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Abstract

Background: RNA sequencing analysis focus on the detection of differential gene expression changes that meet a
two-fold minimum change between groups. The variability present in RNA sequencing data may obscure the
detection of valuable information when specific genes within certain samples display large expression variability.
This paper develops methods that apply variance and dispersion estimates to intra-group data to identify genes
with expression values that diverge from the group envelope. STRING database analysis of the identified genes
characterize gene affiliations involved in physiological regulatory networks that contribute to biological variability.
Individuals with divergent gene groupings within network pathways can thereby be identified and judiciously
evaluated prior to standard differential analysis.

Results: A three-step process is presented for evaluating biological variability within a group in RNA sequencing
data in which gene counts were: (1) scaled to minimize heteroscedasticity; (2) rank-ordered to detect potentially
divergent “trendlines” for every gene in the data set; and (3) tested with the STRING database to identify statistically
significant pathway associations among the genes displaying marked trendline variability and dispersion. This
approach was used to identify the “trendline” profile of every gene in three test data sets. Control data from an in-
house data set and two archived samples revealed that 65–70% of the sequenced genes displayed trendlines with
minimal variation and dispersion across the sample group after rank-ordering the samples; this is referred to as a
linear trendline. Smaller subsets of genes within the three data sets displayed markedly skewed trendlines, wide
dispersion and variability. STRING database analysis of these genes identified interferon-mediated response
networks in 11–20% of the individuals sampled at the time of blood collection. For example, in the three control
data sets, 14 to 26 genes in the defense response to virus pathway were identified in 7 individuals at false
discovery rates ≤1.92 E-15.

Conclusions: This analysis provides a rationale for identifying and characterizing notable gene expression variability
within a study group. The identification of highly variable genes and their network associations within specific
individuals empowers more judicious inspection of the sample group prior to differential gene expression analysis.

Keywords: Scaling, Rank-order, Trendline, Biological variability, Biological pathway analysis, RNA sequencing, STRI
NG-db, Minimum value adjustment, White blood cells
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Background
A major goal of RNA-seq studies is to improve and extend
our understanding of gene expression responses amidst the
challenging variability commonly found in sequencing data.
Although numerous factors are known to affect sequencing
results such as the reference genome, the read processing
pipeline, internal references, read fragment size, and the se-
lected data analysis algorithms, among others [1], thus far it
has been difficult to discern how these sequencing proce-
dures combined with intrinsic biological variability might
impact differential analysis. For example, many software
packages commonly employ different normalization proce-
dures that are designed to mitigate read count variability;
however, these strategies are known to yield dissimilar dif-
ferential expression analysis results [2–6]. Biological vari-
ation is considered to be larger than technical variation [3,
6–8], but the biological implications associated with read
count normalization are not well-understood. Previous
studies have suggested that increasing the sequencing depth
(read coverage) and/or the number of biological replicates
generally improves estimates of biological variation [6–8].
Conclusions relating to biological variation are usually

based on Analysis of Variance (ANOVA) Sums of
Squares estimations. Although increasing the level of
replication may increase the Between Sums of Square
difference and provide a more definitive statistical
conclusion about an identified biological response (e.g.
larger F-value), an increase in the Sums of Squares does
not identify the factor(s) contributing to the variability.
More broadly untangling the impact of variability on
each step of the RNA-seq pipeline is difficult. One must
identify specific sources of biological variability in the
data set and consider how the normalization process
impacts the overall results. This problem becomes
increasingly difficult to resolve in samples in which cell
number and cell type fluctuate significantly. Identifying
and quantifying significant variability within RNA se-
quencing data sets would provide information that
would be very useful for evaluating the robustness of
computational steps, for example, devising and evaluat-
ing methodologies for determining how normalization
protocols impact technical and biological variation.
Van den Berg et al. [9] have employed various scaling

strategies to their metabolomics data and examined their
usefulness in categorizing the relative importance of vari-
ous metabolites identified in these studies. They deter-
mined that scaling normalizations performed better than
other strategies because they removed the dependence of
the metabolites initial ranking based on the magnitude of
a quantitative response. The scaled metabolites were eval-
uated in relation to their sample-to-sample response range
which also reduced the heteroscedasticity (mean and vari-
ance dispersion) within the data set. Since these data sets
were qualitatively similar to the data obtained in RNA

sequencing studies, we applied an approach similar to
scaling normalization to evaluate RNA sequencing results.
Blood from 35 healthy adults was extracted and proc-

essed for RNA sequencing [10, 11]. The read counts were
scaled to establish a uniform starting point across all genes
and rank-ordered to characterize gene expression in the
sample group as a “trendline” pattern for each gene.
Excel-based tools were employed to analyze and catalogue
the resulting gene trendlines [12]. Utilizing trendline ana-
lysis, we determined that 65–70% of the genes in our con-
trol data set follow a linear relationship with minimal
variance when the genes were scaled and rank-ordered.
However, other genes that did not follow this linear profile
displayed markedly higher levels of dispersion and vari-
ability that diverged significantly from the genes in a nor-
mally distributed control sample. We identified standard
statistical measures that characterize and catalogue these
different trendlines and utilized this information to iden-
tify factors that may contribute to this heightened bio-
logical variability. When genes displaying the most
variable and dispersed trendline expression patterns were
evaluated with the STRING database [13–15], distinct bio-
logical regulatory pathways were identified in some indi-
viduals, thereby providing an explanation for some of the
variability in the sample group.
We also demonstrate that the scaling normalization

strategy employed in our study reduced gene expression
heteroscedasticity within three different control data sets
as previously demonstrated by van den Berg et al. [9].
Scaling adjustments in conjunction with rank-order ana-
lysis clarify and extend the analysis of inter-individual
variations relating to differential gene expression previ-
ously described by Whitney et al. [16], Savelyeva et al.
[17], Preininger et al. [18] and Jaffe et al. [19] to within-
the-group analysis. STRING-db analysis of genes
displaying the most variable and dispersed trendlines re-
vealed that 11–20% of the individuals in our control
sample and two archived control data sets, identified a
prominent network of interferon-stimulated genes. The
interferon-induced genes identified in this analysis play a
pivotal regulatory role in three Gene Ontology pathways
[20–22] that include response to virus, defense response
to virus and the type I-interferon signaling/regulatory
response pathways. The evaluation of gene trendline re-
sponses within a group and across individuals identifies
sources of previously unrecognized biological variability
that now can be detected and appraised. This method of
analysis can be applied to archived RNA sequencing data
to detect previously unrecognized sources of biological
variability that may have impacted differential analysis
and physiological conclusions. The methods outlined in
this report will be useful in identifying within group
variability commonly found in RNA sequencing data
sets and when employed in conjunction with established
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data processing pipelines, they are likely to improve the
robustness of these studies.

