the defect side treated with MSC spheroids was

comparable to the one treated with MSC suspensions.
Additionally, histological analysis showed no significant
differences regarding bone cell markers (number of oste-
oblasts and osteoclasts), as well as vascularization at the
defect side for both groups.

Mesenchymal stromal cells can enhance the healing of
bone defects due to their multilineage potential [31, 32].
In addition to that, MSC transplantation is beneficial to
critical-sized bone defect healing because MSC attract
other cells like osteoblasts and chondrocytes. Especially
when exposed to hypoxic conditions, MSCs start to
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secrete different cytokines [16]. MSCs are able to differentiate
into multiple cell types such as fibroblasts, chondrocytes, adi-
pocytes, and osteoblasts. To achieve a specific differentiation,
cells must be treated with special media e.g. osteogenic
medium to guide them to the osteogenic lineage [33, 34]. It
was shown that both, spheroid and suspension cells, differen-
tiate into osteoprogenitor cells [16, 23]. The success of cultur-
ing MSCs adequately depends on several factors including
seeding density and pressure, thus, the same number of cells
and seeding conditions were used in each group [35].
Furthermore, our previous studies on MSCs isolated
from bone marrow, using the same procedure as the
current study, could confirm the expression of mesenchy-
mal stem cell markers and their trilineage differentiation
potential [36, 37]. When MSCs are immobilized within
spheroids, several in vitro tests, which were performed by
Yamaguchi et al, showed an upregulation of the osteo-
genic marker genes RUNX-2, OSX, BSP and OPN as com-
pared to monolayer cultured cells [16, 38]. Furthermore,
as mentioned by Cesarz et al., MSC spheroids show an en-
hanced multidifferentiation potential and upregulation of
pluripotency marker genes indicating enhanced stemness.
Previously, 2D culture has been commonly used to ob-
tain osteoblasts for bone healing in multiple studies.

However, these culturing techniques do not imitate the
physiological microenvironment in vivo unlike culturing
cells as spheroids [20, 21, 39]. Simulating the native
morphology with a spheroid morphology, greater cell-
cell contacts are formed leading to anti-inflammatory
und anti-apoptotic effects [18, 22].

As described by Yagamuchi et al., 5 10* cells were
used and spheroids were formed successfully and immo-
bilized within fibrin gels [16]. Good viability of fibrin
gel-encapsulated cells was demonstrated with MTT and
live-dead staining, prior to implantation.

Fibrin gel was chosen to immobilize the cells in the
bone defect due to its osteopromotive properties which
influence the osteogenic potential of MSC suspension, as
well as of MSC spheroids [17]. Tisseel is a clinically ap-
proved tissue sealant, can be applied minimal invasively,
polymerizes fast, offers shape variability, compressive
stiffness, degrades in vivo due to its similarity to physio-
logical blood clots within around 7 days, provides a com-
fortable environment for the cells and allows them to
immigrate [40—42]. Yet, fibrin gel does not replicate the
mineralized compound and nanostructure of bone. In
order to enhance mineral content, hydroxyapatite can be
incorporated into fibrin gel. These scaffolds showed
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[

improved defect healing [43, 44]. However, the adhesiv-
ity should be improved, since limited cell migration of
MSC spheroids leads to increased bone formation [44].
Alternatively, mineralized collagen matrix scaffolds
(MCM) are a suitable substrate for MSCs [28]. By com-
paring our findings, in particular those referring to bone
volume (MSC spheroids: 2.1 +0.2mm?* MSC suspen-
sions: 2.1 +0.2 mm?), to Bolte et al. (MCM only: 3.9+
2.0mm?® MCM + pre-differentiated MSCs: 6.3+ 1.3
mm?), one concludes that not only pre-differentiation of

MSCs, but also the type of scaffold has a significant im-
pact on bone healing [28].

The defect into which the MSCs were implanted can
be described as critical-sized since 37.5% of animals with
a defect size of 2 mm showed no bridging as observed in
a study performed by Zwingenberger et al. [27]. In line
with Bolte et al. and Quade et al. we also used a 2 mm
defect for testing our hypothesis [28, 45]. After 6 weeks
of observation, the bone density of the spheroid group
was increased, which might be explained by upregulated
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levels of expression of osteogenic genes in MSC spher-
oids, as observed in vitro by Yagamuchi et al. Besides,
spheroids have an enhanced survival rate under ischemic
conditions compared to suspended cells [24].

However, an increased healing of the defect by MSC
spheroids was not shown as opposed to the application
of osteoinductive materials like BMP-2 or using a 2-step
stem cell therapy [28, 45, 46].

Limitations of this study are the usage of one spheroid
containing 5 10" cells per implant due to technical rea-
sons, leading to deficiencies of inter-spheroidal cell com-
munication. Spheroids consisting of more than 15,000
cells result in diameters larger than 200 um [17, 47].
Thus, limitations of diffusion and nutrient transport
might be exceeded, creating hypoxia in the core of the
spheroid [47]. Caspase activity is thereby upregulated,
indicating a higher level of apoptosis [17]. Despite the
high cell viability within the spheroid immediately prior
to implantation, as observed by MTT and live-dead
staining, this effect of hypoxia might increase over time
when cells are implanted. On the other hand, there is
evidence that a hypoxic core might enhance cell survival
and secretion of trophic factors [48, 49]. Additionally, it
has been shown that larger spheroids secret more

prostaglandin E2 and vascular endothelial growth factor
than smaller spheroids, which can stimulate defect heal-
ing advantageously [21].

For further investigations regarding the osteoregenera-
tive potential of MSC spheroids, smaller spheroids con-
taining less cells might be used. Alternatively, the
gravity-driven hanging drop method could be applied as
a spheroid formation technique due to its ease of use,
lack of specialized equipment and utility for small spher-
oids [44, 50]. As a next step, genetically modified MSC
spheroids showing an enhanced upregulation of
migration-related genes and maintaining these qualities
through pathological conditions could be implanted into
critical-sized defects [51]. One could also pre-culture
MSCs under hypoxic conditions that enhance thera-
peutic effects of spheroids [51]. Further improvements
in the culture methods of MSC spheroids cultivation
might prove useful to bone regeneration.

Conclusion

With regards to the regenerated bone volume, it was
shown that MSC spheroids are comparable to MSC sus-
pensions for the treatment of a critical-sized bone defect.
In contrast, using MSC spheroids led to an increased



Findeisen et al. BMC Musculoskeletal Disorders (2021) 22:401

bone mineral density which could be beneficial for older
patients with osteoporosis or deficient bone healing cap-
acity. However, the osteoinductive potency of the inves-
tigated cells alone - independent from their appearance
within the implant — is insufficient for healing large
bone defects in contrast to established clinical methods
such as autograft bone. Future improvements of MSC
spheroids might lead to greater bone regenerative poten-
tial such that the limited therapeutic options of critical-
sized bone defects could be successfully replaced.
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