Results
Rank-ordering RNA sequencing counts graphically
portrays the impact of sample dispersion on gene
trendline profiles
DeSeq-normalized TPM (Transcripts Per kilobase Million)
gene counts for 35 individuals were processed through our

pipeline [23] and the count data were rank-ordered to con-
struct a unique trendline for each gene. Figure 1a depicts a
box plot of data for five example genes displaying increas-
ing variance where the box boundaries identify gene counts
in the 2ed and 3rd quartiles (25th–75th percentile). The
breadth of the box illustrates the degree of count
dispersion across the 35 data points for each gene. The
mean for the INTS6 gene is 10.52 ± 1.88 (1 SD) counts
and plotting the counts for the 35 samples in ascending

Fig. 1 Rank-ordering RNA sequencing counts identifies individuals displaying gene count divergence. a Box plots of sequencing counts for five
genes INTS6, AKAP13, KCNJ2, IFIT3 and EIF1AY depicting increasing levels of sample dispersion with computed coefficient of variation values
ranging from 17.9 to 171.2% of the unadjusted TPM gene counts (Mean ± 1SD). Box boundaries exclude individuals in the first and fourth quartile
for each gene. b Rank-ordering the unadjusted counts of 35 individuals delineates different gene trendline patterns for the five genes. Gene rank-
order position is established in relation to the gene expression level for an individual gene within the sample group, therefore the ranking order
does not identify the same individual at each position along the various gene trendlines since the relative level of gene expression for an
individual changes across genes. c Minimum Value Adjusted (MVA) gene counts significantly improve count heteroscedasticity (5-fold scale
reduction) without altering the incremental trendline profiles within the sample group. Rank-order analysis extends the descriptive sample
information available from a box plot by: defining the number of data points within the sample that deviate from the count level in the 2nd and
3rd quartiles; identifying their inflection point(s) and providing an estimate of the relative change in gene expression based on the computed
slope ratio change. Black vertical lines identify quartiles 1, 2–3 and 4. See Additional file 1 for a more detailed discussion
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rank-order created a linear INTS6 trendline as illustrated in
Fig. 1b. A coefficient of variation (CV) of 17.9% and the co-
efficient of determination (R2) of 0.9498 further supports
the linear profile of the INTS6 trendline. This trendline
profile was identical to the pattern obtained when numbers
were randomly selected from a normally distributed popu-
lation within a defined range of values and rank-ordered
(see Additional file 1 for a detailed discussion). Therefore,
we conclude that genes displaying a linear trendline profile
across a defined range of expression values represent a
“normally distributed control envelope” grouping of expres-
sion values within the identified samplying window.
The mean counts for genes AKAP13 and KCNJ2 were

18.26 ± 4.47 and 12.88 ± 3.82, respectively (Fig. 1a).
While these genes showed slightly more dispersion
across the 35 samples (Panels a and b, with CV values
of 25.26 and 29.62% and R2 values of 0.8499 and 0.8418,
respectively), rank-ordering the counts revealed more
complex trendlines where the slope of the line for samples
in quartiles 1 and/or 4 deviated from the slope of the line
for samples in quartiles 2 plus 3 (Fig. 1, panel b).
The last two example genes, IFIT3 and EIF1AY, displayed

much greater deviation from the linear trendline model
(Fig. 1a; 21.96 ± 25.52 and 26.88 ± 46.03, respectively). The
rank-ordered IFIT3 trendline depicted in Fig. 1b, identified
individuals in quartile 4 with markedly different expression
levels when compared to individuals in quartiles 1–3. The
final example gene, EIF1AY, is located on the Y chromo-
some and is expressed only in males. The gene trendline in
Fig. 1b, shows an expected bimodal pattern with samples
24–35 comprising the eleven males in the sample group.
The R2 values for these two genes were 0.429 and 0.5923,
respectively, which denotes a significant deviation from lin-
earity (CV 116.18 and 171.24%, respectively).
These five example genes exhibit increasing degrees of

gene expression variability among the individuals in
quartiles 1 and 4. The observed trendline profiles illus-
trate how rank-ordering of RNA sequencing counts can
identify marked changes in gene expression variability
among some of the 8746 protein coding genes identified
in our study. Based on linear regression analysis, 65–
70% of the 8000 to 10,000 evaluated genes (3 data sets)
displayed trendlines where the incremental difference in
gene expression across the group followed a linear pat-
tern resulting in R2 values that were ≥ 0.9 (e.g. INTS6,
Fig. 1, panel b). Under ideal conditions with minimal
within sample variation, one might expect all of the se-
quenced genes in the control sample to follow this linear
pattern but this is not the case. Our subsequent analysis
attempts to provide some explanation for the heightened
variability noted for genes such as IFIT3 in Fig. 1.
Figure 1c depicts the Minimum Value Adjusted

(MVA) TPM counts which substantially reduce the
range of gene expression (e.g. > 5-fold decrease in scale);

however, the unique incremental sample-to-sample gene
expression relationship of the 35 rank-ordered samples
was maintained irrespective of the trendline profile
(Fig. 1, panels b vs. c). When the quartile slopes for
individuals in quartiles 1 and/or 4 deviates from those in
quartiles 2 plus 3, a “tailing” profile was established as
illustrated by the genes depicted in panels b and c of
Fig. 1. Due to random chance, it would be difficult and
unlikely to find several hundred genes displaying 4–8
“outliers” in a common subset of 35 individuals. Further-
more, we will now demonstrate how these “tailing response”
profiles, as illustrated for the IFIT3 gene, can be used to
identify other genes sharing comparable trendline profiles,
and thereby identify sources of biological variation among
selected individuals in a sample group.

Statistical characterization of trendline “tailing responses”
identify gene pathway regulatory groupings that
contribute to biological variability
After rank-ordering unadjusted and MVA gene counts
to create gene trendlines, standard Excel functions were
used to perform a variety of statistical calculations [12].
Mean and median calculations measure aspects of
dispersion and skewness, standard deviation, range, and
slope measure dispersion, and skewness measures the
unevenness of dispersion. Ranking these statistical pa-
rameters characterizes the degree to which this disper-
sion impacts gene expression levels for various genes.
Calculations were computed for each of the 8746 genes
and the results were ranked in descending order
(Additional file 2, sheet 6). The 300 genes displaying the
largest numerical values for each calculation were sub-
jected to STRING-db analysis and the identified genes
were surveyed for pathway affiliations (Additional file 2,
sheet 7). The results were summarized and presented in
Additional file 4A and B.
The unadjusted and MVA gene counts identified Bio-

logical Gene Ontology (GO) pathways associated with
cotranslational protein targeting to membrane (section
4A) or immune system process pathways (section 4B)
when the largest means representing the various statis-
tical calculations were evaluated for the two groups. The
unadjusted mean counts identified gene pathway group-
ings having the largest relative gene expression levels.
When the gene counts are scaled by MVA to reflect the
sample-to-sample incremental changes of each gene, the
resulting trendline means identified immune pathway
classifications rather than the highly expressed genes as-
sociated with protein synthesis (Additional file 4, panel
A vs. B). The identification of markedly different path-
way affiliations following MVA is consistent with the
findings reported by van den Berg et.al [9].. When the
unadjusted gene counts were used for these calculations,
parameters that measure the relative magnitude of the
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count, such as mean, standard deviation, maximum, me-
dian, quartile 1, quartile 3, slope etc. all select highly
expressed genes in Biological GO pathways associated
with protein synthesis and targeting proteins to different
areas of the cell (Panel 4A vs 4B). However, when statis-
tical parameters such as range/median, skewness and
kurtosis were used that characterize the “tailedness” and
the unevenness of sample dispersion, identical pathway
results were obtained with either unadjusted or MVA
counts (Panel 4A vs 4B). Therefore, the type of measure-
ment used for gene trendline characterization prior to
STRING-db analysis impacts pathway selection if the
heteroscedastic nature of the raw counts was not ad-
dressed prior to pathway analysis.
Other statistical calculations that measure sample

variability and trendline asymmetry such as coefficient of
variation, maximum/minimum ratio, range/median, skew-
ness, kurtosis, range/quartile 3, and R2 all identified
immune-related GO pathways with FDR’s ranging from
E-6 to E-32 (Panel 4B). The 300 genes displaying the
largest range/Q3 (FDR = 6.22 E-32), range/median (FDR =
5.33 E-26) and kurtosis values (FDR = 6.85 E-27) detected
the greatest trendline variability and had the smallest R2

values ranging from 0.2253 to 0.8754. These three statis-
tical calculations selected trendline “tailing” patterns with
the greatest fidelity that were similar to the profile previ-
ously depicted by the IFIT3 gene in Fig. 1c.
The statistical parameters depicted in file 4 illustrate

that some measures identified a larger number of gene as-
sociations with lower False Discovery Rates (FDR) based
on the observed “tailing” patterns. Range/Q3, range/me-
dian and kurtosis measures detected 122, 113 and 105 im-
mune system process (GO:0002376) pathway genes,
respectively. Although all three parameters demonstrated
proficiency in selecting genes with “tailing” profiles, only 8
of the top 10 pathways were identical among the three cal-
culations and 7–14% fewer total genes were identified
when either kurtosis or range/median measures were
employed. Although a variety of calculations can be used
for identifying gene pathway affiliations in addition to
range/Q3, range/median and kurtosis, the other parame-
ters selected fewer genes, different rank-orders, and al-
ternative pathways when these parameters were
employed to identify gene affiliations based on gene
trendline tailing response profiles (Additional file 4).
Changes in the order of the top 10 identified pathways
were impacted by the number of known genes in a des-
ignated pathway and the selected measure used to
identify the pathway-related genes in the sample. For
example, the identification of 50 genes in a pathway of
200 genes provides a lower FDR than the detection of
50 genes in a pathway containing 2000 genes.
The identification of the top 300 computed trendline

values, as outlined above, was also used to evaluate gene

groupings that were selected using various combinations
of sample size (e.g. 250–450 genes) and statistical par-
ameter groupings (combine 1–3 measures for pathway
selection). STRING-db analysis of 250–300 genes based
on trendline kurtosis estimates selected identical path-
ways (data not shown). Samples of 300 genes surveyed
at various rank position locations, ranging from 1 to
6000, selected different GO pathways with lower FDR’s
following STRING-db analysis. Sampling genes at lower
gene rankings identified large pathways involved in cel-
lular metabolism and function. These pathways involve
thousands of genes and due to the size of the pathways
much lower FDR’s were observed (e.g. FDR > E-15).
The application of the MVA scaling reduced heterosce-

dasticity as previously noted [9] while preserving important
sample-to-sample incremental changes that contributed to
the rank-ordered trendline profiles. In our sample of 35
individuals, MVA reduced Total Sums of square by 960-
fold and Within Group Sums of Square by 303-fold (see
Additional file 1). The various statistical parameters tested
in our studies revealed that range/Q3, range/median and
kurtosis were the most sensitive and robust parameters for
identifying “tailedness” in unadjusted as well as MVA
applications (Additional file 4B).

Correlation analysis identifies genes displaying similar
trendline profiles and regulatory pathway associations
The previous analysis demonstrated that ranking certain
statistical measures in a sample of 35 individuals identi-
fied genes with “tailed” trendlines and affiliated pathway
groupings. To further evaluate this result, we employed
correlation analysis to identity genes that might display
similar associations to the trendline profiles previously
noted for the IFIT3 gene (Fig. 1b and c). We used Excel
to perform Pearson correlation analysis on the MVA
counts of 8746 genes in our study [12]. To limit the size
of the correlation matrix (> 78 × 106 values) to a more
discernable number of terms, estimated values for the
highest correlation and anticorrelation range was used
to provide a count of the number of genes displaying
correlation values > or < input values and the number of
genes assigned r values ≥ or ≤ the input terms were iden-
tified [12]. After the initial analysis, the input correlation
values are adjusted up or down to limit the number of
genes assigned to a smaller correlation subset matrix.
Using this rationale, we identified a subset of 500 genes
with correlation values ≥0.95725 or ≤ − 0.524674. Within
this group of genes, the IFIT3 gene was positively corre-
lated with the largest cluster of genes including IFIT1
and 12 other genes. STRING-db analysis indicated that
these 14 genes were associated with 24 GO pathways
containing multiple regulatory protein associations as
depicted in Fig. 2. The top 3 GO pathways with FDR ≤
E-15 were GO:0009615, response to virus, 5.33 E-21;
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GO:0051607, defense response to virus, FDR 1.13 E-20
and GO:0060337, type 1 interferon signaling pathway,
2.64 E-17. The correlation results were identical when
either the original counts or MVA counts were evaluated
with an equivalent number of genes (i.e. 500). STRING-
db analysis of the most highly correlated genes within
the entire data set identified gene pathways that were
activated in response to virus exposure.
Based on the STRING-bd results presented in Fig. 2, 7

genes displaying two or more pathway affiliations were se-
lected and their expression profiles were plotted in the 35
unranked control samples. The gene expression profiles for
our control group and two additional archived control data
sets are presented in Fig. 3. The average baseline expression
level for most of these genes is ~ 5 counts, so gene expres-
sion levels of 30–110 counts represent markedly elevated
levels of gene expression in certain individuals. Interferon
induced IFI44L and ISG15 genes are markedly elevated in
individuals 6, 9 and 12 in panel a, sample 7 in panel b and
samples 3 and 4 in panel c, and the coordinated response is
suggestive of individuals responding to the presence of a
virus. It is important to emphasize that the elevated level of
gene expression of these 7 genes is confined to specific indi-
viduals in the sample group and the non-random nature of
the response is unlikely due to methodological variability.
In addition to the 14 positively correlated genes,

there were also several gene clusters in which more

than 30 genes were identified with negative correla-
tions (r ≤ −.52465; TMEM38B, 43 genes; MMP9, 39
genes and CLEC4D,36 genes). The list of 43 genes
associated with TMEM38B were evaluated with the
STRING-db to determine if any of these genes shared
pathway relationships and the results are depicted in
Fig. 4. These 44 genes form associations with 145
different Biological GO pathways with PPI enrichment
< 1.0 E-16 and they appear to be primarily involved
in mediating immune responses (GO:0006955).

Localization of highly correlated gene groupings in
specific individuals is used to construct a scoring function
The highly correlated cluster of genes identified in Fig. 2,
and their coordinated expression responses within cer-
tain individuals as depicted in Fig. 3, suggested a second
avenue for analysis. The rationale was based on the
premise that the coordinated gene activity within a
biological pathway would involve multiple genes and this
should result in a higher rank-order position for the
genes in the activated pathway as well as an increase in
the relative number of positionally ranked genes repre-
senting that pathway. To explore this possibility, a “Scor-
ing Function” depicting the gene rank position listing
was determined for every gene and this analysis is de-
scribed in Additional file 2, sheet 7 and file 6. Table 1
provides an abbreviated summary of the results. Based

Fig. 2 Listing of highly correlated genes identified by correlation analysis and their known integrated network affiliations within the immune
system. STRING database analysis of the 13 genes found to be highly correlated (r ≥ 0.95725) with the IFIT3 gene. This regulatory cluster is
associated with 24 GO pathways that are primarily involved in response to virus (red, GO:0009615), defense response to virus (blue, GO:0051607)
and type 1 interferon signaling (green, GO:0060337). Eight of the highlighted genes (red, blue and green) form statistically significant groupings
with False Discovery Rates ranging from E− 17 to E− 21 that may collectively integrate the activity of all three pathways
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on STRING-db analysis, six individuals were identified
with gene clusters representing multiple immune path-
ways with False Discovery Rates (FDR) ≤ E-15. Range
/Q3 and kurtosis calculations identified individuals 4, 6,
9, 10, 12 and 33 with multiple immune pathways at
FDR’s ≤ E-15 to E-27 (Fig. 3, Table 1 and Additional file 6).
The analysis of the 35 control samples identified 6 individ-
uals or 17% of the sample group with genes displaying
marked “tailedness”. Moreover, the genes identified in
these individuals are involved in the regulation immune
function pathways, such as defense response to virus (GO:
0051607) which was identified in 4 of the 6 individuals
(11%). A Venn Plot of the genes identified in all three data
sets (e.g. data set 1; samples 6, 9, 10, 12 data set 2; sample
7 and data set 3; samples 3 and 4) identified 10 genes
common to all three data sets (e.g. HERC5, OAS3,
RSAD2, OAS1, MX1, IFI6, IFI44L, IFIT1, OASL and

IFIT3). Eight of these 10 genes were previously identified
in Fig. 2 with FDR’s ranging from E-15 to E-27 (see
Additional files 6, 8 and 9).

Individuals responding to viruses and pronounced
inflammatory responses resulting in elevated numbers of
white blood cells contribute to biological variability
Our analysis highlighted sample 33 with neutrophil and
leukocyte activation pathways (Additional file 6) and we
speculated whether WBC number might be influencing
these responses [26, 27]. To address this question, we
plotted the WBC differential cell counts for the 35 indi-
viduals in our control sample and the results are pre-
sented in Additional file 7. Sample 33 clearly contained
the largest number of WBC’s and neutrophils. When the
cell counts were rank-order, samples 33, 6 and 8 con-
tained a proportionally larger number of WBC’s and

Fig. 3 Highly correlated and functionally related gene networks are simultaneous elevated in specific individuals. Seven genes were selected
from the highly correlated list of genes identified in Fig. 2 and their unranked expression profiles were plotted for the individuals in three
different Control data sets (a, b, and c). In panel a (35 in house Controls), b (9 Controls, [24]) and c (12 Controls, [25]) the interferon induced
IFI44L and ISG15 genes were specifically elevated in approximately 12% of the individuals (gene expression levels > 6-fold of baseline expression)
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Fig. 4 STRING database analysis of 44 genes found to be negatively correlated (r ≤ − 0.52465) with the TMEM38B gene. This regulatory cluster is
associated with 145 GO pathways that are primarily involved with immune responses such as leukocyte activation (blue, GO:0045321), neutrophil
degranulation (red, GO:0043312) and immune system process (green, GO:0002376)
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neutrophils than the other 32 samples and the removal
of those three individuals markedly improved the WBC vari-
ation explained by the regression line (WBC R2 improves
from 0.8492 to 0.9824). This analysis demonstrates that a
disproportionate number of WBC’s can also impact gene
pathway analysis when the cell numbers are elevated above
10 million WBC’s / ml of blood. The survey of gene tren-
dlines such as IFIT3 based on range/Q3, range/median and
kurtosis (Table 1) provided a strategy to identify pathways in
which groups of genes appeared to display coordinated ex-
pression patterns. The highly correlated group of genes

identified in Fig. 2 form multiple protein interactions involv-
ing an assortment of different biological pathways as previ-
ously illustrated Additional files 4 and 6. The genes identified
in Fig. 2 represent virus-induced interferon-stimulated genes
[27–30]. When the individuals identified as having coordi-
nated immune responses were removed from the analysis
(e.g. individuals 6, 9, 10, 12 and 33, Additional file 6 and
Table 1) and the correlations were re-evaluated in the
remaining 30 samples, the genes previously correlated
with IFIT1 (e.g. r ≥ 0.9579) were reduced from 14 genes to
0. Furthermore, the R2 values for the genes identified in

Table 1 Summary of Sample Positional Rank Assignments

Protein coding gene counts in three data sets were Minimum Value Adjusted (MVA) and rank ordered. The individual with the highest read count for any given
gene was assigned a positional rank of 1, the second highest count was assigned a rank of 2, etc. until all of the samples received a positional gene assignment
ranking (see Additional file 6). A scoring function was employed to identified a minimum of 1000 positionally ranked genes for each individual. The positionally
ranked genes were evaluated to determine if any genes with range/median, range/Q3, kurtosis and Q4/Q(2 + 3) slope values were within a group of the top 300
genes previously identified for each of the selection parameters. For example, in a list of 1000 positionally ranked genes, only genes with a range/median value ≥
to the computed value of the 300th gene would be identified. The genes identified with these four parameters were subsequently evaluated with the STRING db
to determine if they were associated with known biological pathways. The black font represents the number of times the designated pathway was ranked in the
top 10 pathways in the 35 samples. The number highlighted in red font represents the number of individuals with a False Discover Rate (FDR) < E-15. Samples 4,
6, 9, 10, 12 and 33 all contained one or more pathways with FDR < E-15 to E-42 (Additional files 6, 8, 9). Range/Q3 and range/median calculations were the most
robust parameters and identifying the largest number of pathway genes with the smallest FDR. Immune function pathways relating to defense response to virus,
response to virus and type I interferon signaling pathways were highlighted in individuals 6, 9,10 and 12 with FDR’s from E-15 to E-26 when range/Q3, range/
median or kurtosis values were used for gene identification and STRING-db analysis
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Fig. 2 ranged from 0.295 to 0.426 in the sample of 35 indi-
viduals were significantly improved to 0.931 to 0.965 after
removing the 5 highlighted individuals from the analysis.

Application of positional rank analysis to survey trendline
patterns in control archived RNA-Seq data sets
We retrieved archived Control peripheral blood RNA
sequencing files from the GEO database [24, 25, 31]
(GSE109313 and GSE112057), processed the raw counts
through our pipeline and evaluated genes with mean TPM
counts ≥0.5 in the two control data sets (Additional file 11).
The resulting lists of genes were filtered to remove non-
protein coding genes and the most robust trendline selec-
tion measures including range/median, range/Q3, kurtosis
and Q4/(Q2 +Q3) slope values were used to identify
genes with the highest positional rank assignments as pre-
viously outlined (Additional file 5). A detailed summary of
the results is presented in (Additional files 6, 8 and 9).
Since we previously identified individuals in our 35-

member Control group that were likely responding to
virus-mediated immune challenges (Table 1 and file 6), we
evaluated two additional archived Control data sets to de-
termine if the smaller sample groups also contained similar
individuals. Employing the 4 parameters used in our previ-
ous study (Table 1), a list of positionally ranked genes was
assembled with each of the screening parameters. The as-
sembled positionally ranked gene lists were evaluated with
the STRING-db [13] to determine if any Biological GO
pathways were specifically highlighted in these individuals.
STRING-db analysis of the positionally ranked genes iden-
tified one individual in Control group b (sample 7, Fig. 3),
and 2 individuals in Control Group c (samples 3 and 4,
Fig. 3) in which the defense response to virus pathway was
significantly elevated (see Table 1 and Additional files 8
and 9 for a detailed summary of the pathway results).
The combined data summarized in Table 1, files 6, 8

and 9 and Fig. 3 demonstrate that positional rank ana-
lysis identified from 11 to 17% of the individuals in the
three control data sets with gene associations represent-
ing virus activated immune pathways. We selected a
relatively high benchmark with pathway FDR’s < E-15;
but if PPI values < 1.0 E-16 were used for evaluating the
gene listings, ~ 20% of the surveyed samples contained
individuals in which viral induced immune pathways
were identified. The individuals identified as undergo-
ing viral-induced immune responses significantly im-
pact gene expression levels in the pathways that were
identified by our analysis, thereby increasing the bio-
logical variability of the control sample groups. In
addition, the noted increases in the number of WBC’s
in some of these individuals were also identified as
another source of biological variability in our data set
(Additional file 7).

Can the detected biological responses be explained by
technical variability?
It is always important to consider how the application of
an analytical strategy may impact the results and conclu-
sions of any study. In three separate RNA-seq studies,
we noted that 65–70% of the genes follow linear
trendline profiles with R2 values ≥0.9. We selected 4
genes with unadjusted mean counts ranging from 9 to
3836 to determine if consistent trendline linearity ex-
tended across a broad range of gene expression values.
The trendline expression profiles for these genes and 4
ERCC standards with similar expression levels are pre-
sented in Fig. 5. Similar linear trendlines were observed
for both the selected genes and the ERCC standards with
the exception of sample 35, representing sample 7,
(rank-ordered samples are not listed in numeric se-
quence, 1–35), in which the ERCC values were consist-
ently larger. The marked deviation from the computed
trendline observed in ERCC sample 35 is not reflected in
the 4 selected genes in the left panel of Fig. 5, which
suggests a potential spike-in issue with little or no tech-
nical impact on gene counts.
To further evaluate technical and biological variability,

we normalized the CBX3, IFIT3, IFI44L and DEFA3
gene expression in relation to the stable ATG3 gene (see
Additional file 10). This normalization was performed by
calculating gene expression ratios for each of the 35
samples and evaluating the degree of count dispersion
across samples when the counts are expressed in relation
to a known stable gene. In panel a of Fig. 6, the CBX3/
ATG3 gene ratios for two stable genes are presented.
The gene ratios for these two genes range from 1.2 in
sample 8 to 2.4 in sample 14 (2X range). When the
highly correlated and variable expression profiles of the
IFIT3 and IFI44L genes, previously identified in Figs. 2
and 3, were evaluated in relation to the ATG3 gene
(Fig. 6, panels b and c) the sample gene ratios range
from 0.59 in sample 21 to 10.62 in sample 9 (17.9 X
range) for IFIT3 and from 0.08 in sample 2 to 4.1 in
sample 9 (51 X range). It is also important to note that
samples 9, 6 and 12 displayed the largest relative expres-
sion levels for both genes as we previously reported in
Fig. 3a. Although the highly variable DEFA3 gene dis-
playing an R2 value of 0.3956 was not identified among
the genes highlighted in Figs. 2 and 3, it also displayed
DEFA3/ATG3 gene ratios that varied from 0.2 in sample
9 to 23.1 in sample 13 (116X range). The DEFA3 defen-
sin gene belongs to a family of microbiocidal/cytotoxic
peptides found in neutrophile granules that are thought
to be involved in host defense responses. The gene ex-
pression ratios for the IFIT3 and IFI44L genes identi-
fied in samples 9, 6 and 12 (Fig. 6, panels b and c) were
substantially greater than the range of values identified
among the 35 CBX3/ATG3 gene ratios presented in
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Fig. 5 Trendline gene expression profiles remain consistent over a wide range of RNA-seq expression levels. Four genes displaying unadjusted
gene counts ranging from 9 to 3836 counts were rank-ordered (left panel). Gene trendline linearity was independent of the level of gene
expression. ERCC spike-in standards also showed linearity but the ERCC standard in index 35 (sample 7) was markedly elevated (right panel).
However, sample 7 did not display similar deviations in any of the four genes depicted in the left panel of Fig. 5, which suggest a spike-in issue
with little or no technical impact on gene counts. Red circles identify sample 7
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panel a of Fig. 6. Presumably, the heightened gene ra-
tio responses reflect increased variability resulting
from the coordinated biological responses impacting
gene expression in samples 9, 6 and 12. In contrast,
although the DEFA3/ATG3 gene expression ratios
also displayed marked variability, the largest gene ra-
tios were observed in different individuals (samples
13, 28, 34 and 35) suggesting that the biological vari-
ability contributing to these changes were different to
those impacting samples 9, 6 and 12. Representative
sample gene ratio profiles of other stable genes as
well as the various genes identified in Fig. 2 were
identical to those depicted in Fig. 6, in panels a, b
and c. This analysis demonstrates that the relative
magnitude of the gene ratio responses identified in
samples 9, 6 and 12 were much larger than the 2-fold
range of sample-to-sample variation observed for 65–
70% of the sequenced genes as depicted in panel a of
Fig. 6, and they are unlikely due to technical
variability.

Discussion
RNA-sequencing technology has the potential to con-
tribute significantly to our ability to diagnose and treat
many diseases. As clinical medicine relies more heavily
on this technology for the application of personalized
treatment strategies, it becomes increasingly important
to identify and disentangle sources of technological error
while preserving and identifying intrinsic sources of
biological variability. As previously noted, differential ex-
pression tools are impacted by a variety of factors and
they are not universally robust to the presence of outlier
results from divergent expression data [3, 4, 32–36].
While tools such as EBSeq [33], LFCseq [35], leave-one-
out methods [34], median-based approaches, and other
software [36, 37], may detect and manage outliers based
on the software’s defined criteria, they operate primarily
as a “black box” during the differential expression ana-
lysis step. These tools may or may not report the outlier,
and to our knowledge, they do not provide an intra-
group outlier explanation that is readily available to the

Fig. 6 Gene count ratio estimates identify the specific individuals previously identified by String-db analysis. Stable genes identified in three data sets
were used to normalize gene expression (see Additional file 10). In panel a, the CBX3/ATG3 gene ratios of two highly stable genes are plotted for each
of the 35 samples in our study. A 2-fold range of variation is noted between samples 8 and 14. In contrast, when two of the interferon regulated
genes were normalized in relation to the ATG3 gene (panels b and c) samples 9, 6 and 12 were highlighted with ratios 2 to 5-fold higher than noted
in panel a. The relative response profile of samples 9, 6 and 12 in panels b and c correspond to the genes correlated with IFIT3 gene previously
identified in Fig. 3. In contrast to the IFIT3 and IFI44L response profiles, when the DEFA3 gene was normalized in relation to ATG3, samples 13, 34, 28
and 35 were highlighted. When evaluated in relation to highly stable genes within the data set, the nonlinear gene trendlines identified in our analysis
highlight meaningful inter-individual changes in gene expression that cannot be explained on the basis of technical variation
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investigator. Moreover, any outlier detection by current
software during DGE is performed at the gene level only.
Our approach is focused on providing complementary
information prior to DGE. We have evaluated the possi-
bility of creating a methodology that uses existing pack-
ages such as Deseq2 [37] or Cuffdiff [36] for intra-group
analysis (for example, by using variable-leave-k-out
comparisons, where k varies over sample subsets). In
our analysis, such an approach was computationally very
costly (exploring the set of subsets of 35 samples), and
not as descriptively informative. Moreover, our approach
extends beyond the gene-level view and reports on the
potential impact of divergent values at the network level.
RNA sequencing counts routinely display large differ-

ences in their relative gene expression levels, which scales
with the mean of the sequenced counts. In previous re-
ports, we developed strategies for stabilizing RNA in whole
blood samples and significantly improving RNA recovery
during extraction [10, 11]. Here, we used ERCC spike-in
standard concentration ratios to minimize amplification
and dilutional errors across samples [23], noting that
ERCC spike-in mixes were not used in the archived data
sets. We also addressed heteroscedasticity by using MVA
scaling. This method of scaling is suitable for variability
analysis because individual sample-to-sample gene expres-
sion levels are adjusted to a common starting point across
samples while maintaining the incremental trendline fluc-
tuations of individual genes [23]. In our Control sample,
MVA of the 8746 genes reduced the mean and standard
deviation by an average of 3.9-fold; however, in highly
expressed genes such as B2M the mean and variance are
scaled down by as much as 1316-fold (Additional file 2,
sheet 3). Nevertheless, the important incremental sample-
to-sample gene expression changes were maintained after
MVA scaling as illustrated by the gene profiles depicted in
panels b and c of Fig. 1. After MVA, these incremental
changes form the basis for identifying the trendline expres-
sion profiles (Additional file 4, Panel A vs B). We note that
while MVA-scaled data is suitable for trendline analysis, it
is important to follow the correct scaling protocol for dif-
ferential expression analysis by following the specific guide-
lines of the software that is being employed.
After performing MVA scaling on our data set, we

determine that ~ 70% of the 8746 genes in our sample
group displayed trendline linearity as assessed by R2

values ≥0.9. The application MVA in conjunction with
rank-order trendline analysis illustrated that gene ex-
pression in this group of genes is consistent with the
profile obtained from a normally distributed sample.
Moreover, the remaining 30% of the genes that deviate
from this linear profile were easily identified and evalu-
ated due their increased variability and dispersion. Our
analysis demonstrated that a subset on individuals with
tailed gene trendlines in quartile 4, similar to IFIT3

(Fig. 1c), contribute significantly to the variability in the
control data set (see Additional file 1). The approach
employed in our manuscript is designed to provide an
explanatory (and visually inspectable) methodology that
can augment existing tools and guide the decisions of
the investigator. The statistics used are based on the
quantile function [38] and higher moments of distribu-
tions (skew) which are readily available in a number of
standard statistical software packages. A dramatic ex-
ample of the variability associated with these genes is
depicted by the marked increase in their computed coef-
ficient of variability (Additional file 1, Fig. 4).
By rank-ordering the incremental change in gene ex-

pression across samples, we created a unique snapshot or
“trendline”. Statistical evaluation of the trendlines identi-
fied several robust measures that provided the greatest
ability to characterize the biological variability or “tailed-
ness” of the expression values. STRING-db analysis of the
genes exhibiting the most pronounced “tailedness” expres-
sion profile revealed that these genes were associated with
important regulatory networks (Additional file 4). We also
demonstrated that positional rank analysis could be used
to further evaluate RNA-seq data and identify gene ex-
pression variability within specific individuals in the group
(see Additional files 6, 8 and 9). The ability to identify and
characterize gene trendline properties provides a new and
powerful strategy to detect pathway-affiliated genes, and
quantify the significance of their associated biological re-
sponses via the computed False Discovery Rate in any tis-
sue or sample. To our knowledge, this is the first study in
which variability that diverges from standard technical
variability has been identified (e.g. The number of Ob-
served Genes per Pathway are identified and statistically
quantified by the calculation of False Discovery Rates).
Trendline slope analysis of our 35 control samples

identified individuals with gene expression rates in quar-
tiles 1 and 4 that were more than 6-fold greater than the
computed slope in quartiles 2 + 3 (32 and 351 genes
identified in Q1 and Q4, respectively). Although higher
or lower rates of relative gene expression for any given
gene in the sample set will contribute to increased vari-
ability, rank-order quartile analysis was useful in further
characterizing this variation (Fig. 1, panels b and c). One
explanation for this response profile is that certain
critical regulatory genes were governed by positive or
negative regulatory signals [39].
The expression profile of genes such as IFIT3 (Fig. 1b)

are difficult to explain on the basis of sample-to-sample
variability. The “tailing” trendline observed for the IFIT3
gene indicates that gene expression in about 25% of the
individuals was markedly different from the other
members of the sample group. These gene trendlines
displayed significant non-uniformity (high variability) as
illustrated by range/median, range/Q3, skewness and
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kurtosis measures. Although, kurtosis and skewness cal-
culations identified the degree of “tailedness” of the gene
sample distribution, quartile slope analysis provided a
more direct measure of these changes. Calculating the
slope ratios of Q1/(Q2 +Q3) or Q4/(Q2 + Q3) identified
individuals that deviated from the central core of the
sample group. STRING-db analysis of the genes display-
ing these non-linear trendline profiles identified highly
integrated pathway associations, as depicted in Figs. 2, 3
and 4, that are involved in the detection and response to
a virus. We note that the robustness of the slope ratio
calculations is dependent on the size of the sample
group (e.g. n ≥ 16, Additional file 3).
The characterized gene trendline patterns provided a

strategy for evaluating gene associations displaying
similar trendline profiles [12]. In our sample group,
range/median, range/Q3 and kurtosis calculations were
also used to identify gene trendlines displaying marked
dispersion and “nonlinearity”. Gene clusters identified
with these parameters were subsequently evaluated with
the STRING-db and the results were summarized in
Table 1. STRING-db analysis as well as correlation stud-
ies demonstrated that the genes displaying pronounced
non-linear trendline properties resembling the IFIT3
gene, play a prominent role in the mobilization and acti-
vation of specific immune pathways (Additional files 4,
6, 8 and 9 and Figs. 2, 3 and 6). We identified specific
individuals in the control data sets expressing a dispro-
portionate number of genes in the defense response to
virus pathway (GO:0051607) with Observed Gene Count
pathway assignments ranging from 4 to 29 genes and
FDR’s from E-2 to E-26 in a pathway containing only
181 genes. Our results are suggestive of intra-group differ-
ences beyond technical variability. Under the assumption
that “methodological variability” is mostly stochastic, the
emergence of highly correlated regulatory pathways (Fig. 2)
with significant FDR’s identified during STRING-db
analysis (Additional file 6) would be highly unlikely. This
observation was further supported by noting that when
the interferon-mediated genes identified in Fig. 2 were
expressed in relation to highly stable genes such as ATG3
(Fig. 6), samples 9, 6 and 12 were consistently identified
with the largest gene ratios. Moreover, random selections
of 300 genes from the entire list of 8746 genes never
resulted in FDR’s ≤ E-6 (n = 5, Additional file 3). While we
cannot exclude the possibility that technological and
methodological error may influence our findings, the
results presented in Table 1 and in Figs. 5 and 6 support
the conclusion that technical and methodological error
had nominal impact on our findings.
Intra-group identification of 11–20% of the individuals

in three separate data sets as responding to a viral-
induced immune response is an important observation
that should be considered prior to differential expression

analysis. In addition, other related pathways involving
defense response (GO:0006952), response to virus (GO:
0009615) and the type 1 interferon signaling (GO:
0009615) pathways were also routinely found among the
top 10 identified pathways in conjunction with the
defense response to virus pathway. Identification of
individuals that exhibit a defense-related response within
an experimental group is consistent with the time-
dependent activation and transition of the immune sys-
tem from the detection of a foreign object to a defined
immune response [27–30].
We have noted that changes in gene expression may

represent 5 to 50-fold deviations from the median ex-
pression level as illustrated for the IFIT3 gene in panel c
of Fig. 1. Current analytical pipelines for DGE are de-
signed to remove “outliers” which display more than
30% disagreement [1]. Based on our results, these proto-
cols remove the gene counts of individuals displaying
the greatest biological variability thereby diminishing the
opportunity to detect cases of interest wherein a contrib-
uting physiological basis for variability may be at work.
The removal of specific individuals that appear to be
responding to a viral challenge may remove a previously
unrecognized source of biological variation. While our
approach informs the investigator about these cases, it is
beyond the scope of this report to determine how the
mitigation of this source of biological variability will in-
fluence DGE during principal component analysis.
Identifying and characterizing the genes assigned to

the highest positional ranks enabled us to identify indi-
viduals with an increased number of genes in certain
GO pathways in our control group (Additional file 6) as
well as in the archived data sets (files 8, and 9). Our ana-
lysis identified asymptomatic individuals who may have
been responding to an immune challenge; for example, a
recent infection, an immunization, or a response to one
of the many latent viruses we commonly harbor in our
bodies [40]. A broad array of genes in alternative gene
expression pathways were also identified in our analysis
but they did not reach a statistical level of significance
(see Additional files 6, 8 and 9). These genes also
contribute to the biological variability in the various
sample groups but they do not appear to introduce an
inordinate degree of variability. Although the impact of
differences in WBC number and the detection of
interferon-regulated genes involved in inflammatory re-
sponse have been previously described [26–30], we believe
this is the first report in which these responses have been
quantified and localized to specific individuals within
control data sets.
After MVA and establishing trendlines, several calcula-

tions including estimates of R2 were prepared. R2, a
measure of the variance explained by regression, pro-
vided an estimate of the linearity of every gene in the
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data set. We have ranked the R2 values for the three data
sets in descending order and identified 15 genes with R2

values > 0.96 that had raw mean counts > 5 and that
were common to all three data sets (Additional file 10).
Within this group of genes, MVA reduced the raw
means by 12-fold and identified genes with very stable
trendlines that may be useful as internal reference gene
candidates for evaluating RNA sequencing results (e.g.
Fig. 6) or as qRT-PCR gene markers as previously sug-
gested by Stamova et al. [41].
The application MVA in conjunction with rank-order

trendline analysis provides a strategy for identifying previ-
ously unrecognized sources of biological variation. How-
ever, it should be noted that the expression levels of
ERCC spike-in standards, as depicted by sample 7 in Fig. 5,
may also be impacted by the initial composition of the
RNA sample [3, 19]. Our approach is helpful towards
tackling the difficult question of how variability may
impact the conclusions of previous studies. This analysis
is simple to perform and requires a minimal amount of
computational time. Therefore, it may significantly con-
tribute to the clarity of our understanding of the manner
in which previously unrecognized sources of biological
variability may have biased or confounded the experimen-
tal analysis with minimal overhead. Although differential
gene expression analysis remains an important application
in RNA-seq studies, the detection of regulatory pathways
containing genes that may not otherwise be identified as
differentially expressed provides new insight into the
complex mechanisms governing human diseases.

Conclusions
Rank-order analysis of the MVA gene expression values
in conjunction with R2 calculations revealed that 65–
70% of the sequenced genes display a linear “baseline”
level of gene expression across the data set. Statistical
measures, such as range/median, range/ Q3 and kurtosis,
that characterize the “tailing” properties of some gene
trendlines, were used in conjunction with databases such
as STRING-db or PANTHER-db to identify and quantify
gene pathways contributing to biological variability
within and across three different sample groups. Pathways
relating to viral-induced immunological responses were
identified in 11–20% of the 54 individuals evaluated in our
combined studies. This previously unrecognized source of
variability may confound or obscure DGE results and
mask important conclusions obtained from immuno-
logical studies.
Minimum Value Adjustment (MVA) scaling signifi-

cantly reduced the average mean and standard deviation
in the data set by 3.9-fold among the 8746 protein-
coding sequenced genes. However, MVA preserved the
unique incremental sample-to-sample changes in gene
expression across individuals following rank-ordering.

Furthermore, the resulting range and magnitude of the
incremental changes in gene expression following MVA
were markedly similar even though the RNA was ex-
tracted and processed differently in the three data sets
evaluated in our study. While MVA may also reduce
some of the variability that is commonly introduced
when data sets are sequenced in different laboratories
and at different times, its designated utility in our studies
is in the analysis of intra-group comparisons.

Methods
Sample collection, RNA extraction, sequencing and data
analysis
Blood samples were collected from 35 healthy adults ac-
cording to a protocol approved by Chesapeake Research
Review, LLC (#Pro:00009509). Blood samples were used for
complete blood cell analysis and RNA extraction [10, 11].
RNA was DNase-treated and submitted to the University of
Cincinnati Genomics, Epigenetics and Sequencing Core Fa-
cility for RNA sequencing. The computational pipeline
employed in this study has been previously described [23].
The RNA extracted from the 35 control samples passed

quality control assessment prior to the addition of Exter-
nal RNA Controls Consortium ExFold RNA spike-in
mixes (ERCC: Ambion, 4,456,739; Foster City CA) and re-
moval of ribosomal and globin RNA from the samples
(Illumina GZG1206; San Diego, CA). The cDNA libraries
were processed according to standardized Illumina proto-
cols and sequenced on the Illumina HiSeq 2000 platform.
Fastq data files containing 53–77 million single-end reads
were trimmed and processed for data analysis. Reads were
aligned to reference genome GRCh37.p13[hg19] using the
BowTie2 aligner supporting gapped alignments as previ-
ously described [23, 36].

Processing RNA sequencing data files
Data files containing 10–13 thousand transcripts were
imported into an Excel spreadsheet and matched to a list
of human protein coding genes identified at the Gene
Ontology website [20–22]. To optimize our analysis in
databases such as STRING [13–15] and PATHER [42,
43], we removed noncoding genes (filter) from further
consideration [12]. When noncoding genes were re-
moved, False Discovery Rate (FDR) estimates were im-
proved during STRING-db pathway analysis thereby
increasing the sensitivity of gene pathway identification.
Transcripts that were not identified as protein-coding
genes were assigned to a separate “Discard” data sheet.
After identifying the protein coding genes, samples with
gene counts < 0.5 were replaced with 0 and genes with
means < 0.5 counts were eliminated from further ana-
lysis [12].
Single genes that mapped to multiple genomic locations

(Copy Number Variants, CNV [44]) were identified and
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read counts were combined under a single identification
convention (e.g. The Control data set contained 66 CNV
genes with duplicate/triplicate gene location listings).
The final raw data processing step was the Minimum

Value Adjustment scaling procedure described below
(MVA, Additional files 1 and 3). More detained informa-
tion relating to the data entry process is provided in
Additional file 2.

Data processing, normalization strategies and statistical
analysis
In our control data set, an iterative correction of the
length-adjusted ERCC spike-in concentration ratios was
used to proportionally adjust for sample processing
effects, pipetting errors, dilutional differences and other
sources of methodological variability while the archived
data sets that did not contain ERCC spike-ins were
limited to size factor normalization using the median-to-
ratio method as previously outlined [23]. Data were
adjusted for sequencing depth and normalized using the
Deseq2 median of ratios method [36] before the reads
(in units of transcript per kilobase million or TPM) were
used in trendline analysis. Our objective was to
minimize the impact of methodological variability before
applying trendline analysis.
Read counts for various genes ranged over a 5

Log10 scale thereby creating large differences in the
variance within the sequenced data set. To address the
heteroscedastic nature of the raw data, we applied Mini-
mum Value Adjustment (MVA) scaling normalization
strategy to our counts. The smallest count for each gene
was identified and used to proportionally adjust the
remaining samples. MVA=Gene A (Sample Counts (1 to

n) / Gene A Minimum Value Count). This adjustment as-
signs a value of 1 to the smallest count value for every
gene. After MVA, all of the incremental changes for the
8746 protein-coding genes across the 35-sample data set
fall within a numeric range of 1–60 relative counts. This
adjustment of every gene to its lowest common denomin-
ator eliminated large comparative differences in the rela-
tive magnitude of the observed counts between genes
within and across individuals while maintaining the im-
portant incremental changes when the adjusted counts are
rank-ordered. In addition, the trendline starting point is
identical for every gene in the analysis. The removal of in-
ordinately low (counts < 0.5) and nonsignificant gene
counts minimized the possibility of inflating the magni-
tude of the sample-to-sample incremental changes that
can be sensitive to very small outliers during scaling ad-
justments [9].
Statistical calculations were performed using the resi-

dent statistical macros provided with Windows 10 Excel
software.

Trendline identification and Analysis
For statistical analysis, the Microsoft Windows Excel
Platform and its statistical and mathematical functions
were used. In order to organize and manage the data,
software was developed to streamline and augment our
analysis [12]. RNA sequencing counts were imported
into Excel, duplicate gene entries were identified and re-
moved, gene counts that were below a user defined value
were checked for meaningful gene expression levels and
nonprotein coding genes were removed (optional) before
performing Minimum Value Adjustment scaling (see
Additional file 2 for details and examples of data output).
A primary objective of our study was to determine

whether rank-order analysis was a useful strategy to
identify sources of intra-group biological variability that
otherwise remain difficult to detect in RNA-seq data. In
order to omit nonprotein coding genes from the sequen-
cing results, each gene was surveyed to determine
whether the transcript was a known protein coding gene.
We used the Gene Ontology website to provide a list of
19,623 known human protein coding genes [20–22].
Genes that were not recognized as protein coding genes
are listed as “filtered units” and they can be further ana-
lyzed if desired.
Two markedly different gene trendline expression

profiles are presented in supplement 1 to illustrate how
linear regression analysis and other calculations can be
used to analyze rank-ordered gene count data. Tren-
dlines were constructed for each gene by ranking the ad-
justed and unadjusted gene counts for the 35 samples in
ascending order as described in Additional files 1, 2, 3
and 4. From our list of 35 samples, we identified 15
genes with the largest mean expression values before
and after MVA (Additional file 2, sheets 2 & 3). MVA
significantly reduced the mean and standard deviation
among these genes by 67 to 1316-fold but the Coefficient
of Variation was unchanged. Genes were identified in the
unadjusted and MVA data sets with R2 > 0.9 (linear
profile) and R2 < 0.9 (nonlinear) trendline patterns. These
mathematical calculations were used to further characterize
gene trendlines and identify gene groupings (clusters) that
shared similar mathematical features. This analysis
identified relational associations among genes that would
otherwise be indiscernible using more classical analytical
procedures. Supplement file 2 describes additional software
programing features and examples of data output. An over-
view of the data input and processing pipeline is summa-
rized in sheet 1 of file 2.

Gene pathway associations identified by comparing
similarities in Trendline characteristics
A variety of statistical calculations were performed on
the trendline of each gene. Our results were based on a
list of 8746 protein-coding genes with a mean baseline
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count ≥0.5 counts that were rank-ordered to identify
genes with the most prominent trendline property (e.g.
range/Q3, kurtosis, R2, etc.). Prominent genes consid-
ered for additional analysis fell among the top 300 genes
characterized by the largest or smallest measurements
for any of the computed parameters. For each computed
statistical parameter, the identified genes were imported
into the STRING database (db) to determine if that
parameter linked genes to functionally related protein
associations. For example, 300 genes that displayed the
largest computed means were identified and imported
into the STRING database version 11 [13–15] to deter-
mine if the highlighted genes formed known associations
within any biological pathway(s). STRING-db analysis
was performed using the “high confidence setting of
0.7”. Using various statistical tests, the STRING-db iden-
tified the Number of Observed Gene Counts within the
original list of 300 submitted genes that were associated
with known GO pathways and assigned a False Discov-
ery Rate based on the Observed Gene Count and the
total number of known genes in the pathway. Al-
though algorithms employed to compute False Dis-
covery Rates in the STRING-db and Panther-db [13–
15, 42, 43] databases are different, False Discovery
Rates < E-15 are generally considered significant and
the identified Observed Gene Count groupings cannot
not be attributed to random gene associations (see
file 2 for additional detail).

Analysis of archived RNA Seq data files
An identical method of analysis was used to evaluate se-
quencing data obtained from peripheral blood samples
extracted and processed with different methodologies in
order to determine whether the MVA scaling and rank-
ordering methods could identify similar changes in gene
pathway affiliations among Control samples in two
archived data sets. We downloaded data files from the
NCBI Gene Expression Omnibus site [31] containing
sequencing data obtained from the peripheral blood of 9
Controls (GSE109313, [24]) in one data set and 12
Controls in a second data set (GSE112057, [25]). Blood
samples in the first data set were extracted with the
PAXgene RNA blood extraction kit and further proc-
essed to prepare poly(A) selected and ribo-depleted
RNA-seq libraries. In data set 2, blood was collected via
Tempus Tubes and RNA was extracted with the Tempus
Spin RNA isolation kit.
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